Fix some bugs when testing opensds ansible
[stor4nfv.git] / src / ceph / doc / rados / operations / monitoring-osd-pg.rst
1 =========================
2  Monitoring OSDs and PGs
3 =========================
4
5 High availability and high reliability require a fault-tolerant approach to
6 managing hardware and software issues. Ceph has no single point-of-failure, and
7 can service requests for data in a "degraded" mode. Ceph's `data placement`_
8 introduces a layer of indirection to ensure that data doesn't bind directly to
9 particular OSD addresses. This means that tracking down system faults requires
10 finding the `placement group`_ and the underlying OSDs at root of the problem.
11
12 .. tip:: A fault in one part of the cluster may prevent you from accessing a 
13    particular object, but that doesn't mean that you cannot access other objects.
14    When you run into a fault, don't panic. Just follow the steps for monitoring
15    your OSDs and placement groups. Then, begin troubleshooting.
16
17 Ceph is generally self-repairing. However, when problems persist, monitoring
18 OSDs and placement groups will help you identify the problem.
19
20
21 Monitoring OSDs
22 ===============
23
24 An OSD's status is either in the cluster (``in``) or out of the cluster
25 (``out``); and, it is either up and running (``up``), or it is down and not
26 running (``down``). If an OSD is ``up``, it may be either ``in`` the cluster
27 (you can read and write data) or it is ``out`` of the cluster.  If it was
28 ``in`` the cluster and recently moved ``out`` of the cluster, Ceph will migrate
29 placement groups to other OSDs. If an OSD is ``out`` of the cluster, CRUSH will
30 not assign placement groups to the OSD. If an OSD is ``down``, it should also be
31 ``out``.
32
33 .. note:: If an OSD is ``down`` and ``in``, there is a problem and the cluster 
34    will not be in a healthy state.
35
36 .. ditaa:: +----------------+        +----------------+
37            |                |        |                |
38            |   OSD #n In    |        |   OSD #n Up    |
39            |                |        |                |
40            +----------------+        +----------------+
41                    ^                         ^
42                    |                         |
43                    |                         |
44                    v                         v
45            +----------------+        +----------------+
46            |                |        |                |
47            |   OSD #n Out   |        |   OSD #n Down  |
48            |                |        |                |
49            +----------------+        +----------------+
50
51 If you execute a command such as ``ceph health``, ``ceph -s`` or ``ceph -w``,
52 you may notice that the cluster does not always echo back ``HEALTH OK``. Don't
53 panic. With respect to OSDs, you should expect that the cluster will **NOT**
54 echo   ``HEALTH OK`` in a few expected circumstances:
55
56 #. You haven't started the cluster yet (it won't respond).
57 #. You have just started or restarted the cluster and it's not ready yet,
58    because the placement groups are getting created and the OSDs are in
59    the process of peering.
60 #. You just added or removed an OSD.
61 #. You just have modified your cluster map.
62
63 An important aspect of monitoring OSDs is to ensure that when the cluster
64 is up and running that all OSDs that are ``in`` the cluster are ``up`` and
65 running, too. To see if all OSDs are running, execute:: 
66
67         ceph osd stat
68
69 The result should tell you the map epoch (eNNNN), the total number of OSDs (x),
70 how many are ``up`` (y) and how many are ``in`` (z). ::
71
72         eNNNN: x osds: y up, z in
73
74 If the number of OSDs that are ``in`` the cluster is more than the number of
75 OSDs that are ``up``, execute the following command to identify the ``ceph-osd``
76 daemons that are not running:: 
77
78         ceph osd tree
79
80 :: 
81
82         dumped osdmap tree epoch 1
83         # id    weight  type name       up/down reweight
84         -1      2       pool openstack
85         -3      2               rack dell-2950-rack-A
86         -2      2                       host dell-2950-A1
87         0       1                               osd.0   up      1       
88         1       1                               osd.1   down    1
89
90
91 .. tip:: The ability to search through a well-designed CRUSH hierarchy may help
92    you troubleshoot your cluster by identifying the physcial locations faster.
93
94 If an OSD is ``down``, start it:: 
95
96         sudo systemctl start ceph-osd@1
97
98 See `OSD Not Running`_ for problems associated with OSDs that stopped, or won't
99 restart.
