/*********************************************************************** ** ** Implementation of the Skein block functions. ** ** Source code author: Doug Whiting, 2008. ** ** This algorithm and source code is released to the public domain. ** ** Compile-time switches: ** ** SKEIN_USE_ASM -- set bits (256/512/1024) to select which ** versions use ASM code for block processing ** [default: use C for all block sizes] ** ************************************************************************/ #include #include "skein_base.h" #include "skein_block.h" #ifndef SKEIN_USE_ASM #define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */ #endif #ifndef SKEIN_LOOP #define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */ #endif #define BLK_BITS (WCNT * 64) /* some useful definitions for code here */ #define KW_TWK_BASE (0) #define KW_KEY_BASE (3) #define ks (kw + KW_KEY_BASE) #define ts (kw + KW_TWK_BASE) #ifdef SKEIN_DEBUG #define debug_save_tweak(ctx) \ { \ ctx->h.tweak[0] = ts[0]; \ ctx->h.tweak[1] = ts[1]; \ } #else #define debug_save_tweak(ctx) #endif #if !(SKEIN_USE_ASM & 256) #undef RCNT #define RCNT (SKEIN_256_ROUNDS_TOTAL / 8) #ifdef SKEIN_LOOP /* configure how much to unroll the loop */ #define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10) #else #define SKEIN_UNROLL_256 (0) #endif #if SKEIN_UNROLL_256 #if (RCNT % SKEIN_UNROLL_256) #error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */ #endif #endif #define ROUND256(p0, p1, p2, p3, ROT, r_num) \ do { \ X##p0 += X##p1; \ X##p1 = rotl_64(X##p1, ROT##_0); \ X##p1 ^= X##p0; \ X##p2 += X##p3; \ X##p3 = rotl_64(X##p3, ROT##_1); \ X##p3 ^= X##p2; \ } while (0) #if SKEIN_UNROLL_256 == 0 #define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \ ROUND256(p0, p1, p2, p3, ROT, r_num) #define I256(R) \ do { \ /* inject the key schedule value */ \ X0 += ks[((R) + 1) % 5]; \ X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \ X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \ X3 += ks[((R) + 4) % 5] + (R) + 1; \ } while (0) #else /* looping version */ #define R256(p0, p1, p2, p3, ROT, r_num) ROUND256(p0, p1, p2, p3, ROT, r_num) #define I256(R) \ do { \ /* inject the key schedule value */ \ X0 += ks[r + (R) + 0]; \ X1 += ks[r + (R) + 1] + ts[r + (R) + 0]; \ X2 += ks[r + (R) + 2] + ts[r + (R) + 1]; \ X3 += ks[r + (R) + 3] + r + (R); \ /* rotate key schedule */ \ ks[r + (R) + 4] = ks[r + (R) - 1]; \ ts[r + (R) + 2] = ts[r + (R) - 1]; \ } while (0) #endif #define R256_8_ROUNDS(R) \ do { \ R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \ R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \ R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \ R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \ I256(2 * (R)); \ R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \ R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \ R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \ R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \ I256(2 * (R) + 1); \ } while (0) #define R256_UNROLL_R(NN) \ ((SKEIN_UNROLL_256 == 0 && \ SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \ (SKEIN_UNROLL_256 > (NN))) #if (SKEIN_UNROLL_256 > 14) #error "need more unrolling in skein_256_process_block" #endif #endif #if !