Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / staging / skein / skein_block.c
1 /***********************************************************************
2 **
3 ** Implementation of the Skein block functions.
4 **
5 ** Source code author: Doug Whiting, 2008.
6 **
7 ** This algorithm and source code is released to the public domain.
8 **
9 ** Compile-time switches:
10 **
11 **  SKEIN_USE_ASM  -- set bits (256/512/1024) to select which
12 **                    versions use ASM code for block processing
13 **                    [default: use C for all block sizes]
14 **
15 ************************************************************************/
16
17 #include <linux/string.h>
18 #include "skein_base.h"
19 #include "skein_block.h"
20
21 #ifndef SKEIN_USE_ASM
22 #define SKEIN_USE_ASM   (0) /* default is all C code (no ASM) */
23 #endif
24
25 #ifndef SKEIN_LOOP
26 #define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
27 #endif
28
29 #define BLK_BITS        (WCNT * 64) /* some useful definitions for code here */
30 #define KW_TWK_BASE     (0)
31 #define KW_KEY_BASE     (3)
32 #define ks              (kw + KW_KEY_BASE)
33 #define ts              (kw + KW_TWK_BASE)
34
35 #ifdef SKEIN_DEBUG
36 #define debug_save_tweak(ctx)       \
37 {                                   \
38         ctx->h.tweak[0] = ts[0];    \
39         ctx->h.tweak[1] = ts[1];    \
40 }
41 #else
42 #define debug_save_tweak(ctx)
43 #endif
44
45 #if !(SKEIN_USE_ASM & 256)
46 #undef  RCNT
47 #define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
48 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
49 #define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
50 #else
51 #define SKEIN_UNROLL_256 (0)
52 #endif
53
54 #if SKEIN_UNROLL_256
55 #if (RCNT % SKEIN_UNROLL_256)
56 #error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
57 #endif
58 #endif
59 #define ROUND256(p0, p1, p2, p3, ROT, r_num) \
60 do {                                         \
61         X##p0 += X##p1;                      \
62         X##p1 = rotl_64(X##p1, ROT##_0);     \
63         X##p1 ^= X##p0;                      \
64         X##p2 += X##p3;                      \
65         X##p3 = rotl_64(X##p3, ROT##_1);     \
66         X##p3 ^= X##p2;                      \
67 } while (0)
68
69 #if SKEIN_UNROLL_256 == 0
70 #define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \
71         ROUND256(p0, p1, p2, p3, ROT, r_num)
72
73 #define I256(R)                                                           \
74 do {                                                                      \
75         /* inject the key schedule value */                               \
76         X0   += ks[((R) + 1) % 5];                                        \
77         X1   += ks[((R) + 2) % 5] + ts[((R) + 1) % 3];                    \
78         X2   += ks[((R) + 3) % 5] + ts[((R) + 2) % 3];                    \
79         X3   += ks[((R) + 4) % 5] + (R) + 1;                              \
80 } while (0)
81 #else
82 /* looping version */
83 #define R256(p0, p1, p2, p3, ROT, r_num) ROUND256(p0, p1, p2, p3, ROT, r_num)
84
85 #define I256(R) \
86 do { \
87         /* inject the key schedule value */ \
88         X0 += ks[r + (R) + 0]; \
89         X1 += ks[r + (R) + 1] + ts[r + (R) + 0];                          \
90         X2 += ks[r + (R) + 2] + ts[r + (R) + 1];                          \
91         X3 += ks[r + (R) + 3] + r + (R);                                  \
92         /* rotate key schedule */                                         \
93         ks[r + (R) + 4] = ks[r + (R) - 1];                                \
94         ts[r + (R) + 2] = ts[r + (R) - 1];                                \
95 } while (0)
96 #endif
97 #define R256_8_ROUNDS(R)                                 \
98 do {                                                     \
99                 R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1);  \
100                 R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2);  \
101                 R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3);  \
102                 R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4);  \
103                 I256(2 * (R));                           \
104                 R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5);  \
105                 R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6);  \
106                 R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7);  \
107                 R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8);  \
108                 I256(2 * (R) + 1);                       \
109 } while (0)
110
111 #define R256_UNROLL_R(NN)                     \
112         ((SKEIN_UNROLL_256 == 0 &&            \
113         SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
114         (SKEIN_UNROLL_256 > (NN)))
115
116 #if  (SKEIN_UNROLL_256 > 14)
