Add qemu 2.4.0
[kvmfornfv.git] / qemu / util / iov.c
1 /*
2  * Helpers for getting linearized buffers from iov / filling buffers into iovs
3  *
4  * Copyright IBM, Corp. 2007, 2008
5  * Copyright (C) 2010 Red Hat, Inc.
6  *
7  * Author(s):
8  *  Anthony Liguori <aliguori@us.ibm.com>
9  *  Amit Shah <amit.shah@redhat.com>
10  *  Michael Tokarev <mjt@tls.msk.ru>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  * Contributions after 2012-01-13 are licensed under the terms of the
16  * GNU GPL, version 2 or (at your option) any later version.
17  */
18
19 #include "qemu/iov.h"
20 #include "qemu/sockets.h"
21
22 size_t iov_from_buf(const struct iovec *iov, unsigned int iov_cnt,
23                     size_t offset, const void *buf, size_t bytes)
24 {
25     size_t done;
26     unsigned int i;
27     for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
28         if (offset < iov[i].iov_len) {
29             size_t len = MIN(iov[i].iov_len - offset, bytes - done);
30             memcpy(iov[i].iov_base + offset, buf + done, len);
31             done += len;
32             offset = 0;
33         } else {
34             offset -= iov[i].iov_len;
35         }
36     }
37     assert(offset == 0);
38     return done;
39 }
40
41 size_t iov_to_buf(const struct iovec *iov, const unsigned int iov_cnt,
42                   size_t offset, void *buf, size_t bytes)
43 {
44     size_t done;
45     unsigned int i;
46     for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
47         if (offset < iov[i].iov_len) {
48             size_t len = MIN(iov[i].iov_len - offset, bytes - done);
49             memcpy(buf + done, iov[i].iov_base + offset, len);
50             done += len;
51             offset = 0;
52         } else {
53             offset -= iov[i].iov_len;
54         }
55     }
56     assert(offset == 0);
57     return done;
58 }
59
60 size_t iov_memset(const struct iovec *iov, const unsigned int iov_cnt,
61                   size_t offset, int fillc, size_t bytes)
62 {
63     size_t done;
64     unsigned int i;
65     for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
66         if (offset < iov[i].iov_len) {
67             size_t len = MIN(iov[i].iov_len - offset, bytes - done);
68             memset(iov[i].iov_base + offset, fillc, len);
69             done += len;
70             offset = 0;
71         } else {
72             offset -= iov[i].iov_len;
73         }
74     }
75     assert(offset == 0);
76     return done;
77 }
78
79 size_t iov_size(const struct iovec *iov, const unsigned int iov_cnt)
80 {
81     size_t len;
82     unsigned int i;
83
84     len = 0;
85     for (i = 0; i < iov_cnt; i++) {
86         len += iov[i].iov_len;
87     }
88     return len;
89 }
90
91 /* helper function for iov_send_recv() */
92 static ssize_t
93 do_send_recv(int sockfd, struct iovec *iov, unsigned iov_cnt, bool do_send)
94 {
95 #ifdef CONFIG_POSIX
96     ssize_t ret;
97     struct msghdr msg;
98     memset(&msg, 0, sizeof(msg));
99     msg.msg_iov = iov;
100     msg.msg_iovlen = iov_cnt;
101     do {
102         ret = do_send
103             ? sendmsg(sockfd, &msg, 0)
104             : recvmsg(sockfd, &msg, 0);
105     } while (ret < 0 && errno == EINTR);
106     return ret;
107 #else
108     /* else send piece-by-piece */
109     /*XXX Note: windows has WSASend() and WSARecv() */
110     unsigned i = 0;
111     ssize_t ret = 0;
112     while (i < iov_cnt) {
113         ssize_t r = do_send
114             ? send(sockfd, iov[i].iov_base, iov[i].iov_len, 0)
115             : recv(sockfd, iov[i].iov_base, iov[i].iov_len, 0);
116         if (r > 0) {
117             ret += r;
118         } else if (!r) {
119             break;
120         } else if (errno == EINTR) {
121             continue;
122         } else {
123             /* else it is some "other" error,
124              * only return if there was no data processed. */
125             if (ret == 0) {
126                 ret = -1;
127             }
128             break;
129         }
130         i++;
131     }
132     return ret;
133 #endif
134 }
135
136 ssize_t iov_send_recv(int sockfd, const struct iovec *_iov, unsigned iov_cnt,
137                       size_t offset, size_t bytes,
138                       bool do_send)
139 {
140     ssize_t total = 0;
141     ssize_t ret;
142     size_t orig_len, tail;
143     unsigned niov;
144     struct iovec *local_iov, *iov;
145
146     if (bytes <= 0) {
147         return 0;
148     }
149
150     local_iov = g_new0(struct iovec, iov_cnt);
151     iov_copy(local_iov, iov_cnt, _iov, iov_cnt, offset, bytes);
152     offset = 0;
153     iov = local_iov;
154
155     while (bytes > 0) {
