Add qemu 2.4.0
[kvmfornfv.git] / qemu / roms / ipxe / src / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2  *
3  * Copyright (c) 2004, 2005, 2006 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Written by: Michael Chan  (mchan@broadcom.com)
10  *
11  * Etherboot port by Ryan Jackson (rjackson@lnxi.com), based on driver
12  * version 1.4.40 from linux 2.6.17
13  */
14
15 FILE_LICENCE ( GPL_ANY );
16
17 #include "etherboot.h"
18 #include "nic.h"
19 #include <errno.h>
20 #include <ipxe/pci.h>
21 #include <ipxe/ethernet.h>
22 #include "string.h"
23 #include <mii.h>
24 #include "bnx2.h"
25 #include "bnx2_fw.h"
26
27 #if 0
28 /* Dummy defines for error handling */
29 #define EBUSY  1
30 #define ENODEV 2
31 #define EINVAL 3
32 #define ENOMEM 4
33 #define EIO    5
34 #endif
35
36 /* The bnx2 seems to be picky about the alignment of the receive buffers
37  * and possibly the status block.
38  */
39 static struct bss {
40         struct tx_bd tx_desc_ring[TX_DESC_CNT];
41         struct rx_bd rx_desc_ring[RX_DESC_CNT];
42         unsigned char rx_buf[RX_BUF_CNT][RX_BUF_SIZE];
43         struct status_block status_blk;
44         struct statistics_block stats_blk;
45 } bnx2_bss;
46
47 static struct bnx2 bnx2;
48
49 static struct flash_spec flash_table[] =
50 {
51         /* Slow EEPROM */
52         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
53          1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
54          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
55          "EEPROM - slow"},
56         /* Expansion entry 0001 */
57         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
58          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
59          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
60          "Entry 0001"},
61         /* Saifun SA25F010 (non-buffered flash) */
62         /* strap, cfg1, & write1 need updates */
63         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
64          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
65          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
66          "Non-buffered flash (128kB)"},
67         /* Saifun SA25F020 (non-buffered flash) */
68         /* strap, cfg1, & write1 need updates */
69         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
70          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
71          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
72          "Non-buffered flash (256kB)"},
73         /* Expansion entry 0100 */
74         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
75          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
76          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
77          "Entry 0100"},
78         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
79         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,        
80          0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
81          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
82          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
83         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
84         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
85          0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
86          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
87          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
88         /* Saifun SA25F005 (non-buffered flash) */
89         /* strap, cfg1, & write1 need updates */
90         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
91          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
92          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
93          "Non-buffered flash (64kB)"},
94         /* Fast EEPROM */
95         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
96          1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
97          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
98          "EEPROM - fast"},
99         /* Expansion entry 1001 */
100         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
101          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
102          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
103          "Entry 1001"},
104         /* Expansion entry 1010 */
105         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
106          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
107          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
108          "Entry 1010"},
109         /* ATMEL AT45DB011B (buffered flash) */
110         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
111          1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
112          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
113          "Buffered flash (128kB)"},
114         /* Expansion entry 1100 */
115         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
116          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
117          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
118          "Entry 1100"},
119         /* Expansion entry 1101 */
120         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
121          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
122          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
123          "Entry 1101"},
124         /* Ateml Expansion entry 1110 */
125         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
126          1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
127          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
128          "Entry 1110 (Atmel)"},
129         /* ATMEL AT45DB021B (buffered flash) */
130         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
131          1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
132          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
133          "Buffered flash (256kB)"},
134 };
135
136 static u32
137 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
138 {
139         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
140         return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW));
141 }
142
143 static void
144 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
145 {
146         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
147         REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
148 }
149
150 static void
151 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
152 {
