Add qemu 2.4.0
[kvmfornfv.git] / qemu / util / hbitmap.c
1 /*
2  * Hierarchical Bitmap Data Type
3  *
4  * Copyright Red Hat, Inc., 2012
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or
9  * later.  See the COPYING file in the top-level directory.
10  */
11
12 #include <string.h>
13 #include <glib.h>
14 #include <assert.h>
15 #include "qemu/osdep.h"
16 #include "qemu/hbitmap.h"
17 #include "qemu/host-utils.h"
18 #include "trace.h"
19
20 /* HBitmaps provides an array of bits.  The bits are stored as usual in an
21  * array of unsigned longs, but HBitmap is also optimized to provide fast
22  * iteration over set bits; going from one bit to the next is O(logB n)
23  * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
24  * that the number of levels is in fact fixed.
25  *
26  * In order to do this, it stacks multiple bitmaps with progressively coarser
27  * granularity; in all levels except the last, bit N is set iff the N-th
28  * unsigned long is nonzero in the immediately next level.  When iteration
29  * completes on the last level it can examine the 2nd-last level to quickly
30  * skip entire words, and even do so recursively to skip blocks of 64 words or
31  * powers thereof (32 on 32-bit machines).
32  *
33  * Given an index in the bitmap, it can be split in group of bits like
34  * this (for the 64-bit case):
35  *
36  *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
37  *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
38  *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
39  *
40  * So it is easy to move up simply by shifting the index right by
41  * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
42  * similarly, and add the word index within the group.  Iteration uses
43  * ffs (find first set bit) to find the next word to examine; this
44  * operation can be done in constant time in most current architectures.
45  *
46  * Setting or clearing a range of m bits on all levels, the work to perform
47  * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
48  *
49  * When iterating on a bitmap, each bit (on any level) is only visited
50  * once.  Hence, The total cost of visiting a bitmap with m bits in it is
51  * the number of bits that are set in all bitmaps.  Unless the bitmap is
52  * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
53  * cost of advancing from one bit to the next is usually constant (worst case
54  * O(logB n) as in the non-amortized complexity).
55  */
56
57 struct HBitmap {
58     /* Number of total bits in the bottom level.  */
59     uint64_t size;
60
61     /* Number of set bits in the bottom level.  */
62     uint64_t count;
63
64     /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
65      * will actually represent a group of 2^G elements.  Each operation on a
66      * range of bits first rounds the bits to determine which group they land
67      * in, and then affect the entire page; iteration will only visit the first
68      * bit of each group.  Here is an example of operations in a size-16,
69      * granularity-1 HBitmap:
70      *
71      *    initial state            00000000
72      *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
73      *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
74      *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
75      *    reset(start=5, count=5)  00000000
76      *
77      * From an implementation point of view, when setting or resetting bits,
78      * the bitmap will scale bit numbers right by this amount of bits.  When
79      * iterating, the bitmap will scale bit numbers left by this amount of
80      * bits.
81      */
82     int granularity;
83
84     /* A number of progressively less coarse bitmaps (i.e. level 0 is the
85      * coarsest).  Each bit in level N represents a word in level N+1 that
86      * has a set bit, except the last level where each bit represents the
87      * actual bitmap.
88      *
89      * Note that all bitmaps have the same number of levels.  Even a 1-bit
90      * bitmap will still allocate HBITMAP_LEVELS arrays.
91      */
92     unsigned long *levels[HBITMAP_LEVELS];
93
94     /* The length of each levels[] array. */
95     uint64_t sizes[HBITMAP_LEVELS];
96 };
97
98 /* Advance hbi to the next nonzero word and return it.  hbi->pos
99  * is updated.  Returns zero if we reach the end of the bitmap.
100  */
101 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
102 {
103     size_t pos = hbi->pos;
104     const HBitmap *hb = hbi->hb;
105     unsigned i = HBITMAP_LEVELS - 1;
106
107     unsigned long cur;
108     do {
109         cur = hbi->cur[--i];
110         pos >>= BITS_PER_LEVEL;
111     } while (cur == 0);
112
113     /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
114      * bits in the level 0 bitmap; thus we can repurpose the most significant
115      * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
116      * that the above loop ends even without an explicit check on i.
117      */
118
119     if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
120         return 0;
121     }
122     for (; i < HBITMAP_LEVELS - 1; i++) {
123         /* Shift back pos to the left, matching the right shifts above.
124          * The index of this word's least significant set bit provides
125          * the low-order bits.