(SKEIN_USE_ASM & 512) #undef RCNT #define RCNT (SKEIN_512_ROUNDS_TOTAL/8) #ifdef SKEIN_LOOP /* configure how much to unroll the loop */ #define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10) #else #define SKEIN_UNROLL_512 (0) #endif #if SKEIN_UNROLL_512 #if (RCNT % SKEIN_UNROLL_512) #error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */ #endif #endif #define ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \ do { \ X##p0 += X##p1; \ X##p1 = rotl_64(X##p1, ROT##_0); \ X##p1 ^= X##p0; \ X##p2 += X##p3; \ X##p3 = rotl_64(X##p3, ROT##_1); \ X##p3 ^= X##p2; \ X##p4 += X##p5; \ X##p5 = rotl_64(X##p5, ROT##_2); \ X##p5 ^= X##p4; \ X##p6 += X##p7; X##p7 = rotl_64(X##p7, ROT##_3); \ X##p7 ^= X##p6; \ } while (0) #if SKEIN_UNROLL_512 == 0 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \ ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) #define I512(R) \ do { \ /* inject the key schedule value */ \ X0 += ks[((R) + 1) % 9]; \ X1 += ks[((R) + 2) % 9]; \ X2 += ks[((R) + 3) % 9]; \ X3 += ks[((R) + 4) % 9]; \ X4 += ks[((R) + 5) % 9]; \ X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \ X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \ X7 += ks[((R) + 8) % 9] + (R) + 1; \ } while (0) #else /* looping version */ #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \ ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \ #define I512(R) \ do { \ /* inject the key schedule value */ \ X0 += ks[r + (R) + 0]; \ X1 += ks[r + (R) + 1]; \ X2 += ks[r + (R) + 2]; \ X3 += ks[r + (R) + 3]; \ X4 += ks[r + (R) + 4]; \ X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \ X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \ X7 += ks[r + (R) + 7] + r + (R); \ /* rotate key schedule */ \ ks[r + (R) + 8] = ks[r + (R) - 1]; \ ts[r + (R) + 2] = ts[r + (R) - 1]; \ } while (0) #endif /* end of looped code definitions */ #define R512_8_ROUNDS(R) /* do 8 full rounds */ \ do { \ R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \ R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \ R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \ R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \ I512(2 * (R)); \ R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \ R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \ R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \ R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \ I512(2 * (R) + 1); /* and key injection */ \ } while (0) #define R512_UNROLL_R(NN) \ ((SKEIN_UNROLL_512 == 0 && \ SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || \ (SKEIN_UNROLL_512 > (NN))) #if (SKEIN_UNROLL_512 > 14) #error "need more unrolling in skein_512_process_block" #endif #endif #if !