100         
101
102 PG Sets
103 =======
104
105 When CRUSH assigns placement groups to OSDs, it looks at the number of replicas
106 for the pool and assigns the placement group to OSDs such that each replica of
107 the placement group gets assigned to a different OSD. For example, if the pool
108 requires three replicas of a placement group, CRUSH may assign them to
109 ``osd.1``, ``osd.2`` and ``osd.3`` respectively. CRUSH actually seeks a
110 pseudo-random placement that will take into account failure domains you set in
111 your `CRUSH map`_, so you will rarely see placement groups assigned to nearest
112 neighbor OSDs in a large cluster. We refer to the set of OSDs that should
113 contain the replicas of a particular placement group as the **Acting Set**. In
114 some cases, an OSD in the Acting Set is ``down`` or otherwise not able to
115 service requests for objects in the placement group. When these situations
116 arise, don't panic. Common examples include:
117
118 - You added or removed an OSD. Then, CRUSH reassigned the placement group to 
119   other OSDs--thereby changing the composition of the Acting Set and spawning
120   the migration of data with a "backfill" process.
121 - An OSD was ``down``, was restarted, and is now ``recovering``.
122 - An OSD in the Acting Set is ``down`` or unable to service requests, 
123   and another OSD has temporarily assumed its duties.
124
125 Ceph processes a client request using the **Up Set**, which is the set of OSDs
126 that will actually handle the requests. In most cases, the Up Set and the Acting
127 Set are virtually identical. When they are not, it may indicate that Ceph is
128 migrating data, an OSD is recovering, or that there is a problem (i.e., Ceph
129 usually echoes a "HEALTH WARN" state with a "stuck stale" message in such
130 scenarios).
131
132 To retrieve a list of placement groups, execute:: 
133
134         ceph pg dump
135         
136 To view which OSDs are within the Acting Set or the Up Set for a given placement
137 group, execute:: 
138
139         ceph pg map {pg-num}
140
141 The result should tell you the osdmap epoch (eNNN), the placement group number
142 ({pg-num}),  the OSDs in the Up Set (up[]), and the OSDs in the acting set
143 (acting[]). ::
144
145         osdmap eNNN pg {pg-num} -> up [0,1,2] acting [0,1,2]
146
147 .. note:: If the Up Set and Acting Set do not match, this may be an indicator
148    that the cluster rebalancing itself or of a potential problem with 
149    the cluster.
150  
151
152 Peering
153 =======
154
155 Before you can write data to a placement group, it must be in an ``active``
156 state, and it  **should** be in a ``clean`` state. For Ceph to determine the
157 current state of a placement group, the primary OSD of the placement group
158 (i.e., the first OSD in the acting set), peers with the secondary and tertiary
159 OSDs to establish agreement on the current state of the placement group
160 (assuming a pool with 3 replicas of the PG).
161
162
163 .. ditaa:: +---------+     +---------+     +-------+
164            |  OSD 1  |     |  OSD 2  |     | OSD 3 |
165            +---------+     +---------+     +-------+
166                 |               |              |
167                 |  Request To   |              |
168                 |     Peer      |              |             
169                 |-------------->|              |
170                 |<--------------|              |
171                 |    Peering                   |
172                 |                              |
173                 |         Request To           |
174                 |            Peer              | 
175                 |----------------------------->|  
176                 |<-----------------------------|
177                 |          Peering             |
178
179 The OSDs also report their status to the monitor. See `Configuring Monitor/OSD
180 Interaction`_ for details. To troubleshoot peering issues, see `Peering
181 Failure`_.
182
183
184 Monitoring Placement Group States
185 =================================
186
187 If you execute a command such as ``ceph health``, ``ceph -s`` or ``ceph -w``,
188 you may notice that the cluster does not always echo back ``HEALTH OK``. After
189 you check to see if the OSDs are running, you should also check placement group
190 states. You should expect that the cluster will **NOT** echo ``HEALTH OK`` in a
191 number of placement group peering-related circumstances:
192
193 #. You have just created a pool and placement groups haven't peered yet.