126          */
127         assert(cur);
128         pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
129         hbi->cur[i] = cur & (cur - 1);
130
131         /* Set up next level for iteration.  */
132         cur = hb->levels[i + 1][pos];
133     }
134
135     hbi->pos = pos;
136     trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
137
138     assert(cur);
139     return cur;
140 }
141
142 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
143 {
144     unsigned i, bit;
145     uint64_t pos;
146
147     hbi->hb = hb;
148     pos = first >> hb->granularity;
149     assert(pos < hb->size);
150     hbi->pos = pos >> BITS_PER_LEVEL;
151     hbi->granularity = hb->granularity;
152
153     for (i = HBITMAP_LEVELS; i-- > 0; ) {
154         bit = pos & (BITS_PER_LONG - 1);
155         pos >>= BITS_PER_LEVEL;
156
157         /* Drop bits representing items before first.  */
158         hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
159
160         /* We have already added level i+1, so the lowest set bit has
161          * been processed.  Clear it.
162          */
163         if (i != HBITMAP_LEVELS - 1) {
164             hbi->cur[i] &= ~(1UL << bit);
165         }
166     }
167 }
168
169 bool hbitmap_empty(const HBitmap *hb)
170 {
171     return hb->count == 0;
172 }
173
174 int hbitmap_granularity(const HBitmap *hb)
175 {
176     return hb->granularity;
177 }
178
179 uint64_t hbitmap_count(const HBitmap *hb)
180 {
181     return hb->count << hb->granularity;
182 }
183
184 /* Count the number of set bits between start and end, not accounting for
185  * the granularity.  Also an example of how to use hbitmap_iter_next_word.
186  */
187 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
188 {
189     HBitmapIter hbi;
190     uint64_t count = 0;
191     uint64_t end = last + 1;
192     unsigned long cur;
193     size_t pos;
194
195     hbitmap_iter_init(&hbi, hb, start << hb->granularity);
196     for (;;) {
197         pos = hbitmap_iter_next_word(&hbi, &cur);
198         if (pos >= (end >> BITS_PER_LEVEL)) {
199             break;
200         }
201         count += ctpopl(cur);
202     }
203
204     if (pos == (end >> BITS_PER_LEVEL)) {
205         /* Drop bits representing the END-th and subsequent items.  */
206         int bit = end & (BITS_PER_LONG - 1);
207         cur &= (1UL << bit) - 1;
208         count += ctpopl(cur);
209     }
210
211     return count;
212 }
213
214 /* Setting starts at the last layer and propagates up if an element
215  * changes from zero to non-zero.
216  */
217 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
218 {
219     unsigned long mask;
220     bool changed;
221
222     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
223     assert(start <= last);
224
225     mask = 2UL << (last & (BITS_PER_LONG - 1));
226     mask -= 1UL << (start & (BITS_PER_LONG - 1));
227     changed = (*elem == 0);
228     *elem |= mask;
229     return changed;
230 }
231
232 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
233 static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
234 {
235     size_t pos = start >> BITS_PER_LEVEL;
236     size_t lastpos = last >> BITS_PER_LEVEL;
237     bool changed = false;
238     size_t i;
239
240     i = pos;
241     if (i < lastpos) {
242         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
243         changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
244         for (;;) {
245             start = next;
246             next += BITS_PER_LONG;
247             if (++i == lastpos) {
248                 break;
249             }
250             changed |= (hb->levels[level][i] == 0);
251             hb->levels[level][i] = ~0UL;
252         }
253     }
254     changed |= hb_set_elem(&hb->levels[level][i], start, last);
255
256     /* If there was any change in this layer, we may have to update
257      * the one above.
258      */
259     if (level > 0 && changed) {
260         hb_set_between(hb, level - 1, pos, lastpos);
261     }
262 }
263
264 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
265 {
266     /* Compute range in the last layer.  */
267     uint64_t last = start + count - 1;
268
269     trace_hbitmap_set(hb, start, count,
270                       start >> hb->granularity, last >> hb->granularity);
271
272     start >>= hb->granularity;
273     last >>= hb->granularity;
274     count = last - start + 1;
275
276     hb->count += count - hb_count_between(hb, start, last);
277     hb_set_between(hb, HBITMAP_LEVELS - 1, start, last);
278 }
279
280 /* Resetting works the other way round: propagate up if the new
281  * value is zero.
282  */
283 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
284 {
285     unsigned long mask;
286     bool blanked;
287
288     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
289     assert(start <= last);
290
291     mask = 2UL << (last & (BITS_PER_LONG - 1));
292     mask -= 1UL << (start & (BITS_PER_LONG - 1));
293     blanked = *elem != 0 && ((*elem & ~mask) == 0);
294     *elem &= ~mask;
295     return blanked;
296 }
297
298 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
299 static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
300 {
301     size_t pos = start >> BITS_PER_LEVEL;
302     size_t lastpos = last >> BITS_PER_LEVEL;
303     bool changed = false;
304     size_t i;
305
306     i = pos;
307     if (i < lastpos) {
308         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
309
310         /* Here we need a more complex test than when setting bits.  Even if
311          * something was changed, we must not blank bits in the upper level
312          * unless the lower-level word became entirely zero.  So, remove pos
313          * from the upper-level range if bits remain set.