156         /* Find the start position, skipping `offset' bytes:
157          * first, skip all full-sized vector elements, */
158         for (niov = 0; niov < iov_cnt && offset >= iov[niov].iov_len; ++niov) {
159             offset -= iov[niov].iov_len;
160         }
161
162         /* niov == iov_cnt would only be valid if bytes == 0, which
163          * we already ruled out in the loop condition.  */
164         assert(niov < iov_cnt);
165         iov += niov;
166         iov_cnt -= niov;
167
168         if (offset) {
169             /* second, skip `offset' bytes from the (now) first element,
170              * undo it on exit */
171             iov[0].iov_base += offset;
172             iov[0].iov_len -= offset;
173         }
174         /* Find the end position skipping `bytes' bytes: */
175         /* first, skip all full-sized elements */
176         tail = bytes;
177         for (niov = 0; niov < iov_cnt && iov[niov].iov_len <= tail; ++niov) {
178             tail -= iov[niov].iov_len;
179         }
180         if (tail) {
181             /* second, fixup the last element, and remember the original
182              * length */
183             assert(niov < iov_cnt);
184             assert(iov[niov].iov_len > tail);
185             orig_len = iov[niov].iov_len;
186             iov[niov++].iov_len = tail;
187             ret = do_send_recv(sockfd, iov, niov, do_send);
188             /* Undo the changes above before checking for errors */
189             iov[niov-1].iov_len = orig_len;
190         } else {
191             ret = do_send_recv(sockfd, iov, niov, do_send);
192         }
193         if (offset) {
194             iov[0].iov_base -= offset;
195             iov[0].iov_len += offset;
196         }
197
198         if (ret < 0) {
199             assert(errno != EINTR);
200             g_free(local_iov);
201             if (errno == EAGAIN && total > 0) {
202                 return total;
203             }
204             return -1;
205         }
206
207         if (ret == 0 && !do_send) {
208             /* recv returns 0 when the peer has performed an orderly
209              * shutdown. */
210             break;
211         }
212
213         /* Prepare for the next iteration */
214         offset += ret;
215         total += ret;
216         bytes -= ret;
217     }
218
219     g_free(local_iov);
220     return total;
221 }
222
223
224 void iov_hexdump(const struct iovec *iov, const unsigned int iov_cnt,
225                  FILE *fp, const char *prefix, size_t limit)
226 {
227     int v;
228     size_t size = 0;
229     char *buf;
230
231     for (v = 0; v < iov_cnt; v++) {
232         size += iov[v].iov_len;
233     }
234     size = size > limit ? limit : size;
235     buf = g_malloc(size);
236     iov_to_buf(iov, iov_cnt, 0, buf, size);
237     qemu_hexdump(buf, fp, prefix, size);
238     g_free(buf);
239 }
240
241 unsigned iov_copy(struct iovec *dst_iov, unsigned int dst_iov_cnt,
242                  const struct iovec *iov, unsigned int iov_cnt,
243                  size_t offset, size_t bytes)
244 {
245     size_t len;
246     unsigned int i, j;
247     for (i = 0, j = 0; i < iov_cnt && j < dst_iov_cnt && bytes; i++) {
248         if (offset >= iov[i].iov_len) {
249             offset -= iov[i].iov_len;
250             continue;
251         }
252         len = MIN(bytes, iov[i].iov_len - offset);
253
254         dst_iov[j].iov_base = iov[i].iov_base + offset;
255         dst_iov[j].iov_len = len;
256         j++;
257         bytes -= len;
258         offset = 0;
259     }
260     assert(offset == 0);
261     return j;
262 }
263
264 /* io vectors */
265
266 void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
267 {
268     qiov->iov = g_new(struct iovec, alloc_hint);
269     qiov->niov = 0;
270     qiov->nalloc = alloc_hint;
271     qiov->size = 0;
272 }
273
274 void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
275 {
276     int i;
277
278     qiov->iov = iov;
279     qiov->niov = niov;
280     qiov->nalloc = -1;
281     qiov->size = 0;
282     for (i = 0; i < niov; i++)
283         qiov->size += iov[i].iov_len;
284 }
285
286 void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
287 {
288     assert(qiov->nalloc != -1);
289
290     if (qiov->niov == qiov->nalloc) {
291         qiov->nalloc = 2 * qiov->nalloc + 1;
292         qiov->iov = g_renew(struct iovec, qiov->iov, qiov->nalloc);
293     }
294     qiov->iov[qiov->niov].iov_base = base;
295     qiov->iov[qiov->niov].iov_len = len;
296     qiov->size += len;
297     ++qiov->niov;
298 }
299
300 /*
301  * Concatenates (partial) iovecs from src_iov to the end of dst.