117 #error  "need more unrolling in skein_256_process_block"
118 #endif
119 #endif
120
121 #if !(SKEIN_USE_ASM & 512)
122 #undef  RCNT
123 #define RCNT  (SKEIN_512_ROUNDS_TOTAL/8)
124
125 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
126 #define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
127 #else
128 #define SKEIN_UNROLL_512 (0)
129 #endif
130
131 #if SKEIN_UNROLL_512
132 #if (RCNT % SKEIN_UNROLL_512)
133 #error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
134 #endif
135 #endif
136 #define ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
137 do {                                                         \
138         X##p0 += X##p1;                                      \
139         X##p1 = rotl_64(X##p1, ROT##_0);                     \
140         X##p1 ^= X##p0;                                      \
141         X##p2 += X##p3;                                      \
142         X##p3 = rotl_64(X##p3, ROT##_1);                     \
143         X##p3 ^= X##p2;                                      \
144         X##p4 += X##p5;                                      \
145         X##p5 = rotl_64(X##p5, ROT##_2);                     \
146         X##p5 ^= X##p4;                                      \
147         X##p6 += X##p7; X##p7 = rotl_64(X##p7, ROT##_3);     \
148         X##p7 ^= X##p6;                                      \
149 } while (0)
150
151 #if SKEIN_UNROLL_512 == 0
152 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \
153         ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)
154
155 #define I512(R)                                                           \
156 do {                                                                      \
157         /* inject the key schedule value */                               \
158         X0   += ks[((R) + 1) % 9];                                        \
159         X1   += ks[((R) + 2) % 9];                                        \
160         X2   += ks[((R) + 3) % 9];                                        \
161         X3   += ks[((R) + 4) % 9];                                        \
162         X4   += ks[((R) + 5) % 9];                                        \
163         X5   += ks[((R) + 6) % 9] + ts[((R) + 1) % 3];                    \
164         X6   += ks[((R) + 7) % 9] + ts[((R) + 2) % 3];                    \
165         X7   += ks[((R) + 8) % 9] + (R) + 1;                              \
166 } while (0)
167
168 #else /* looping version */
169 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)                 \
170         ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)             \
171
172 #define I512(R)                                                           \
173 do {                                                                      \
174         /* inject the key schedule value */                               \
175         X0   += ks[r + (R) + 0];                                          \
176         X1   += ks[r + (R) + 1];                                          \
177         X2   += ks[r + (R) + 2];                                          \
178         X3   += ks[r + (R) + 3];                                          \
179         X4   += ks[r + (R) + 4];                                          \
180         X5   += ks[r + (R) + 5] + ts[r + (R) + 0];                        \
181         X6   += ks[r + (R) + 6] + ts[r + (R) + 1];                        \
182         X7   += ks[r + (R) + 7] + r + (R);                                \
183         /* rotate key schedule */                                         \
184         ks[r + (R) + 8] = ks[r + (R) - 1];                                \
185         ts[r + (R) + 2] = ts[r + (R) - 1];                                \
186 } while (0)
187 #endif /* end of looped code definitions */
188 #define R512_8_ROUNDS(R)  /* do 8 full rounds */                      \
189 do {                                                                  \
190                 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1);   \
191                 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2);   \
192                 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3);   \
193                 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4);   \
194                 I512(2 * (R));                              \
195                 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5);   \
196                 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6);   \
197                 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7);   \
198                 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8);   \
199                 I512(2 * (R) + 1);        /* and key injection */     \
200 } while (0)
201 #define R512_UNROLL_R(NN)                             \
202                 ((SKEIN_UNROLL_512 == 0 &&            \