(SKEIN_USE_ASM & 1024) #undef RCNT #define RCNT (SKEIN_1024_ROUNDS_TOTAL/8) #ifdef SKEIN_LOOP /* configure how much to unroll the loop */ #define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10) #else #define SKEIN_UNROLL_1024 (0) #endif #if (SKEIN_UNROLL_1024 != 0) #if (RCNT % SKEIN_UNROLL_1024) #error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */ #endif #endif #define ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \ pF, ROT, r_num) \ do { \ X##p0 += X##p1; \ X##p1 = rotl_64(X##p1, ROT##_0); \ X##p1 ^= X##p0; \ X##p2 += X##p3; \ X##p3 = rotl_64(X##p3, ROT##_1); \ X##p3 ^= X##p2; \ X##p4 += X##p5; \ X##p5 = rotl_64(X##p5, ROT##_2); \ X##p5 ^= X##p4; \ X##p6 += X##p7; \ X##p7 = rotl_64(X##p7, ROT##_3); \ X##p7 ^= X##p6; \ X##p8 += X##p9; \ X##p9 = rotl_64(X##p9, ROT##_4); \ X##p9 ^= X##p8; \ X##pA += X##pB; \ X##pB = rotl_64(X##pB, ROT##_5); \ X##pB ^= X##pA; \ X##pC += X##pD; \ X##pD = rotl_64(X##pD, ROT##_6); \ X##pD ^= X##pC; \ X##pE += X##pF; \ X##pF = rotl_64(X##pF, ROT##_7); \ X##pF ^= X##pE; \ } while (0) #if SKEIN_UNROLL_1024 == 0 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \ ROT, rn) \ ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \ pF, ROT, rn) \ #define I1024(R) \ do { \ /* inject the key schedule value */ \ X00 += ks[((R) + 1) % 17]; \ X01 += ks[((R) + 2) % 17]; \ X02 += ks[((R) + 3) % 17]; \ X03 += ks[((R) + 4) % 17]; \ X04 += ks[((R) + 5) % 17]; \ X05 += ks[((R) + 6) % 17]; \ X06 += ks[((R) + 7) % 17]; \ X07 += ks[((R) + 8) % 17]; \ X08 += ks[((R) + 9) % 17]; \ X09 += ks[((R) + 10) % 17]; \ X10 += ks[((R) + 11) % 17]; \ X11 += ks[((R) + 12) % 17]; \ X12 += ks[((R) + 13) % 17]; \ X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \ X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \ X15 += ks[((R) + 16) % 17] + (R) + 1; \ } while (0) #else /* looping version */ #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \ ROT, rn) \ ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \ pF, ROT, rn) \ #define I1024(R) \ do { \ /* inject the key schedule value */ \ X00 += ks[r + (R) + 0]; \ X01 += ks[r + (R) + 1]; \ X02 += ks[r + (R) + 2]; \ X03 += ks[r + (R) + 3]; \ X04 += ks[r + (R) + 4]; \ X05 += ks[r + (R) + 5]; \ X06 += ks[r + (R) + 6]; \ X07 += ks[r + (R) + 7]; \ X08 += ks[r + (R) + 8]; \ X09 += ks[r + (R) + 9]; \ X10 += ks[r + (R) + 10]; \ X11 += ks[r + (R) + 11]; \ X12 += ks[r + (R) + 12]; \ X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \ X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \ X15 += ks[r + (R) + 15] + r + (R); \ /* rotate key schedule */ \ ks[r + (R) + 16] = ks[r + (R) - 1]; \ ts[r + (R) + 2] = ts[r + (R) - 1]; \ } while (0) #endif #define R1024_8_ROUNDS(R) \ do { \ R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \ R1024_0, 8*(R) + 1); \ R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \ R1024_1, 8*(R) + 2); \ R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \ R1024_2, 8*(R) + 3); \ R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \ R1024_3, 8*(R) + 4); \ I1024(2*(R)); \ R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \ R1024_4, 8*(R) + 5); \ R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \ R1024_5, 8*(R) + 6); \ R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \ R1024_6, 8*(R) + 7); \ R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \ R1024_7, 8*(R) + 8); \ I1024(2*(R)+1); \ } while (0) #define R1024_UNROLL_R(NN) \ ((SKEIN_UNROLL_1024 == 0 && \ SKEIN_1024_ROUNDS_TOTAL/8 > (NN)) || \ (SKEIN_UNROLL_1024 > (NN))) #if (SKEIN_UNROLL_1024 > 14) #error "need more unrolling in Skein_1024_Process_Block" #endif #endif /***************************** SKEIN_256 ******************************/ #if !