153         offset += cid_addr;
154         REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
155         REG_WR(bp, BNX2_CTX_DATA, val);
156 }
157
158 static int
159 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
160 {
161         u32 val1;
162         int i, ret;
163
164         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
165                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
166                 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
167
168                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
169                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
170
171                 udelay(40);
172         }
173
174         val1 = (bp->phy_addr << 21) | (reg << 16) |
175                 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
176                 BNX2_EMAC_MDIO_COMM_START_BUSY;
177         REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
178
179         for (i = 0; i < 50; i++) {
180                 udelay(10);
181
182                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
183                 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
184                         udelay(5);
185
186                         val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
187                         val1 &= BNX2_EMAC_MDIO_COMM_DATA;
188
189                         break;
190                 }
191         }
192
193         if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
194                 *val = 0x0;
195                 ret = -EBUSY;
196         }
197         else {
198                 *val = val1;
199                 ret = 0;
200         }
201
202         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
203                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
204                 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
205
206                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
207                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
208
209                 udelay(40);
210         }
211
212         return ret;
213 }
214
215 static int
216 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
217 {
218         u32 val1;
219         int i, ret;
220
221         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
222                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
223                 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
224
225                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
226                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
227
228                 udelay(40);
229         }
230
231         val1 = (bp->phy_addr << 21) | (reg << 16) | val |
232                 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
233                 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
234         REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
235     
236         for (i = 0; i < 50; i++) {
237                 udelay(10);
238
239                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
240                 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
241                         udelay(5);
242                         break;
243                 }
244         }
245
246         if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
247                 ret = -EBUSY;
248         else
249                 ret = 0;
250
251         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
252                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
253                 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
254
255                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
256                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
257
258                 udelay(40);
259         }
260
261         return ret;
262 }
263
264 static void
265 bnx2_disable_int(struct bnx2 *bp)
266 {
267         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
268                BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
269         REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
270
271 }
272
273 static int
274 bnx2_alloc_mem(struct bnx2 *bp)
275 {
276         bp->tx_desc_ring = bnx2_bss.tx_desc_ring;
277         bp->tx_desc_mapping = virt_to_bus(bp->tx_desc_ring);
278
279         bp->rx_desc_ring = bnx2_bss.rx_desc_ring;
280         memset(bp->rx_desc_ring, 0, sizeof(struct rx_bd) * RX_DESC_CNT);
281         bp->rx_desc_mapping = virt_to_bus(bp->rx_desc_ring);
282
283         memset(&bnx2_bss.status_blk, 0, sizeof(struct status_block));
284         bp->status_blk = &bnx2_bss.status_blk;
285         bp->status_blk_mapping = virt_to_bus(&bnx2_bss.status_blk);
286
287         bp->stats_blk = &bnx2_bss.stats_blk;
288         memset(&bnx2_bss.stats_blk, 0, sizeof(struct statistics_block));
289         bp->stats_blk_mapping = virt_to_bus(&bnx2_bss.stats_blk);
290
291         return 0;
292 }
293
294 static void
295 bnx2_report_fw_link(struct bnx2 *bp)
296 {
297         u32 fw_link_status = 0;
298
299         if (bp->link_up) {
300                 u32 bmsr;
301
302                 switch (bp->line_speed) {
303                 case SPEED_10:
304                         if (bp->duplex == DUPLEX_HALF)
305                                 fw_link_status = BNX2_LINK_STATUS_10HALF;
306                         else
307                                 fw_link_status = BNX2_LINK_STATUS_10FULL;
308                         break;
309                 case SPEED_100:
310                         if (bp->duplex == DUPLEX_HALF)
311                                 fw_link_status = BNX2_LINK_STATUS_100HALF;
312                         else
313                                 fw_link_status = BNX2_LINK_STATUS_100FULL;
314                         break;
315                 case SPEED_1000:
316                         if (bp->duplex == DUPLEX_HALF)
317                                 fw_link_status = BNX2_LINK_STATUS_1000HALF;
318                         else
319                                 fw_link_status = BNX2_LINK_STATUS_1000FULL;
320                         break;
321                 case SPEED_2500:
322                         if (bp->duplex == DUPLEX_HALF)
323                                 fw_link_status = BNX2_LINK_STATUS_2500HALF;
324                         else
325                                 fw_link_status = BNX2_LINK_STATUS_2500FULL;
326                         break;
327                 }