203                 SKEIN_512_ROUNDS_TOTAL/8 > (NN)) ||   \
204                 (SKEIN_UNROLL_512 > (NN)))
205
206 #if  (SKEIN_UNROLL_512 > 14)
207 #error  "need more unrolling in skein_512_process_block"
208 #endif
209 #endif
210
211 #if !(SKEIN_USE_ASM & 1024)
212 #undef  RCNT
213 #define RCNT  (SKEIN_1024_ROUNDS_TOTAL/8)
214 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
215 #define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
216 #else
217 #define SKEIN_UNROLL_1024 (0)
218 #endif
219
220 #if (SKEIN_UNROLL_1024 != 0)
221 #if (RCNT % SKEIN_UNROLL_1024)
222 #error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
223 #endif
224 #endif
225 #define ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
226                   pF, ROT, r_num)                                             \
227 do {                                                                          \
228         X##p0 += X##p1;                                                       \
229         X##p1 = rotl_64(X##p1, ROT##_0);                                      \
230         X##p1 ^= X##p0;                                                       \
231         X##p2 += X##p3;                                                       \
232         X##p3 = rotl_64(X##p3, ROT##_1);                                      \
233         X##p3 ^= X##p2;                                                       \
234         X##p4 += X##p5;                                                       \
235         X##p5 = rotl_64(X##p5, ROT##_2);                                      \
236         X##p5 ^= X##p4;                                                       \
237         X##p6 += X##p7;                                                       \
238         X##p7 = rotl_64(X##p7, ROT##_3);                                      \
239         X##p7 ^= X##p6;                                                       \
240         X##p8 += X##p9;                                                       \
241         X##p9 = rotl_64(X##p9, ROT##_4);                                      \
242         X##p9 ^= X##p8;                                                       \
243         X##pA += X##pB;                                                       \
244         X##pB = rotl_64(X##pB, ROT##_5);                                      \
245         X##pB ^= X##pA;                                                       \
246         X##pC += X##pD;                                                       \
247         X##pD = rotl_64(X##pD, ROT##_6);                                      \
248         X##pD ^= X##pC;                                                       \
249         X##pE += X##pF;                                                       \
250         X##pF = rotl_64(X##pF, ROT##_7);                                      \
251         X##pF ^= X##pE;                                                       \
252 } while (0)
253
254 #if SKEIN_UNROLL_1024 == 0
255 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
256               ROT, rn)                                                        \
257         ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
258                   pF, ROT, rn)                                                \
259
260 #define I1024(R)                                                          \
261 do {                                                                      \
262         /* inject the key schedule value */                               \
263         X00 += ks[((R) + 1) % 17];                                        \
264         X01 += ks[((R) + 2) % 17];                                        \
265         X02 += ks[((R) + 3) % 17];                                        \
266         X03 += ks[((R) + 4) % 17];                                        \
267         X04 += ks[((R) + 5) % 17];                                        \
268         X05 += ks[((R) + 6) % 17];                                        \
269         X06 += ks[((R) + 7) % 17];                                        \
270         X07 += ks[((R) + 8) % 17];                                        \
271         X08 += ks[((R) + 9) % 17];                                        \
272         X09 += ks[((R) + 10) % 17];                                       \
273         X10 += ks[((R) + 11) % 17];                                       \
274         X11 += ks[((R) + 12) % 17];                                       \
275         X12 += ks[((R) + 13) % 17];                                       \
276         X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3];                   \
277         X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3];                   \
278         X15 += ks[((R) + 16) % 17] + (R) + 1;                             \
279 } while (0)
280 #else /* looping version */
281 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
282               ROT, rn)                                                        \