194 #. The placement groups are recovering.
195 #. You have just added an OSD to or removed an OSD from the cluster.
196 #. You have just modified your CRUSH map and your placement groups are migrating.
197 #. There is inconsistent data in different replicas of a placement group.
198 #. Ceph is scrubbing a placement group's replicas.
199 #. Ceph doesn't have enough storage capacity to complete backfilling operations.
200
201 If one of the foregoing circumstances causes Ceph to echo ``HEALTH WARN``, don't
202 panic. In many cases, the cluster will recover on its own. In some cases, you
203 may need to take action. An important aspect of monitoring placement groups is
204 to ensure that when the cluster is up and running that all placement groups are
205 ``active``, and preferably in the ``clean`` state. To see the status of all
206 placement groups, execute:: 
207
208         ceph pg stat
209
210 The result should tell you the placement group map version (vNNNNNN), the total
211 number of placement groups (x), and how many placement groups are in a
212 particular state such as ``active+clean`` (y). ::
213
214         vNNNNNN: x pgs: y active+clean; z bytes data, aa MB used, bb GB / cc GB avail
215
216 .. note:: It is common for Ceph to report multiple states for placement groups.
217
218 In addition to the placement group states, Ceph will also echo back the amount
219 of data used (aa), the amount of storage capacity remaining (bb), and the total
220 storage capacity for the placement group. These numbers can be important in a
221 few cases: 
222
223 - You are reaching your ``near full ratio`` or ``full ratio``. 
224 - Your data is not getting distributed across the cluster due to an 
225   error in your CRUSH configuration.
226
227
228 .. topic:: Placement Group IDs
229
230    Placement group IDs consist of the pool number (not pool name) followed 
231    by a period (.) and the placement group ID--a hexadecimal number. You
232    can view pool numbers and their names from the output of ``ceph osd 
233    lspools``. For example, the default pool ``rbd`` corresponds to
234    pool number ``0``. A fully qualified placement group ID has the
235    following form::
236    
237         {pool-num}.{pg-id}
238    
239    And it typically looks like this:: 
240    
241         0.1f
242    
243
244 To retrieve a list of placement groups, execute the following:: 
245
246         ceph pg dump
247         
248 You can also format the output in JSON format and save it to a file:: 
249
250         ceph pg dump -o {filename} --format=json
251
252 To query a particular placement group, execute the following:: 
253
254         ceph pg {poolnum}.{pg-id} query
255         
256 Ceph will output the query in JSON format.
257
258 .. code-block:: javascript
259         
260         {
261           "state": "active+clean",
262           "up": [
263             1,
264             0
265           ],
266           "acting": [
267             1,
268             0
269           ],
270           "info": {
271             "pgid": "1.e",
272             "last_update": "4'1",
273             "last_complete": "4'1",
274             "log_tail": "0'0",
275             "last_backfill": "MAX",
276             "purged_snaps": "[]",
277             "history": {
278               "epoch_created": 1,
279               "last_epoch_started": 537,
280               "last_epoch_clean": 537,
281               "last_epoch_split": 534,
282               "same_up_since": 536,
283               "same_interval_since": 536,
284               "same_primary_since": 536,
285               "last_scrub": "4'1",
286               "last_scrub_stamp": "2013-01-25 10:12:23.828174"
287             },
288             "stats": {
289               "version": "4'1",
290               "reported": "536'782",
291               "state": "active+clean",
292               "last_fresh": "2013-01-25 10:12:23.828271",
293               "last_change": "2013-01-25 10:12:23.828271",
294               "last_active": "2013-01-25 10:12:23.828271",
295               "last_clean": "2013-01-25 10:12:23.828271",
296               "last_unstale": "2013-01-25 10:12:23.828271",
297               "mapping_epoch": 535,
298               "log_start": "0'0",
299               "ondisk_log_start": "0'0",
300               "created": 1,
301               "last_epoch_clean": 1,
302               "parent": "0.0",
303               "parent_split_bits": 0,
304               "last_scrub": "4'1",
305               "last_scrub_stamp": "2013-01-25 10:12:23.828174",
306               "log_size": 128,
307               "ondisk_log_size": 128,
308               "stat_sum": {
309                 "num_bytes": 205,
310                 "num_objects": 1,
311                 "num_object_clones": 0,
312                 "num_object_copies": 0,
313                 "num_objects_missing_on_primary": 0,
