These changes are the raw update to qemu-2.6.
[kvmfornfv.git] / qemu / util / qemu-thread-win32.c
1 /*
2  * Win32 implementation for mutex/cond/thread functions
3  *
4  * Copyright Red Hat, Inc. 2010
5  *
6  * Author:
7  *  Paolo Bonzini <pbonzini@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "qemu/thread.h"
16 #include "qemu/notify.h"
17 #include <process.h>
18
19 static bool name_threads;
20
21 void qemu_thread_naming(bool enable)
22 {
23     /* But note we don't actually name them on Windows yet */
24     name_threads = enable;
25
26     fprintf(stderr, "qemu: thread naming not supported on this host\n");
27 }
28
29 static void error_exit(int err, const char *msg)
30 {
31     char *pstr;
32
33     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
34                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
35     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
36     LocalFree(pstr);
37     abort();
38 }
39
40 void qemu_mutex_init(QemuMutex *mutex)
41 {
42     mutex->owner = 0;
43     InitializeCriticalSection(&mutex->lock);
44 }
45
46 void qemu_mutex_destroy(QemuMutex *mutex)
47 {
48     assert(mutex->owner == 0);
49     DeleteCriticalSection(&mutex->lock);
50 }
51
52 void qemu_mutex_lock(QemuMutex *mutex)
53 {
54     EnterCriticalSection(&mutex->lock);
55
56     /* Win32 CRITICAL_SECTIONs are recursive.  Assert that we're not
57      * using them as such.
58      */
59     assert(mutex->owner == 0);
60     mutex->owner = GetCurrentThreadId();
61 }
62
63 int qemu_mutex_trylock(QemuMutex *mutex)
64 {
65     int owned;
66
67     owned = TryEnterCriticalSection(&mutex->lock);
68     if (owned) {
69         assert(mutex->owner == 0);
70         mutex->owner = GetCurrentThreadId();
71     }
72     return !owned;
73 }
74
75 void qemu_mutex_unlock(QemuMutex *mutex)
76 {
77     assert(mutex->owner == GetCurrentThreadId());
78     mutex->owner = 0;
79     LeaveCriticalSection(&mutex->lock);
80 }
81
82 void qemu_cond_init(QemuCond *cond)
83 {
84     memset(cond, 0, sizeof(*cond));
85
86     cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
87     if (!cond->sema) {
88         error_exit(GetLastError(), __func__);
89     }
90     cond->continue_event = CreateEvent(NULL,    /* security */
91                                        FALSE,   /* auto-reset */
92                                        FALSE,   /* not signaled */
93                                        NULL);   /* name */
94     if (!cond->continue_event) {
95         error_exit(GetLastError(), __func__);
96     }
97 }
98
99 void qemu_cond_destroy(QemuCond *cond)
100 {
101     BOOL result;
102     result = CloseHandle(cond->continue_event);
103     if (!result) {
104         error_exit(GetLastError(), __func__);
105     }
106     cond->continue_event = 0;
107     result = CloseHandle(cond->sema);
108     if (!result) {
109         error_exit(GetLastError(), __func__);
110     }
111     cond->sema = 0;
112 }
113
114 void qemu_cond_signal(QemuCond *cond)
115 {
116     DWORD result;
117
118     /*
119      * Signal only when there are waiters.  cond->waiters is
120      * incremented by pthread_cond_wait under the external lock,
121      * so we are safe about that.
122      */
123     if (cond->waiters == 0) {
124         return;
125     }
126
127     /*
128      * Waiting threads decrement it outside the external lock, but
129      * only if another thread is executing pthread_cond_broadcast and
130      * has the mutex.  So, it also cannot be decremented concurrently
131      * with this particular access.
132      */
133     cond->target = cond->waiters - 1;
134     result = SignalObjectAndWait(cond->sema, cond->continue_event,
135                                  INFINITE, FALSE);
136     if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
137         error_exit(GetLastError(), __func__);
138     }
139 }
140
141 void qemu_cond_broadcast(QemuCond *cond)
142 {
143     BOOLEAN result;
144     /*
145      * As in pthread_cond_signal, access to cond->waiters and
146      * cond->target is locked via the external mutex.
147      */
148     if (cond->waiters == 0) {
149         return;
150     }
151
152     cond->target = 0;
153     result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
154     if (!result) {
155         error_exit(GetLastError(), __func__);
156     }
157
158     /*
159      * At this point all waiters continue. Each one takes its
160      * slice of the semaphore. Now it's our turn to wait: Since
161      * the external mutex is held, no thread can leave cond_wait,
162      * yet. For this reason, we can be sure that no thread gets
163      * a chance to eat *more* than one slice. OTOH, it means
164      * that the last waiter must send us a wake-up.