283         ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
284                   pF, ROT, rn)                                                \
285
286 #define I1024(R)                                                           \
287 do {                                                                       \
288         /* inject the key schedule value */                                \
289         X00 += ks[r + (R) + 0];                                            \
290         X01 += ks[r + (R) + 1];                                            \
291         X02 += ks[r + (R) + 2];                                            \
292         X03 += ks[r + (R) + 3];                                            \
293         X04 += ks[r + (R) + 4];                                            \
294         X05 += ks[r + (R) + 5];                                            \
295         X06 += ks[r + (R) + 6];                                            \
296         X07 += ks[r + (R) + 7];                                            \
297         X08 += ks[r + (R) + 8];                                            \
298         X09 += ks[r + (R) + 9];                                            \
299         X10 += ks[r + (R) + 10];                                           \
300         X11 += ks[r + (R) + 11];                                           \
301         X12 += ks[r + (R) + 12];                                           \
302         X13 += ks[r + (R) + 13] + ts[r + (R) + 0];                         \
303         X14 += ks[r + (R) + 14] + ts[r + (R) + 1];                         \
304         X15 += ks[r + (R) + 15] + r + (R);                                 \
305         /* rotate key schedule */                                          \
306         ks[r + (R) + 16] = ks[r + (R) - 1];                                \
307         ts[r + (R) + 2] = ts[r + (R) - 1];                                 \
308 } while (0)
309
310 #endif
311 #define R1024_8_ROUNDS(R)                                                     \
312 do {                                                                          \
313         R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \
314               R1024_0, 8*(R) + 1);                                            \
315         R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \
316               R1024_1, 8*(R) + 2);                                            \
317         R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \
318               R1024_2, 8*(R) + 3);                                            \
319         R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \
320               R1024_3, 8*(R) + 4);                                            \
321         I1024(2*(R));                                                         \
322         R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \
323               R1024_4, 8*(R) + 5);                                            \
324         R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \
325               R1024_5, 8*(R) + 6);                                            \
326         R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \
327               R1024_6, 8*(R) + 7);                                            \
328         R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \
329               R1024_7, 8*(R) + 8);                                            \
330         I1024(2*(R)+1);                                                       \
331 } while (0)
332
333 #define R1024_UNROLL_R(NN)                              \
334                 ((SKEIN_UNROLL_1024 == 0 &&             \
335                 SKEIN_1024_ROUNDS_TOTAL/8 > (NN)) ||  \
336                 (SKEIN_UNROLL_1024 > (NN)))
337
338 #if  (SKEIN_UNROLL_1024 > 14)
339 #error  "need more unrolling in Skein_1024_Process_Block"
340 #endif
341 #endif
342
343 /*****************************  SKEIN_256 ******************************/
344 #if !(SKEIN_USE_ASM & 256)
345 void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
346                              size_t blk_cnt, size_t byte_cnt_add)
347 { /* do it in C */
348         enum {
349                 WCNT = SKEIN_256_STATE_WORDS
350         };
351         size_t r;
352 #if SKEIN_UNROLL_256
353         /* key schedule: chaining vars + tweak + "rot"*/
354         u64  kw[WCNT+4+RCNT*2];
355 #else
356         /* key schedule words : chaining vars + tweak */
357         u64  kw[WCNT+4];
358 #endif
359         u64  X0, X1, X2, X3; /* local copy of context vars, for speed */
360         u64  w[WCNT]; /* local copy of input block */
361 #ifdef SKEIN_DEBUG
362         const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */
363
364         X_ptr[0] = &X0;
365         X_ptr[1] = &X1;
366         X_ptr[2] = &X2;
367         X_ptr[3] = &X3;
368 #endif