314                 "num_objects_degraded": 0,
315                 "num_objects_unfound": 0,
316                 "num_read": 1,
317                 "num_read_kb": 0,
318                 "num_write": 3,
319                 "num_write_kb": 1
320               },
321               "stat_cat_sum": {
322                 
323               },
324               "up": [
325                 1,
326                 0
327               ],
328               "acting": [
329                 1,
330                 0
331               ]
332             },
333             "empty": 0,
334             "dne": 0,
335             "incomplete": 0
336           },
337           "recovery_state": [
338             {
339               "name": "Started\/Primary\/Active",
340               "enter_time": "2013-01-23 09:35:37.594691",
341               "might_have_unfound": [
342                 
343               ],
344               "scrub": {
345                 "scrub_epoch_start": "536",
346                 "scrub_active": 0,
347                 "scrub_block_writes": 0,
348                 "finalizing_scrub": 0,
349                 "scrub_waiting_on": 0,
350                 "scrub_waiting_on_whom": [
351                   
352                 ]
353               }
354             },
355             {
356               "name": "Started",
357               "enter_time": "2013-01-23 09:35:31.581160"
358             }
359           ]
360         }
361
362
363
364 The following subsections describe common states in greater detail.
365
366 Creating
367 --------
368
369 When you create a pool, it will create the number of placement groups you
370 specified.  Ceph will echo ``creating`` when it is creating one or more
371 placement groups. Once they are created, the OSDs that are part of a placement
372 group's Acting Set will peer. Once peering is complete, the placement group
373 status should be ``active+clean``, which means a Ceph client can begin writing
374 to the placement group.
375
376 .. ditaa:: 
377          
378        /-----------\       /-----------\       /-----------\
379        | Creating  |------>|  Peering  |------>|  Active   |
380        \-----------/       \-----------/       \-----------/
381
382 Peering
383 -------
384
385 When Ceph is Peering a placement group, Ceph is bringing the OSDs that
386 store the replicas of the placement group into **agreement about the state**
387 of the objects and metadata in the placement group. When Ceph completes peering,
388 this means that the OSDs that store the placement group agree about the current
389 state of the placement group. However, completion of the peering process does
390 **NOT** mean that each replica has the latest contents.
391
392 .. topic:: Authoratative History
393
394    Ceph will **NOT** acknowledge a write operation to a client, until 
395    all OSDs of the acting set persist the write operation. This practice 
396    ensures that at least one member of the acting set will have a record 
397    of every acknowledged write operation since the last successful 
398    peering operation.
399    
400    With an accurate record of each acknowledged write operation, Ceph can 
401    construct and disseminate a new authoritative history of the placement 
402    group--a complete, and fully ordered set of operations that, if performed, 
403    would bring an OSD’s copy of a placement group up to date.
404
405
406 Active
407 ------
408
409 Once Ceph completes the peering process, a placement group may become
410 ``active``. The ``active`` state means that the data in the placement group is
411 generally  available in the primary placement group and the replicas for read
412 and write operations. 
413
414
415 Clean 
416 -----
417
418 When a placement group is in the ``clean`` state, the primary OSD and the
419 replica OSDs have successfully peered and there are no stray replicas for the
420 placement group. Ceph replicated all objects in the placement group the correct 
421 number of times.
422
423
424 Degraded
425 --------
426
427 When a client writes an object to the primary OSD, the primary OSD is
428 responsible for writing the replicas to the replica OSDs. After the primary OSD
429 writes the object to storage, the placement group will remain in a ``degraded``
430 state until the primary OSD has received an acknowledgement from the replica
431 OSDs that Ceph created the replica objects successfully. 
432
433 The reason a placement group can be ``active+degraded`` is that an OSD may be
434 ``active`` even though it doesn't hold all of the objects yet. If an OSD goes
435 ``down``, Ceph marks each placement group assigned to the OSD as ``degraded``.
436 The OSDs must peer again when the OSD comes back online. However, a client can
437 still write a new object to a ``degraded`` placement group if it is ``active``.