165      */
166     WaitForSingleObject(cond->continue_event, INFINITE);
167 }
168
169 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
170 {
171     /*
172      * This access is protected under the mutex.
173      */
174     cond->waiters++;
175
176     /*
177      * Unlock external mutex and wait for signal.
178      * NOTE: we've held mutex locked long enough to increment
179      * waiters count above, so there's no problem with
180      * leaving mutex unlocked before we wait on semaphore.
181      */
182     qemu_mutex_unlock(mutex);
183     WaitForSingleObject(cond->sema, INFINITE);
184
185     /* Now waiters must rendez-vous with the signaling thread and
186      * let it continue.  For cond_broadcast this has heavy contention
187      * and triggers thundering herd.  So goes life.
188      *
189      * Decrease waiters count.  The mutex is not taken, so we have
190      * to do this atomically.
191      *
192      * All waiters contend for the mutex at the end of this function
193      * until the signaling thread relinquishes it.  To ensure
194      * each waiter consumes exactly one slice of the semaphore,
195      * the signaling thread stops until it is told by the last
196      * waiter that it can go on.
197      */
198     if (InterlockedDecrement(&cond->waiters) == cond->target) {
199         SetEvent(cond->continue_event);
200     }
201
202     qemu_mutex_lock(mutex);
203 }
204
205 void qemu_sem_init(QemuSemaphore *sem, int init)
206 {
207     /* Manual reset.  */
208     sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
209 }
210
211 void qemu_sem_destroy(QemuSemaphore *sem)
212 {
213     CloseHandle(sem->sema);
214 }
215
216 void qemu_sem_post(QemuSemaphore *sem)
217 {
218     ReleaseSemaphore(sem->sema, 1, NULL);
219 }
220
221 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
222 {
223     int rc = WaitForSingleObject(sem->sema, ms);
224     if (rc == WAIT_OBJECT_0) {
225         return 0;
226     }
227     if (rc != WAIT_TIMEOUT) {
228         error_exit(GetLastError(), __func__);
229     }
230     return -1;
231 }
232
233 void qemu_sem_wait(QemuSemaphore *sem)
234 {
235     if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
236         error_exit(GetLastError(), __func__);
237     }
238 }
239
240 /* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
241  * is to reset the Win32 event lazily, as part of a test-reset-test-wait
242  * sequence.  Such a sequence is, indeed, how QemuEvents are used by
243  * RCU and other subsystems!
244  *
245  * Valid transitions:
246  * - free->set, when setting the event
247  * - busy->set, when setting the event, followed by futex_wake
248  * - set->free, when resetting the event
249  * - free->busy, when waiting
250  *
251  * set->busy does not happen (it can be observed from the outside but
252  * it really is set->free->busy).
253  *
254  * busy->free provably cannot happen; to enforce it, the set->free transition
255  * is done with an OR, which becomes a no-op if the event has concurrently
256  * transitioned to free or busy (and is faster than cmpxchg).
257  */
258
259 #define EV_SET         0
260 #define EV_FREE        1
261 #define EV_BUSY       -1
262
263 void qemu_event_init(QemuEvent *ev, bool init)
264 {
265     /* Manual reset.  */
266     ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
267     ev->value = (init ? EV_SET : EV_FREE);
268 }
269
270 void qemu_event_destroy(QemuEvent *ev)
271 {
272     CloseHandle(ev->event);
273 }
274
275 void qemu_event_set(QemuEvent *ev)
276 {
277     if (atomic_mb_read(&ev->value) != EV_SET) {
278         if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
279             /* There were waiters, wake them up.  */
280             SetEvent(ev->event);
281         }
282     }
283 }
284
285 void qemu_event_reset(QemuEvent *ev)
286 {
287     if (atomic_mb_read(&ev->value) == EV_SET) {
288         /* If there was a concurrent reset (or even reset+wait),
289          * do nothing.  Otherwise change EV_SET->EV_FREE.
290          */
291         atomic_or(&ev->value, EV_FREE);
292     }
293 }
294
295 void qemu_event_wait(QemuEvent *ev)
296 {
297     unsigned value;
298
299     value = atomic_mb_read(&ev->value);
300     if (value != EV_SET) {
301         if (value == EV_FREE) {
302             /* qemu_event_set is not yet going to call SetEvent, but we are
303              * going to do another check for EV_SET below when setting EV_BUSY.
304              * At that point it is safe to call WaitForSingleObject.
305              */
306             ResetEvent(ev->event);
307
308             /* Tell qemu_event_set that there are waiters.  No need to retry
309              * because there cannot be a concurent busy->free transition.
310              * After the CAS, the event will be either set or busy.