(SKEIN_USE_ASM & 256) void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr, size_t blk_cnt, size_t byte_cnt_add) { /* do it in C */ enum { WCNT = SKEIN_256_STATE_WORDS }; size_t r; #if SKEIN_UNROLL_256 /* key schedule: chaining vars + tweak + "rot"*/ u64 kw[WCNT+4+RCNT*2]; #else /* key schedule words : chaining vars + tweak */ u64 kw[WCNT+4]; #endif u64 X0, X1, X2, X3; /* local copy of context vars, for speed */ u64 w[WCNT]; /* local copy of input block */ #ifdef SKEIN_DEBUG const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */ X_ptr[0] = &X0; X_ptr[1] = &X1; X_ptr[2] = &X2; X_ptr[3] = &X3; #endif skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ ts[0] = ctx->h.tweak[0]; ts[1] = ctx->h.tweak[1]; do { /* * this implementation only supports 2**64 input bytes * (no carry out here) */ ts[0] += byte_cnt_add; /* update processed length */ /* precompute the key schedule for this block */ ks[0] = ctx->x[0]; ks[1] = ctx->x[1]; ks[2] = ctx->x[2]; ks[3] = ctx->x[3]; ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY; ts[2] = ts[0] ^ ts[1]; /* get input block in little-endian format */ skein_get64_lsb_first(w, blk_ptr, WCNT); debug_save_tweak(ctx); /* do the first full key injection */ X0 = w[0] + ks[0]; X1 = w[1] + ks[1] + ts[0]; X2 = w[2] + ks[2] + ts[1]; X3 = w[3] + ks[3]; blk_ptr += SKEIN_256_BLOCK_BYTES; /* run the rounds */ for (r = 1; r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2); r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) { R256_8_ROUNDS(0); #if R256_UNROLL_R(1) R256_8_ROUNDS(1); #endif #if R256_UNROLL_R(2) R256_8_ROUNDS(2); #endif #if R256_UNROLL_R(3) R256_8_ROUNDS(3); #endif #if R256_UNROLL_R(4) R256_8_ROUNDS(4); #endif #if R256_UNROLL_R(5) R256_8_ROUNDS(5); #endif #if R256_UNROLL_R(6) R256_8_ROUNDS(6); #endif #if R256_UNROLL_R(7) R256_8_ROUNDS(7); #endif #if R256_UNROLL_R(8) R256_8_ROUNDS(8); #endif #if R256_UNROLL_R(9) R256_8_ROUNDS(9); #endif #if R256_UNROLL_R(10) R256_8_ROUNDS(10); #endif #if R256_UNROLL_R(11) R256_8_ROUNDS(11); #endif #if R256_UNROLL_R(12) R256_8_ROUNDS(12); #endif #if R256_UNROLL_R(13) R256_8_ROUNDS(13); #endif #if R256_UNROLL_R(14) R256_8_ROUNDS(14); #endif } /* do the final "feedforward" xor, update context chaining */ ctx->x[0] = X0 ^ w[0]; ctx->x[1] = X1 ^ w[1]; ctx->x[2] = X2 ^ w[2]; ctx->x[3] = X3 ^ w[3]; ts[1] &= ~SKEIN_T1_FLAG_FIRST; } while (--blk_cnt); ctx->h.tweak[0] = ts[0]; ctx->h.tweak[1] = ts[1]; } #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF) size_t skein_256_process_block_code_size(void) { return ((u8 *) skein_256_process_block_code_size) - ((u8 *) skein_256_process_block); } unsigned int skein_256_unroll_cnt(void) { return SKEIN_UNROLL_256; } #endif #endif /***************************** SKEIN_512 ******************************/ #if !