302  * It starts copying after skipping `soffset' bytes at the
303  * beginning of src and adds individual vectors from src to
304  * dst copies up to `sbytes' bytes total, or up to the end
305  * of src_iov if it comes first.  This way, it is okay to specify
306  * very large value for `sbytes' to indicate "up to the end
307  * of src".
308  * Only vector pointers are processed, not the actual data buffers.
309  */
310 size_t qemu_iovec_concat_iov(QEMUIOVector *dst,
311                              struct iovec *src_iov, unsigned int src_cnt,
312                              size_t soffset, size_t sbytes)
313 {
314     int i;
315     size_t done;
316
317     if (!sbytes) {
318         return 0;
319     }
320     assert(dst->nalloc != -1);
321     for (i = 0, done = 0; done < sbytes && i < src_cnt; i++) {
322         if (soffset < src_iov[i].iov_len) {
323             size_t len = MIN(src_iov[i].iov_len - soffset, sbytes - done);
324             qemu_iovec_add(dst, src_iov[i].iov_base + soffset, len);
325             done += len;
326             soffset = 0;
327         } else {
328             soffset -= src_iov[i].iov_len;
329         }
330     }
331     assert(soffset == 0); /* offset beyond end of src */
332
333     return done;
334 }
335
336 /*
337  * Concatenates (partial) iovecs from src to the end of dst.
338  * It starts copying after skipping `soffset' bytes at the
339  * beginning of src and adds individual vectors from src to
340  * dst copies up to `sbytes' bytes total, or up to the end
341  * of src if it comes first.  This way, it is okay to specify
342  * very large value for `sbytes' to indicate "up to the end
343  * of src".
344  * Only vector pointers are processed, not the actual data buffers.
345  */
346 void qemu_iovec_concat(QEMUIOVector *dst,
347                        QEMUIOVector *src, size_t soffset, size_t sbytes)
348 {
349     qemu_iovec_concat_iov(dst, src->iov, src->niov, soffset, sbytes);
350 }
351
352 /*
353  * Check if the contents of the iovecs are all zero
354  */
355 bool qemu_iovec_is_zero(QEMUIOVector *qiov)
356 {
357     int i;
358     for (i = 0; i < qiov->niov; i++) {
359         size_t offs = QEMU_ALIGN_DOWN(qiov->iov[i].iov_len, 4 * sizeof(long));
360         uint8_t *ptr = qiov->iov[i].iov_base;
361         if (offs && !buffer_is_zero(qiov->iov[i].iov_base, offs)) {
362             return false;
363         }
364         for (; offs < qiov->iov[i].iov_len; offs++) {
365             if (ptr[offs]) {
366                 return false;
367             }
368         }
369     }
370     return true;
371 }
372
373 void qemu_iovec_destroy(QEMUIOVector *qiov)
374 {
375     assert(qiov->nalloc != -1);
376
377     qemu_iovec_reset(qiov);
378     g_free(qiov->iov);
379     qiov->nalloc = 0;
380     qiov->iov = NULL;
381 }
382
383 void qemu_iovec_reset(QEMUIOVector *qiov)
384 {
385     assert(qiov->nalloc != -1);
386
387     qiov->niov = 0;
388     qiov->size = 0;
389 }
390
391 size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
392                          void *buf, size_t bytes)
393 {
394     return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
395 }
396
397 size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
398                            const void *buf, size_t bytes)
399 {
400     return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
401 }
402
403 size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
404                          int fillc, size_t bytes)
405 {
406     return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
407 }
408
409 /**
410  * Check that I/O vector contents are identical
411  *
412  * The IO vectors must have the same structure (same length of all parts).
413  * A typical usage is to compare vectors created with qemu_iovec_clone().