311              */
312             if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
313                 value = EV_SET;
314             } else {
315                 value = EV_BUSY;
316             }
317         }
318         if (value == EV_BUSY) {
319             WaitForSingleObject(ev->event, INFINITE);
320         }
321     }
322 }
323
324 struct QemuThreadData {
325     /* Passed to win32_start_routine.  */
326     void             *(*start_routine)(void *);
327     void             *arg;
328     short             mode;
329     NotifierList      exit;
330
331     /* Only used for joinable threads. */
332     bool              exited;
333     void             *ret;
334     CRITICAL_SECTION  cs;
335 };
336
337 static bool atexit_registered;
338 static NotifierList main_thread_exit;
339
340 static __thread QemuThreadData *qemu_thread_data;
341
342 static void run_main_thread_exit(void)
343 {
344     notifier_list_notify(&main_thread_exit, NULL);
345 }
346
347 void qemu_thread_atexit_add(Notifier *notifier)
348 {
349     if (!qemu_thread_data) {
350         if (!atexit_registered) {
351             atexit_registered = true;
352             atexit(run_main_thread_exit);
353         }
354         notifier_list_add(&main_thread_exit, notifier);
355     } else {
356         notifier_list_add(&qemu_thread_data->exit, notifier);
357     }
358 }
359
360 void qemu_thread_atexit_remove(Notifier *notifier)
361 {
362     notifier_remove(notifier);
363 }
364
365 static unsigned __stdcall win32_start_routine(void *arg)
366 {
367     QemuThreadData *data = (QemuThreadData *) arg;
368     void *(*start_routine)(void *) = data->start_routine;
369     void *thread_arg = data->arg;
370
371     qemu_thread_data = data;
372     qemu_thread_exit(start_routine(thread_arg));
373     abort();
374 }
375
376 void qemu_thread_exit(void *arg)
377 {
378     QemuThreadData *data = qemu_thread_data;
379
380     notifier_list_notify(&data->exit, NULL);
381     if (data->mode == QEMU_THREAD_JOINABLE) {
382         data->ret = arg;
383         EnterCriticalSection(&data->cs);
384         data->exited = true;
385         LeaveCriticalSection(&data->cs);
386     } else {
387         g_free(data);
388     }
389     _endthreadex(0);
390 }
391
392 void *qemu_thread_join(QemuThread *thread)
393 {
394     QemuThreadData *data;
395     void *ret;
396     HANDLE handle;
397
398     data = thread->data;
399     if (data->mode == QEMU_THREAD_DETACHED) {
400         return NULL;
401     }
402
403     /*
404      * Because multiple copies of the QemuThread can exist via
405      * qemu_thread_get_self, we need to store a value that cannot
406      * leak there.  The simplest, non racy way is to store the TID,
407      * discard the handle that _beginthreadex gives back, and
408      * get another copy of the handle here.
409      */
410     handle = qemu_thread_get_handle(thread);
411     if (handle) {
412         WaitForSingleObject(handle, INFINITE);
413         CloseHandle(handle);
414     }
415     ret = data->ret;
416     DeleteCriticalSection(&data->cs);
417     g_free(data);
418     return ret;
419 }
420
421 void qemu_thread_create(QemuThread *thread, const char *name,
422                        void *(*start_routine)(void *),
423                        void *arg, int mode)
424 {
425     HANDLE hThread;
426     struct QemuThreadData *data;
427
428     data = g_malloc(sizeof *data);
429     data->start_routine = start_routine;
430     data->arg = arg;
431     data->mode = mode;
432     data->exited = false;
433     notifier_list_init(&data->exit);
434
435     if (data->mode != QEMU_THREAD_DETACHED) {
436         InitializeCriticalSection(&data->cs);
437     }
438
439     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
440                                       data, 0, &thread->tid);
441     if (!hThread) {
442         error_exit(GetLastError(), __func__);
443     }
444     CloseHandle(hThread);
445     thread->data = data;
446 }
447
448 void qemu_thread_get_self(QemuThread *thread)
449 {
450     thread->data = qemu_thread_data;
451     thread->tid = GetCurrentThreadId();
452 }
453
454 HANDLE qemu_thread_get_handle(QemuThread *thread)
455 {
456     QemuThreadData *data;
457     HANDLE handle;
458
459     data = thread->data;
460     if (data->mode == QEMU_THREAD_DETACHED) {
461         return NULL;
462     }
463
464     EnterCriticalSection(&data->cs);
465     if (!data->exited) {
466         handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
467                             thread->tid);
468     } else {
469         handle = NULL;
470     }
471     LeaveCriticalSection(&data->cs);
472     return handle;
473 }
474
475 bool qemu_thread_is_self(QemuThread *thread)
476 {
477     return GetCurrentThreadId() == thread->tid;
478 }