(SKEIN_USE_ASM & 512) void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr, size_t blk_cnt, size_t byte_cnt_add) { /* do it in C */ enum { WCNT = SKEIN_512_STATE_WORDS }; size_t r; #if SKEIN_UNROLL_512 u64 kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot"*/ #else u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */ #endif u64 X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */ u64 w[WCNT]; /* local copy of input block */ #ifdef SKEIN_DEBUG const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */ X_ptr[0] = &X0; X_ptr[1] = &X1; X_ptr[2] = &X2; X_ptr[3] = &X3; X_ptr[4] = &X4; X_ptr[5] = &X5; X_ptr[6] = &X6; X_ptr[7] = &X7; #endif skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ ts[0] = ctx->h.tweak[0]; ts[1] = ctx->h.tweak[1]; do { /* * this implementation only supports 2**64 input bytes * (no carry out here) */ ts[0] += byte_cnt_add; /* update processed length */ /* precompute the key schedule for this block */ ks[0] = ctx->x[0]; ks[1] = ctx->x[1]; ks[2] = ctx->x[2]; ks[3] = ctx->x[3]; ks[4] = ctx->x[4]; ks[5] = ctx->x[5]; ks[6] = ctx->x[6]; ks[7] = ctx->x[7]; ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY; ts[2] = ts[0] ^ ts[1]; /* get input block in little-endian format */ skein_get64_lsb_first(w, blk_ptr, WCNT); debug_save_tweak(ctx); /* do the first full key injection */ X0 = w[0] + ks[0]; X1 = w[1] + ks[1]; X2 = w[2] + ks[2]; X3 = w[3] + ks[3]; X4 = w[4] + ks[4]; X5 = w[5] + ks[5] + ts[0]; X6 = w[6] + ks[6] + ts[1]; X7 = w[7] + ks[7]; blk_ptr += SKEIN_512_BLOCK_BYTES; /* run the rounds */ for (r = 1; r < (SKEIN_UNROLL_512 ? 2 * RCNT : 2); r += (SKEIN_UNROLL_512 ? 2 * SKEIN_UNROLL_512 : 1)) { R512_8_ROUNDS(0); #if R512_UNROLL_R(1) R512_8_ROUNDS(1); #endif #if R512_UNROLL_R(2) R512_8_ROUNDS(2); #endif #if R512_UNROLL_R(3) R512_8_ROUNDS(3); #endif #if R512_UNROLL_R(4) R512_8_ROUNDS(4); #endif #if R512_UNROLL_R(5) R512_8_ROUNDS(5); #endif #if R512_UNROLL_R(6) R512_8_ROUNDS(6); #endif #if R512_UNROLL_R(7) R512_8_ROUNDS(7); #endif #if R512_UNROLL_R(8) R512_8_ROUNDS(8); #endif #if R512_UNROLL_R(9) R512_8_ROUNDS(9); #endif #if R512_UNROLL_R(10) R512_8_ROUNDS(10); #endif #if R512_UNROLL_R(11) R512_8_ROUNDS(11); #endif #if R512_UNROLL_R(12) R512_8_ROUNDS(12); #endif #if R512_UNROLL_R(13) R512_8_ROUNDS(13); #endif #if R512_UNROLL_R(14) R512_8_ROUNDS(14); #endif } /* do the final "feedforward" xor, update context chaining */ ctx->x[0] = X0 ^ w[0]; ctx->x[1] = X1 ^ w[1]; ctx->x[2] = X2 ^ w[2]; ctx->x[3] = X3 ^ w[3]; ctx->x[4] = X4 ^ w[4]; ctx->x[5] = X5 ^ w[5]; ctx->x[6] = X6 ^ w[6]; ctx->x[7] = X7 ^ w[7]; ts[1] &= ~SKEIN_T1_FLAG_FIRST; } while (--blk_cnt); ctx->h.tweak[0] = ts[0]; ctx->h.tweak[1] = ts[1]; } #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF) size_t skein_512_process_block_code_size(void) { return ((u8 *) skein_512_process_block_code_size) - ((u8 *) skein_512_process_block); } unsigned int skein_512_unroll_cnt(void) { return SKEIN_UNROLL_512; } #endif #endif /***************************** SKEIN_1024 ******************************/ #if !