Add qemu 2.4.0
[kvmfornfv.git] / qemu / util / bitmap.c
1 /*
2  * Bitmap Module
3  *
4  * Stolen from linux/src/lib/bitmap.c
5  *
6  * Copyright (C) 2010 Corentin Chary
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.
10  */
11
12 #include "qemu/bitops.h"
13 #include "qemu/bitmap.h"
14 #include "qemu/atomic.h"
15
16 /*
17  * bitmaps provide an array of bits, implemented using an an
18  * array of unsigned longs.  The number of valid bits in a
19  * given bitmap does _not_ need to be an exact multiple of
20  * BITS_PER_LONG.
21  *
22  * The possible unused bits in the last, partially used word
23  * of a bitmap are 'don't care'.  The implementation makes
24  * no particular effort to keep them zero.  It ensures that
25  * their value will not affect the results of any operation.
26  * The bitmap operations that return Boolean (bitmap_empty,
27  * for example) or scalar (bitmap_weight, for example) results
28  * carefully filter out these unused bits from impacting their
29  * results.
30  *
31  * These operations actually hold to a slightly stronger rule:
32  * if you don't input any bitmaps to these ops that have some
33  * unused bits set, then they won't output any set unused bits
34  * in output bitmaps.
35  *
36  * The byte ordering of bitmaps is more natural on little
37  * endian architectures.
38  */
39
40 int slow_bitmap_empty(const unsigned long *bitmap, long bits)
41 {
42     long k, lim = bits/BITS_PER_LONG;
43
44     for (k = 0; k < lim; ++k) {
45         if (bitmap[k]) {
46             return 0;
47         }
48     }
49     if (bits % BITS_PER_LONG) {
50         if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
51             return 0;
52         }
53     }
54
55     return 1;
56 }
57
58 int slow_bitmap_full(const unsigned long *bitmap, long bits)
59 {
60     long k, lim = bits/BITS_PER_LONG;
61
62     for (k = 0; k < lim; ++k) {
63         if (~bitmap[k]) {
64             return 0;
65         }
66     }
67
68     if (bits % BITS_PER_LONG) {
69         if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
70             return 0;
71         }
72     }
73
74     return 1;
75 }
76
77 int slow_bitmap_equal(const unsigned long *bitmap1,
78                       const unsigned long *bitmap2, long bits)
79 {
80     long k, lim = bits/BITS_PER_LONG;
81
82     for (k = 0; k < lim; ++k) {
83         if (bitmap1[k] != bitmap2[k]) {
84             return 0;
85         }
86     }
87
88     if (bits % BITS_PER_LONG) {
89         if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
90             return 0;
91         }
92     }
93
94     return 1;
95 }
96
97 void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
98                             long bits)
99 {
100     long k, lim = bits/BITS_PER_LONG;
101
102     for (k = 0; k < lim; ++k) {
103         dst[k] = ~src[k];
104     }
105
106     if (bits % BITS_PER_LONG) {
107         dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
108     }
109 }
110
111 int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
112                     const unsigned long *bitmap2, long bits)
113 {
114     long k;
115     long nr = BITS_TO_LONGS(bits);
116     unsigned long result = 0;
117
118     for (k = 0; k < nr; k++) {
119         result |= (dst[k] = bitmap1[k] & bitmap2[k]);
120     }
121     return result != 0;
122 }
123
124 void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
125                     const unsigned long *bitmap2, long bits)
126 {
127     long k;
128     long nr = BITS_TO_LONGS(bits);
129
130     for (k = 0; k < nr; k++) {
131         dst[k] = bitmap1[k] | bitmap2[k];
132     }
133 }
134
135 void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
136                      const unsigned long *bitmap2, long bits)
137 {
138     long k;
139     long nr = BITS_TO_LONGS(bits);
140
141     for (k = 0; k < nr; k++) {
142         dst[k] = bitmap1[k] ^ bitmap2[k];
143     }
144 }
145
146 int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
147                        const unsigned long *bitmap2, long bits)
148 {
149     long k;
150     long nr = BITS_TO_LONGS(bits);
151     unsigned long result = 0;
152
153     for (k = 0; k < nr; k++) {
154         result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
155     }
156     return result != 0;
157 }
158
159 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
160
161 void bitmap_set(unsigned long *map, long start, long nr)
162 {
163     unsigned long *p = map + BIT_WORD(start);
164     const long size = start + nr;
165     int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
166     unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
167
168     while (nr - bits_to_set >= 0) {
169         *p |= mask_to_set;
170         nr -= bits_to_set;
171         bits_to_set = BITS_PER_LONG;
172         mask_to_set = ~0UL;
173         p++;
174     }
175     if (nr) {
176         mask_to_set &= BITMAP_LAST_WORD_MASK(size);
177         *p |= mask_to_set;
178     }
179 }
180
181 void bitmap_set_atomic(unsigned long *map, long start, long nr)
182 {
183     unsigned long *p = map + BIT_WORD(start);
184     const long size = start + nr;
185     int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
186     unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
187
188     /* First word */
189     if (nr - bits_to_set > 0) {
190         atomic_or(p, mask_to_set);
191         nr -= bits_to_set;
192         bits_to_set = BITS_PER_LONG;
193         mask_to_set = ~0UL;
194         p++;
195     }
196
197     /* Full words */
198     if (bits_to_set == BITS_PER_LONG) {
199         while (nr >= BITS_PER_LONG) {
200             *p = ~0UL;
201             nr -= BITS_PER_LONG;
202             p++;
203         }
204     }
205
206     /* Last word */
207     if (nr) {
208         mask_to_set &= BITMAP_LAST_WORD_MASK(size);
209         atomic_or(p, mask_to_set);
210     } else {
211         /* If we avoided the full barrier in atomic_or(), issue a
212          * barrier to account for the assignments in the while loop.