414  *
415  * @a:          I/O vector
416  * @b:          I/O vector
417  * @ret:        Offset to first mismatching byte or -1 if match
418  */
419 ssize_t qemu_iovec_compare(QEMUIOVector *a, QEMUIOVector *b)
420 {
421     int i;
422     ssize_t offset = 0;
423
424     assert(a->niov == b->niov);
425     for (i = 0; i < a->niov; i++) {
426         size_t len = 0;
427         uint8_t *p = (uint8_t *)a->iov[i].iov_base;
428         uint8_t *q = (uint8_t *)b->iov[i].iov_base;
429
430         assert(a->iov[i].iov_len == b->iov[i].iov_len);
431         while (len < a->iov[i].iov_len && *p++ == *q++) {
432             len++;
433         }
434
435         offset += len;
436
437         if (len != a->iov[i].iov_len) {
438             return offset;
439         }
440     }
441     return -1;
442 }
443
444 typedef struct {
445     int src_index;
446     struct iovec *src_iov;
447     void *dest_base;
448 } IOVectorSortElem;
449
450 static int sortelem_cmp_src_base(const void *a, const void *b)
451 {
452     const IOVectorSortElem *elem_a = a;
453     const IOVectorSortElem *elem_b = b;
454
455     /* Don't overflow */
456     if (elem_a->src_iov->iov_base < elem_b->src_iov->iov_base) {
457         return -1;
458     } else if (elem_a->src_iov->iov_base > elem_b->src_iov->iov_base) {
459         return 1;
460     } else {
461         return 0;
462     }
463 }
464
465 static int sortelem_cmp_src_index(const void *a, const void *b)
466 {
467     const IOVectorSortElem *elem_a = a;
468     const IOVectorSortElem *elem_b = b;
469
470     return elem_a->src_index - elem_b->src_index;
471 }
472
473 /**
474  * Copy contents of I/O vector
475  *
476  * The relative relationships of overlapping iovecs are preserved.  This is
477  * necessary to ensure identical semantics in the cloned I/O vector.
478  */
479 void qemu_iovec_clone(QEMUIOVector *dest, const QEMUIOVector *src, void *buf)
480 {
481     IOVectorSortElem sortelems[src->niov];
482     void *last_end;
483     int i;
484
485     /* Sort by source iovecs by base address */
486     for (i = 0; i < src->niov; i++) {
487         sortelems[i].src_index = i;
488         sortelems[i].src_iov = &src->iov[i];
489     }
490     qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_base);
491
492     /* Allocate buffer space taking into account overlapping iovecs */
493     last_end = NULL;
494     for (i = 0; i < src->niov; i++) {
495         struct iovec *cur = sortelems[i].src_iov;
496         ptrdiff_t rewind = 0;
497
498         /* Detect overlap */
499         if (last_end && last_end > cur->iov_base) {
500             rewind = last_end - cur->iov_base;
501         }
502
503         sortelems[i].dest_base = buf - rewind;
504         buf += cur->iov_len - MIN(rewind, cur->iov_len);
505         last_end = MAX(cur->iov_base + cur->iov_len, last_end);
506     }
507
508     /* Sort by source iovec index and build destination iovec */
509     qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_index);
510     for (i = 0; i < src->niov; i++) {
511         qemu_iovec_add(dest, sortelems[i].dest_base, src->iov[i].iov_len);
512     }
513 }
514
515 size_t iov_discard_front(struct iovec **iov, unsigned int *iov_cnt,
516                          size_t bytes)
517 {
518     size_t total = 0;
519     struct iovec *cur;
520
521     for (cur = *iov; *iov_cnt > 0; cur++) {
522         if (cur->iov_len > bytes) {
523             cur->iov_base += bytes;
524             cur->iov_len -= bytes;
525             total += bytes;
526             break;
527         }
528
529         bytes -= cur->iov_len;
530         total += cur->iov_len;
531         *iov_cnt -= 1;
532     }
533
534     *iov = cur;
535     return total;
536 }
537
538 size_t iov_discard_back(struct iovec *iov, unsigned int *iov_cnt,
539                         size_t bytes)
540 {
541     size_t total = 0;
542     struct iovec *cur;
543
544     if (*iov_cnt == 0) {
545         return 0;
546     }
547
548     cur = iov + (*iov_cnt - 1);
549
550     while (*iov_cnt > 0) {
551         if (cur->iov_len > bytes) {
552             cur->iov_len -= bytes;
553             total += bytes;
554             break;
555         }
556
557         bytes -= cur->iov_len;
558         total += cur->iov_len;
559         cur--;
560         *iov_cnt -= 1;
561     }
562
563     return total;
564 }
565
566 void qemu_iovec_discard_back(QEMUIOVector *qiov, size_t bytes)
567 {
568     size_t total;
569     unsigned int niov = qiov->niov;
570
571     assert(qiov->size >= bytes);
572     total = iov_discard_back(qiov->iov, &niov, bytes);
573     assert(total == bytes);
574
575     qiov->niov = niov;
576     qiov->size -= bytes;
577 }