(SKEIN_USE_ASM & 1024) void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr, size_t blk_cnt, size_t byte_cnt_add) { /* do it in C, always looping (unrolled is bigger AND slower!) */ enum { WCNT = SKEIN_1024_STATE_WORDS }; size_t r; #if (SKEIN_UNROLL_1024 != 0) u64 kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot" */ #else u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */ #endif /* local copy of vars, for speed */ u64 X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11, X12, X13, X14, X15; u64 w[WCNT]; /* local copy of input block */ skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ ts[0] = ctx->h.tweak[0]; ts[1] = ctx->h.tweak[1]; do { /* * this implementation only supports 2**64 input bytes * (no carry out here) */ ts[0] += byte_cnt_add; /* update processed length */ /* precompute the key schedule for this block */ ks[0] = ctx->x[0]; ks[1] = ctx->x[1]; ks[2] = ctx->x[2]; ks[3] = ctx->x[3]; ks[4] = ctx->x[4]; ks[5] = ctx->x[5]; ks[6] = ctx->x[6]; ks[7] = ctx->x[7]; ks[8] = ctx->x[8]; ks[9] = ctx->x[9]; ks[10] = ctx->x[10]; ks[11] = ctx->x[11]; ks[12] = ctx->x[12]; ks[13] = ctx->x[13]; ks[14] = ctx->x[14]; ks[15] = ctx->x[15]; ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^ ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY; ts[2] = ts[0] ^ ts[1]; /* get input block in little-endian format */ skein_get64_lsb_first(w, blk_ptr, WCNT); debug_save_tweak(ctx); /* do the first full key injection */ X00 = w[0] + ks[0]; X01 = w[1] + ks[1]; X02 = w[2] + ks[2]; X03 = w[3] + ks[3]; X04 = w[4] + ks[4]; X05 = w[5] + ks[5]; X06 = w[6] + ks[6]; X07 = w[7] + ks[7]; X08 = w[8] + ks[8]; X09 = w[9] + ks[9]; X10 = w[10] + ks[10]; X11 = w[11] + ks[11]; X12 = w[12] + ks[12]; X13 = w[13] + ks[13] + ts[0]; X14 = w[14] + ks[14] + ts[1]; X15 = w[15] + ks[15]; for (r = 1; r < (SKEIN_UNROLL_1024 ? 2 * RCNT : 2); r += (SKEIN_UNROLL_1024 ? 2 * SKEIN_UNROLL_1024 : 1)) { R1024_8_ROUNDS(0); #if R1024_UNROLL_R(1) R1024_8_ROUNDS(1); #endif #if R1024_UNROLL_R(2) R1024_8_ROUNDS(2); #endif #if R1024_UNROLL_R(3) R1024_8_ROUNDS(3); #endif #if R1024_UNROLL_R(4) R1024_8_ROUNDS(4); #endif #if R1024_UNROLL_R(5) R1024_8_ROUNDS(5); #endif #if R1024_UNROLL_R(6) R1024_8_ROUNDS(6); #endif #if R1024_UNROLL_R(7) R1024_8_ROUNDS(7); #endif #if R1024_UNROLL_R(8) R1024_8_ROUNDS(8); #endif #if R1024_UNROLL_R(9) R1024_8_ROUNDS(9); #endif #if R1024_UNROLL_R(10) R1024_8_ROUNDS(10); #endif #if R1024_UNROLL_R(11) R1024_8_ROUNDS(11); #endif #if R1024_UNROLL_R(12) R1024_8_ROUNDS(12); #endif #if R1024_UNROLL_R(13) R1024_8_ROUNDS(13); #endif #if R1024_UNROLL_R(14) R1024_8_ROUNDS(14); #endif } /* do the final "feedforward" xor, update context chaining */ ctx->x[0] = X00 ^ w[0]; ctx->x[1] = X01 ^ w[1]; ctx->x[2] = X02 ^ w[2]; ctx->x[3] = X03 ^ w[3]; ctx->x[4] = X04 ^ w[4]; ctx->x[5] = X05 ^ w[5]; ctx->x[6] = X06 ^ w[6]; ctx->x[7] = X07 ^ w[7]; ctx->x[8] = X08 ^ w[8]; ctx->x[9] = X09 ^ w[9]; ctx->x[10] = X10 ^ w[10]; ctx->x[11] = X11 ^ w[11]; ctx->x[12] = X12 ^ w[12]; ctx->x[13] = X13 ^ w[13]; ctx->x[14] = X14 ^ w[14]; ctx->x[15] = X15 ^ w[15]; ts[1] &= ~SKEIN_T1_FLAG_FIRST; blk_ptr += SKEIN_1024_BLOCK_BYTES; } while (--blk_cnt); ctx->h.tweak[0] = ts[0]; ctx->h.tweak[1] = ts[1]; } #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF) size_t skein_1024_process_block_code_size(void) { return ((u8 *) skein_1024_process_block_code_size) - ((u8 *) skein_1024_process_block); } unsigned int skein_1024_unroll_cnt(void) { return SKEIN_UNROLL_1024; } #endif #endif