369         skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
370         ts[0] = ctx->h.tweak[0];
371         ts[1] = ctx->h.tweak[1];
372         do  {
373                 /*
374                  * this implementation only supports 2**64 input bytes
375                  * (no carry out here)
376                  */
377                 ts[0] += byte_cnt_add; /* update processed length */
378
379                 /* precompute the key schedule for this block */
380                 ks[0] = ctx->x[0];
381                 ks[1] = ctx->x[1];
382                 ks[2] = ctx->x[2];
383                 ks[3] = ctx->x[3];
384                 ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
385
386                 ts[2] = ts[0] ^ ts[1];
387
388                 /* get input block in little-endian format */
389                 skein_get64_lsb_first(w, blk_ptr, WCNT);
390                 debug_save_tweak(ctx);
391
392                 /* do the first full key injection */
393                 X0 = w[0] + ks[0];
394                 X1 = w[1] + ks[1] + ts[0];
395                 X2 = w[2] + ks[2] + ts[1];
396                 X3 = w[3] + ks[3];
397
398                 blk_ptr += SKEIN_256_BLOCK_BYTES;
399
400                 /* run the rounds */
401                 for (r = 1;
402                         r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2);
403                         r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) {
404                         R256_8_ROUNDS(0);
405 #if   R256_UNROLL_R(1)
406                         R256_8_ROUNDS(1);
407 #endif
408 #if   R256_UNROLL_R(2)
409                         R256_8_ROUNDS(2);
410 #endif
411 #if   R256_UNROLL_R(3)
412                         R256_8_ROUNDS(3);
413 #endif
414 #if   R256_UNROLL_R(4)
415                         R256_8_ROUNDS(4);
416 #endif
417 #if   R256_UNROLL_R(5)
418                         R256_8_ROUNDS(5);
419 #endif
420 #if   R256_UNROLL_R(6)
421                         R256_8_ROUNDS(6);
422 #endif
423 #if   R256_UNROLL_R(7)
424                         R256_8_ROUNDS(7);
425 #endif
426 #if   R256_UNROLL_R(8)
427                         R256_8_ROUNDS(8);
428 #endif
429 #if   R256_UNROLL_R(9)
430                         R256_8_ROUNDS(9);
431 #endif
432 #if   R256_UNROLL_R(10)
433                         R256_8_ROUNDS(10);
434 #endif
435 #if   R256_UNROLL_R(11)
436                         R256_8_ROUNDS(11);
437 #endif
438 #if   R256_UNROLL_R(12)
439                         R256_8_ROUNDS(12);
440 #endif
441 #if   R256_UNROLL_R(13)
442                         R256_8_ROUNDS(13);
443 #endif
444 #if   R256_UNROLL_R(14)
445                         R256_8_ROUNDS(14);
446 #endif
447                 }
448                 /* do the final "feedforward" xor, update context chaining */
449                 ctx->x[0] = X0 ^ w[0];
450                 ctx->x[1] = X1 ^ w[1];
451                 ctx->x[2] = X2 ^ w[2];
452                 ctx->x[3] = X3 ^ w[3];
453
454                 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
455         } while (--blk_cnt);
456         ctx->h.tweak[0] = ts[0];
457         ctx->h.tweak[1] = ts[1];
458 }
459
460 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
461 size_t skein_256_process_block_code_size(void)
462 {
463         return ((u8 *) skein_256_process_block_code_size) -
464                 ((u8 *) skein_256_process_block);
465 }
466 unsigned int skein_256_unroll_cnt(void)
467 {
468         return SKEIN_UNROLL_256;
469 }
470 #endif
471 #endif
472
473 /*****************************  SKEIN_512 ******************************/
474 #if !(SKEIN_USE_ASM & 512)
475 void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
476                              size_t blk_cnt, size_t byte_cnt_add)
477 { /* do it in C */
478         enum {
479                 WCNT = SKEIN_512_STATE_WORDS
480         };
481         size_t  r;
482 #if SKEIN_UNROLL_512
483         u64  kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot"*/
484 #else
485         u64  kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
486 #endif
487         u64  X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */
488         u64  w[WCNT]; /* local copy of input block */
489 #ifdef SKEIN_DEBUG
490         const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */
491
492         X_ptr[0] = &X0;
493         X_ptr[1] = &X1;
494         X_ptr[2] = &X2;
495         X_ptr[3] = &X3;
496         X_ptr[4] = &X4;
497         X_ptr[5] = &X5;
498         X_ptr[6] = &X6;
499         X_ptr[7] = &X7;
500 #endif
501
502         skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
503         ts[0] = ctx->h.tweak[0];
504         ts[1] = ctx->h.tweak[1];
505         do  {
506                 /*
507                  * this implementation only supports 2**64 input bytes
508                  * (no carry out here)
509                  */
510                 ts[0] += byte_cnt_add; /* update processed length */