213          */
214         smp_mb();
215     }
216 }
217
218 void bitmap_clear(unsigned long *map, long start, long nr)
219 {
220     unsigned long *p = map + BIT_WORD(start);
221     const long size = start + nr;
222     int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
223     unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
224
225     while (nr - bits_to_clear >= 0) {
226         *p &= ~mask_to_clear;
227         nr -= bits_to_clear;
228         bits_to_clear = BITS_PER_LONG;
229         mask_to_clear = ~0UL;
230         p++;
231     }
232     if (nr) {
233         mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
234         *p &= ~mask_to_clear;
235     }
236 }
237
238 bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr)
239 {
240     unsigned long *p = map + BIT_WORD(start);
241     const long size = start + nr;
242     int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
243     unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
244     unsigned long dirty = 0;
245     unsigned long old_bits;
246
247     /* First word */
248     if (nr - bits_to_clear > 0) {
249         old_bits = atomic_fetch_and(p, ~mask_to_clear);
250         dirty |= old_bits & mask_to_clear;
251         nr -= bits_to_clear;
252         bits_to_clear = BITS_PER_LONG;
253         mask_to_clear = ~0UL;
254         p++;
255     }
256
257     /* Full words */
258     if (bits_to_clear == BITS_PER_LONG) {
259         while (nr >= BITS_PER_LONG) {
260             if (*p) {
261                 old_bits = atomic_xchg(p, 0);
262                 dirty |= old_bits;
263             }
264             nr -= BITS_PER_LONG;
265             p++;
266         }
267     }
268
269     /* Last word */
270     if (nr) {
271         mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
272         old_bits = atomic_fetch_and(p, ~mask_to_clear);
273         dirty |= old_bits & mask_to_clear;
274     } else {
275         if (!dirty) {
276             smp_mb();
277         }
278     }
279
280     return dirty != 0;
281 }
282
283 #define ALIGN_MASK(x,mask)      (((x)+(mask))&~(mask))
284
285 /**
286  * bitmap_find_next_zero_area - find a contiguous aligned zero area
287  * @map: The address to base the search on
288  * @size: The bitmap size in bits
289  * @start: The bitnumber to start searching at
290  * @nr: The number of zeroed bits we're looking for
291  * @align_mask: Alignment mask for zero area
292  *
293  * The @align_mask should be one less than a power of 2; the effect is that
294  * the bit offset of all zero areas this function finds is multiples of that
295  * power of 2. A @align_mask of 0 means no alignment is required.
296  */
297 unsigned long bitmap_find_next_zero_area(unsigned long *map,
298                                          unsigned long size,
299                                          unsigned long start,
300                                          unsigned long nr,
301                                          unsigned long align_mask)
302 {
303     unsigned long index, end, i;
304 again:
305     index = find_next_zero_bit(map, size, start);
306
307     /* Align allocation */
308     index = ALIGN_MASK(index, align_mask);
309
310     end = index + nr;
311     if (end > size) {
312         return end;
313     }
314     i = find_next_bit(map, end, index);
315     if (i < end) {
316         start = i + 1;
317         goto again;
318     }
319     return index;
320 }
321
322 int slow_bitmap_intersects(const unsigned long *bitmap1,
323                            const unsigned long *bitmap2, long bits)
324 {
325     long k, lim = bits/BITS_PER_LONG;
326
327     for (k = 0; k < lim; ++k) {
328         if (bitmap1[k] & bitmap2[k]) {
329             return 1;
330         }
331     }
332
333     if (bits % BITS_PER_LONG) {
334         if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
335             return 1;
336         }
337     }
338     return 0;
339 }