314          */
315         if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
316             changed = true;
317         } else {
318             pos++;
319         }
320
321         for (;;) {
322             start = next;
323             next += BITS_PER_LONG;
324             if (++i == lastpos) {
325                 break;
326             }
327             changed |= (hb->levels[level][i] != 0);
328             hb->levels[level][i] = 0UL;
329         }
330     }
331
332     /* Same as above, this time for lastpos.  */
333     if (hb_reset_elem(&hb->levels[level][i], start, last)) {
334         changed = true;
335     } else {
336         lastpos--;
337     }
338
339     if (level > 0 && changed) {
340         hb_reset_between(hb, level - 1, pos, lastpos);
341     }
342 }
343
344 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
345 {
346     /* Compute range in the last layer.  */
347     uint64_t last = start + count - 1;
348
349     trace_hbitmap_reset(hb, start, count,
350                         start >> hb->granularity, last >> hb->granularity);
351
352     start >>= hb->granularity;
353     last >>= hb->granularity;
354
355     hb->count -= hb_count_between(hb, start, last);
356     hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last);
357 }
358
359 void hbitmap_reset_all(HBitmap *hb)
360 {
361     unsigned int i;
362
363     /* Same as hbitmap_alloc() except for memset() instead of malloc() */
364     for (i = HBITMAP_LEVELS; --i >= 1; ) {
365         memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
366     }
367
368     hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
369     hb->count = 0;
370 }
371
372 bool hbitmap_get(const HBitmap *hb, uint64_t item)
373 {
374     /* Compute position and bit in the last layer.  */
375     uint64_t pos = item >> hb->granularity;
376     unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
377
378     return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
379 }
380
381 void hbitmap_free(HBitmap *hb)
382 {
383     unsigned i;
384     for (i = HBITMAP_LEVELS; i-- > 0; ) {
385         g_free(hb->levels[i]);
386     }
387     g_free(hb);
388 }
389
390 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
391 {
392     HBitmap *hb = g_new0(struct HBitmap, 1);
393     unsigned i;
394
395     assert(granularity >= 0 && granularity < 64);
396     size = (size + (1ULL << granularity) - 1) >> granularity;
397     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
398
399     hb->size = size;
400     hb->granularity = granularity;
401     for (i = HBITMAP_LEVELS; i-- > 0; ) {
402         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
403         hb->sizes[i] = size;
404         hb->levels[i] = g_new0(unsigned long, size);
405     }
406
407     /* We necessarily have free bits in level 0 due to the definition
408      * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
409      * hbitmap_iter_skip_words.
410      */
411     assert(size == 1);
412     hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
413     return hb;
414 }
415
416 void hbitmap_truncate(HBitmap *hb, uint64_t size)
417 {
418     bool shrink;
419     unsigned i;
420     uint64_t num_elements = size;
421     uint64_t old;
422
423     /* Size comes in as logical elements, adjust for granularity. */
424     size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
425     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
426     shrink = size < hb->size;
427
428     /* bit sizes are identical; nothing to do. */
429     if (size == hb->size) {
430         return;
431     }
432
433     /* If we're losing bits, let's clear those bits before we invalidate all of
434      * our invariants. This helps keep the bitcount consistent, and will prevent
435      * us from carrying around garbage bits beyond the end of the map.
436      */
437     if (shrink) {
438         /* Don't clear partial granularity groups;
439          * start at the first full one. */
440         uint64_t start = QEMU_ALIGN_UP(num_elements, 1 << hb->granularity);
441         uint64_t fix_count = (hb->size << hb->granularity) - start;
442
443         assert(fix_count);
444         hbitmap_reset(hb, start, fix_count);
445     }
446
447     hb->size = size;
448     for (i = HBITMAP_LEVELS; i-- > 0; ) {
449         size = MAX(BITS_TO_LONGS(size), 1);
450         if (hb->sizes[i] == size) {
451             break;
452         }
453         old = hb->sizes[i];
454         hb->sizes[i] = size;
455         hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
456         if (!shrink) {
457             memset(&hb->levels[i][old], 0x00,
458                    (size - old) * sizeof(*hb->levels[i]));
459         }
460     }
461 }
462
463
464 /**
465  * Given HBitmaps A and B, let A := A (BITOR) B.
466  * Bitmap B will not be modified.
467  *
468  * @return true if the merge was successful,
469  *         false if it was not attempted.
470  */
471 bool hbitmap_merge(HBitmap *a, const HBitmap *b)
472 {
473     int i;
474     uint64_t j;
475
476     if ((a->size != b->size) || (a->granularity != b->granularity)) {
477         return false;
478     }
479
480     if (hbitmap_count(b) == 0) {
481         return true;
482     }
483
484     /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
485      * It may be possible to improve running times for sparsely populated maps
486      * by using hbitmap_iter_next, but this is suboptimal for dense maps.
487      */
488     for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
489         for (j = 0; j < a->sizes[i]; j++) {
490             a->levels[i][j] |= b->levels[i][j];
491         }
492     }
493
494     return true;
495 }