511
512                 /* precompute the key schedule for this block */
513                 ks[0] = ctx->x[0];
514                 ks[1] = ctx->x[1];
515                 ks[2] = ctx->x[2];
516                 ks[3] = ctx->x[3];
517                 ks[4] = ctx->x[4];
518                 ks[5] = ctx->x[5];
519                 ks[6] = ctx->x[6];
520                 ks[7] = ctx->x[7];
521                 ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
522                         ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
523
524                 ts[2] = ts[0] ^ ts[1];
525
526                 /* get input block in little-endian format */
527                 skein_get64_lsb_first(w, blk_ptr, WCNT);
528                 debug_save_tweak(ctx);
529
530                 /* do the first full key injection */
531                 X0 = w[0] + ks[0];
532                 X1 = w[1] + ks[1];
533                 X2 = w[2] + ks[2];
534                 X3 = w[3] + ks[3];
535                 X4 = w[4] + ks[4];
536                 X5 = w[5] + ks[5] + ts[0];
537                 X6 = w[6] + ks[6] + ts[1];
538                 X7 = w[7] + ks[7];
539
540                 blk_ptr += SKEIN_512_BLOCK_BYTES;
541
542                 /* run the rounds */
543                 for (r = 1;
544                         r < (SKEIN_UNROLL_512 ? 2 * RCNT : 2);
545                         r += (SKEIN_UNROLL_512 ? 2 * SKEIN_UNROLL_512 : 1)) {
546
547                         R512_8_ROUNDS(0);
548
549 #if   R512_UNROLL_R(1)
550                         R512_8_ROUNDS(1);
551 #endif
552 #if   R512_UNROLL_R(2)
553                         R512_8_ROUNDS(2);
554 #endif
555 #if   R512_UNROLL_R(3)
556                         R512_8_ROUNDS(3);
557 #endif
558 #if   R512_UNROLL_R(4)
559                         R512_8_ROUNDS(4);
560 #endif
561 #if   R512_UNROLL_R(5)
562                         R512_8_ROUNDS(5);
563 #endif
564 #if   R512_UNROLL_R(6)
565                         R512_8_ROUNDS(6);
566 #endif
567 #if   R512_UNROLL_R(7)
568                         R512_8_ROUNDS(7);
569 #endif
570 #if   R512_UNROLL_R(8)
571                         R512_8_ROUNDS(8);
572 #endif
573 #if   R512_UNROLL_R(9)
574                         R512_8_ROUNDS(9);
575 #endif
576 #if   R512_UNROLL_R(10)
577                         R512_8_ROUNDS(10);
578 #endif
579 #if   R512_UNROLL_R(11)
580                         R512_8_ROUNDS(11);
581 #endif
582 #if   R512_UNROLL_R(12)
583                         R512_8_ROUNDS(12);
584 #endif
585 #if   R512_UNROLL_R(13)
586                         R512_8_ROUNDS(13);
587 #endif
588 #if   R512_UNROLL_R(14)
589                         R512_8_ROUNDS(14);
590 #endif
591                 }
592
593                 /* do the final "feedforward" xor, update context chaining */
594                 ctx->x[0] = X0 ^ w[0];
595                 ctx->x[1] = X1 ^ w[1];
596                 ctx->x[2] = X2 ^ w[2];
597                 ctx->x[3] = X3 ^ w[3];
598                 ctx->x[4] = X4 ^ w[4];
599                 ctx->x[5] = X5 ^ w[5];
600                 ctx->x[6] = X6 ^ w[6];
601                 ctx->x[7] = X7 ^ w[7];
602
603                 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
604         } while (--blk_cnt);
605         ctx->h.tweak[0] = ts[0];
606         ctx->h.tweak[1] = ts[1];
607 }
608
609 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
610 size_t skein_512_process_block_code_size(void)
611 {
612         return ((u8 *) skein_512_process_block_code_size) -
613                 ((u8 *) skein_512_process_block);
614 }
615 unsigned int skein_512_unroll_cnt(void)
616 {
617         return SKEIN_UNROLL_512;
618 }
619 #endif
620 #endif
621
622 /*****************************  SKEIN_1024 ******************************/
623 #if !(SKEIN_USE_ASM & 1024)
624 void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr,
625                               size_t blk_cnt, size_t byte_cnt_add)
626 { /* do it in C, always looping (unrolled is bigger AND slower!) */
627         enum {
628                 WCNT = SKEIN_1024_STATE_WORDS
629         };
630         size_t  r;
631 #if (SKEIN_UNROLL_1024 != 0)
632         u64  kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot" */
633 #else
634         u64  kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
635 #endif
636
637         /* local copy of vars, for speed */
638         u64  X00, X01, X02, X03, X04, X05, X06, X07,
639              X08, X09, X10, X11, X12, X13, X14, X15;
640         u64  w[WCNT]; /* local copy of input block */
641
642         skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
643         ts[0] = ctx->h.tweak[0];
644         ts[1] = ctx->h.tweak[1];
645         do  {
646                 /*
647                  * this implementation only supports 2**64 input bytes
648                  * (no carry out here)
649                  */
650                 ts[0] += byte_cnt_add; /* update processed length */