438
439 If an OSD is ``down`` and the ``degraded`` condition persists, Ceph may mark the
440 ``down`` OSD as ``out`` of the cluster and remap the data from the ``down`` OSD
441 to another OSD. The time between being marked ``down`` and being marked ``out``
442 is controlled by ``mon osd down out interval``, which is set to ``600`` seconds
443 by default.
444
445 A placement group can also be ``degraded``, because Ceph cannot find one or more
446 objects that Ceph thinks should be in the placement group. While you cannot
447 read or write to unfound objects, you can still access all of the other objects
448 in the ``degraded`` placement group.
449
450
451 Recovering
452 ----------
453
454 Ceph was designed for fault-tolerance at a scale where hardware and software
455 problems are ongoing. When an OSD goes ``down``, its contents may fall behind
456 the current state of other replicas in the placement groups. When the OSD is
457 back ``up``, the contents of the placement groups must be updated to reflect the
458 current state. During that time period, the OSD may reflect a ``recovering``
459 state.
460
461 Recovery is not always trivial, because a hardware failure might cause a
462 cascading failure of multiple OSDs. For example, a network switch for a rack or
463 cabinet may fail, which can cause the OSDs of a number of host machines to fall
464 behind the current state  of the cluster. Each one of the OSDs must recover once
465 the fault is resolved.
466
467 Ceph provides a number of settings to balance the resource contention between
468 new service requests and the need to recover data objects and restore the
469 placement groups to the current state. The ``osd recovery delay start`` setting
470 allows an OSD to restart, re-peer and even process some replay requests before
471 starting the recovery process.  The ``osd
472 recovery thread timeout`` sets a thread timeout, because multiple OSDs may fail,
473 restart and re-peer at staggered rates. The ``osd recovery max active`` setting
474 limits the  number of recovery requests an OSD will entertain simultaneously to
475 prevent the OSD from failing to serve . The ``osd recovery max chunk`` setting
476 limits the size of the recovered data chunks to prevent network congestion.
477
478
479 Back Filling
480 ------------
481
482 When a new OSD joins the cluster, CRUSH will reassign placement groups from OSDs
483 in the cluster to the newly added OSD. Forcing the new OSD to accept the
484 reassigned placement groups immediately can put excessive load on the new OSD.
485 Back filling the OSD with the placement groups allows this process to begin in
486 the background.  Once backfilling is complete, the new OSD will begin serving
487 requests when it is ready.
488
489 During the backfill operations, you may see one of several states:
490 ``backfill_wait`` indicates that a backfill operation is pending, but is not
491 underway yet; ``backfill`` indicates that a backfill operation is underway;
492 and, ``backfill_too_full`` indicates that a backfill operation was requested,
493 but couldn't be completed due to insufficient storage capacity. When a 
494 placement group cannot be backfilled, it may be considered ``incomplete``.
495
496 Ceph provides a number of settings to manage the load spike associated with
497 reassigning placement groups to an OSD (especially a new OSD). By default,
498 ``osd_max_backfills`` sets the maximum number of concurrent backfills to or from
499 an OSD to 10. The ``backfill full ratio`` enables an OSD to refuse a
500 backfill request if the OSD is approaching its full ratio (90%, by default) and
501 change with ``ceph osd set-backfillfull-ratio`` comand.
502 If an OSD refuses a backfill request, the ``osd backfill retry interval``
503 enables an OSD to retry the request (after 10 seconds, by default). OSDs can
504 also set ``osd backfill scan min`` and ``osd backfill scan max`` to manage scan
505 intervals (64 and 512, by default).
506
507
508 Remapped
509 --------
510
511 When the Acting Set that services a placement group changes, the data migrates
512 from the old acting set to the new acting set. It may take some time for a new
513 primary OSD to service requests. So it may ask the old primary to continue to
514 service requests until the placement group migration is complete. Once  data
515 migration completes, the mapping uses the primary OSD of the new acting set.