651
652                 /* precompute the key schedule for this block */
653                 ks[0]  = ctx->x[0];
654                 ks[1]  = ctx->x[1];
655                 ks[2]  = ctx->x[2];
656                 ks[3]  = ctx->x[3];
657                 ks[4]  = ctx->x[4];
658                 ks[5]  = ctx->x[5];
659                 ks[6]  = ctx->x[6];
660                 ks[7]  = ctx->x[7];
661                 ks[8]  = ctx->x[8];
662                 ks[9]  = ctx->x[9];
663                 ks[10] = ctx->x[10];
664                 ks[11] = ctx->x[11];
665                 ks[12] = ctx->x[12];
666                 ks[13] = ctx->x[13];
667                 ks[14] = ctx->x[14];
668                 ks[15] = ctx->x[15];
669                 ks[16] =  ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
670                           ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
671                           ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
672                           ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
673
674                 ts[2] = ts[0] ^ ts[1];
675
676                 /* get input block in little-endian format */
677                 skein_get64_lsb_first(w, blk_ptr, WCNT);
678                 debug_save_tweak(ctx);
679
680                 /* do the first full key injection */
681                 X00 = w[0] + ks[0];
682                 X01 = w[1] + ks[1];
683                 X02 = w[2] + ks[2];
684                 X03 = w[3] + ks[3];
685                 X04 = w[4] + ks[4];
686                 X05 = w[5] + ks[5];
687                 X06 = w[6] + ks[6];
688                 X07 = w[7] + ks[7];
689                 X08 = w[8] + ks[8];
690                 X09 = w[9] + ks[9];
691                 X10 = w[10] + ks[10];
692                 X11 = w[11] + ks[11];
693                 X12 = w[12] + ks[12];
694                 X13 = w[13] + ks[13] + ts[0];
695                 X14 = w[14] + ks[14] + ts[1];
696                 X15 = w[15] + ks[15];
697
698                 for (r = 1;
699                         r < (SKEIN_UNROLL_1024 ? 2 * RCNT : 2);
700                         r += (SKEIN_UNROLL_1024 ? 2 * SKEIN_UNROLL_1024 : 1)) {
701                         R1024_8_ROUNDS(0);
702 #if   R1024_UNROLL_R(1)
703                         R1024_8_ROUNDS(1);
704 #endif
705 #if   R1024_UNROLL_R(2)
706                         R1024_8_ROUNDS(2);
707 #endif
708 #if   R1024_UNROLL_R(3)
709                         R1024_8_ROUNDS(3);
710 #endif
711 #if   R1024_UNROLL_R(4)
712                         R1024_8_ROUNDS(4);
713 #endif
714 #if   R1024_UNROLL_R(5)
715                         R1024_8_ROUNDS(5);
716 #endif
717 #if   R1024_UNROLL_R(6)
718                         R1024_8_ROUNDS(6);
719 #endif
720 #if   R1024_UNROLL_R(7)
721                         R1024_8_ROUNDS(7);
722 #endif
723 #if   R1024_UNROLL_R(8)
724                         R1024_8_ROUNDS(8);
725 #endif
726 #if   R1024_UNROLL_R(9)
727                         R1024_8_ROUNDS(9);
728 #endif
729 #if   R1024_UNROLL_R(10)
730                         R1024_8_ROUNDS(10);
731 #endif
732 #if   R1024_UNROLL_R(11)
733                         R1024_8_ROUNDS(11);
734 #endif
735 #if   R1024_UNROLL_R(12)
736                         R1024_8_ROUNDS(12);
737 #endif
738 #if   R1024_UNROLL_R(13)
739                         R1024_8_ROUNDS(13);
740 #endif
741 #if   R1024_UNROLL_R(14)
742                         R1024_8_ROUNDS(14);
743 #endif
744                 }
745                 /* do the final "feedforward" xor, update context chaining */
746
747                 ctx->x[0] = X00 ^ w[0];
748                 ctx->x[1] = X01 ^ w[1];
749                 ctx->x[2] = X02 ^ w[2];
750                 ctx->x[3] = X03 ^ w[3];
751                 ctx->x[4] = X04 ^ w[4];
752                 ctx->x[5] = X05 ^ w[5];
753                 ctx->x[6] = X06 ^ w[6];
754                 ctx->x[7] = X07 ^ w[7];
755                 ctx->x[8] = X08 ^ w[8];
756                 ctx->x[9] = X09 ^ w[9];
757                 ctx->x[10] = X10 ^ w[10];
758                 ctx->x[11] = X11 ^ w[11];
759                 ctx->x[12] = X12 ^ w[12];
760                 ctx->x[13] = X13 ^ w[13];
761                 ctx->x[14] = X14 ^ w[14];
762                 ctx->x[15] = X15 ^ w[15];
763
764                 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
765                 blk_ptr += SKEIN_1024_BLOCK_BYTES;
766         } while (--blk_cnt);
767         ctx->h.tweak[0] = ts[0];
768         ctx->h.tweak[1] = ts[1];
769 }
770
771 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
772 size_t skein_1024_process_block_code_size(void)
773 {
774         return ((u8 *) skein_1024_process_block_code_size) -
775                 ((u8 *) skein_1024_process_block);
776 }
777 unsigned int skein_1024_unroll_cnt(void)
778 {
779         return SKEIN_UNROLL_1024;
780 }
781 #endif
782 #endif