516
517
518 Stale
519 -----
520
521 While Ceph uses heartbeats to ensure that hosts and daemons are running, the
522 ``ceph-osd`` daemons may also get into a ``stuck`` state where they are not
523 reporting statistics in a timely manner (e.g., a temporary network fault). By
524 default, OSD daemons report their placement group, up thru, boot and failure
525 statistics every half second (i.e., ``0.5``),  which is more frequent than the
526 heartbeat thresholds. If the **Primary OSD** of a placement group's acting set
527 fails to report to the monitor or if other OSDs have reported the primary OSD
528 ``down``, the monitors will mark the placement group ``stale``.
529
530 When you start your cluster, it is common to see the ``stale`` state until
531 the peering process completes. After your cluster has been running for awhile, 
532 seeing placement groups in the ``stale`` state indicates that the primary OSD
533 for those placement groups is ``down`` or not reporting placement group statistics
534 to the monitor.
535
536
537 Identifying Troubled PGs
538 ========================
539
540 As previously noted, a placement group is not necessarily problematic just 
541 because its state is not ``active+clean``. Generally, Ceph's ability to self
542 repair may not be working when placement groups get stuck. The stuck states
543 include:
544
545 - **Unclean**: Placement groups contain objects that are not replicated the 
546   desired number of times. They should be recovering.
547 - **Inactive**: Placement groups cannot process reads or writes because they 
548   are waiting for an OSD with the most up-to-date data to come back ``up``.
549 - **Stale**: Placement groups are in an unknown state, because the OSDs that 
550   host them have not reported to the monitor cluster in a while (configured 
551   by ``mon osd report timeout``).
552
553 To identify stuck placement groups, execute the following:: 
554
555         ceph pg dump_stuck [unclean|inactive|stale|undersized|degraded]
556
557 See `Placement Group Subsystem`_ for additional details. To troubleshoot
558 stuck placement groups, see `Troubleshooting PG Errors`_.
559
560
561 Finding an Object Location
562 ==========================
563
564 To store object data in the Ceph Object Store, a Ceph client must: 
565
566 #. Set an object name
567 #. Specify a `pool`_
568
569 The Ceph client retrieves the latest cluster map and the CRUSH algorithm
570 calculates how to map the object to a `placement group`_, and then calculates
571 how to assign the placement group to an OSD dynamically. To find the object
572 location, all you need is the object name and the pool name. For example:: 
573
574         ceph osd map {poolname} {object-name}
575
576 .. topic:: Exercise: Locate an Object
577
578         As an exercise, lets create an object. Specify an object name, a path to a
579         test file containing some object data and a pool name using the 
580         ``rados put`` command on the command line. For example::
581    
582                 rados put {object-name} {file-path} --pool=data         
583                 rados put test-object-1 testfile.txt --pool=data
584    
585         To verify that the Ceph Object Store stored the object, execute the following::
586    
587                 rados -p data ls
588    
589         Now, identify the object location::     
590
591                 ceph osd map {pool-name} {object-name}
592                 ceph osd map data test-object-1
593    
594         Ceph should output the object's location. For example:: 
595    
596                 osdmap e537 pool 'data' (0) object 'test-object-1' -> pg 0.d1743484 (0.4) -> up [1,0] acting [1,0]
597    
598         To remove the test object, simply delete it using the ``rados rm`` command.
599         For example:: 
600    
601                 rados rm test-object-1 --pool=data
602    
603
604 As the cluster evolves, the object location may change dynamically. One benefit
605 of Ceph's dynamic rebalancing is that Ceph relieves you from having to perform
606 the migration manually. See the  `Architecture`_ section for details.
607
608 .. _data placement: ../data-placement
609 .. _pool: ../pools
610 .. _placement group: ../placement-groups
611 .. _Architecture: ../../../architecture
612 .. _OSD Not Running: ../../troubleshooting/troubleshooting-osd#osd-not-running
613 .. _Troubleshooting PG Errors: ../../troubleshooting/troubleshooting-pg#troubleshooting-pg-errors
614 .. _Peering Failure: ../../troubleshooting/troubleshooting-pg#failures-osd-peering
615 .. _CRUSH map: ../crush-map
616 .. _Configuring Monitor/OSD Interaction: ../../configuration/mon-osd-interaction/
617 .. _Placement Group Subsystem: ../control#placement-group-subsystem