328
329                 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
330
331                 if (bp->autoneg) {
332                         fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
333
334                         bnx2_read_phy(bp, MII_BMSR, &bmsr);
335                         bnx2_read_phy(bp, MII_BMSR, &bmsr);
336
337                         if (!(bmsr & BMSR_ANEGCOMPLETE) ||
338                             bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
339                                 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
340                         else
341                                 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
342                 }
343         }
344         else
345                 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
346
347         REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
348 }
349
350 static void
351 bnx2_report_link(struct bnx2 *bp)
352 {
353         if (bp->link_up) {
354                 printf("NIC Link is Up, ");
355
356                 printf("%d Mbps ", bp->line_speed);
357
358                 if (bp->duplex == DUPLEX_FULL)
359                         printf("full duplex");
360                 else
361                         printf("half duplex");
362
363                 if (bp->flow_ctrl) {
364                         if (bp->flow_ctrl & FLOW_CTRL_RX) {
365                                 printf(", receive ");
366                                 if (bp->flow_ctrl & FLOW_CTRL_TX)
367                                         printf("& transmit ");
368                         }
369                         else {
370                                 printf(", transmit ");
371                         }
372                         printf("flow control ON");
373                 }
374                 printf("\n");
375         }
376         else {
377                 printf("NIC Link is Down\n");
378         }
379
380         bnx2_report_fw_link(bp);
381 }
382
383 static void
384 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
385 {
386         u32 local_adv, remote_adv;
387
388         bp->flow_ctrl = 0;
389         if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) != 
390                 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
391
392                 if (bp->duplex == DUPLEX_FULL) {
393                         bp->flow_ctrl = bp->req_flow_ctrl;
394                 }
395                 return;
396         }
397
398         if (bp->duplex != DUPLEX_FULL) {
399                 return;
400         }
401
402         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
403             (CHIP_NUM(bp) == CHIP_NUM_5708)) {
404                 u32 val;
405
406                 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
407                 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
408                         bp->flow_ctrl |= FLOW_CTRL_TX;
409                 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
410                         bp->flow_ctrl |= FLOW_CTRL_RX;
411                 return;
412         }
413
414         bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
415         bnx2_read_phy(bp, MII_LPA, &remote_adv);
416
417         if (bp->phy_flags & PHY_SERDES_FLAG) {
418                 u32 new_local_adv = 0;
419                 u32 new_remote_adv = 0;
420
421                 if (local_adv & ADVERTISE_1000XPAUSE)
422                         new_local_adv |= ADVERTISE_PAUSE_CAP;
423                 if (local_adv & ADVERTISE_1000XPSE_ASYM)
424                         new_local_adv |= ADVERTISE_PAUSE_ASYM;
425                 if (remote_adv & ADVERTISE_1000XPAUSE)
426                         new_remote_adv |= ADVERTISE_PAUSE_CAP;
427                 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
428                         new_remote_adv |= ADVERTISE_PAUSE_ASYM;
429
430                 local_adv = new_local_adv;
431                 remote_adv = new_remote_adv;
432         }
433
434         /* See Table 28B-3 of 802.3ab-1999 spec. */
435         if (local_adv & ADVERTISE_PAUSE_CAP) {
436                 if(local_adv & ADVERTISE_PAUSE_ASYM) {
437                         if (remote_adv & ADVERTISE_PAUSE_CAP) {
438                                 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
439                         }
440                         else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
441                                 bp->flow_ctrl = FLOW_CTRL_RX;
442                         }
443                 }
444                 else {
445                         if (remote_adv & ADVERTISE_PAUSE_CAP) {
446                                 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
447                         }
448                 }
449         }
450         else if (local_adv & ADVERTISE_PAUSE_ASYM) {
451                 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
452                         (remote_adv & ADVERTISE_PAUSE_ASYM)) {
453
454                         bp->flow_ctrl = FLOW_CTRL_TX;
455                 }
456         }
457 }
458
459 static int
460 bnx2_5708s_linkup(struct bnx2 *bp)
461 {
462         u32 val;
463
464         bp->link_up = 1;
465         bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
466         switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
467                 case BCM5708S_1000X_STAT1_SPEED_10:
468                         bp->line_speed = SPEED_10;
469                         break;
470                 case BCM5708S_1000X_STAT1_SPEED_100:
471                         bp->line_speed = SPEED_100;
472                         break;
473                 case BCM5708S_1000X_STAT1_SPEED_1G:
474                         bp->line_speed = SPEED_1000;
475                         break;
476                 case BCM5708S_1000X_STAT1_SPEED_2G5:
477                         bp->line_speed = SPEED_2500;
478                         break;
479         }
480         if (val & BCM5708S_1000X_STAT1_FD)
481                 bp->duplex = DUPLEX_FULL;
482         else
483                 bp->duplex = DUPLEX_HALF;
484
485         return 0;
486 }
487
488 static int
489 bnx2_5706s_linkup(struct bnx2 *bp)
490 {
491         u32 bmcr, local_adv, remote_adv, common;
492
493         bp->link_up = 1;
494         bp->line_speed = SPEED_1000;
495
496         bnx2_read_phy(bp, MII_BMCR, &bmcr);
497         if (bmcr & BMCR_FULLDPLX) {
498                 bp->duplex = DUPLEX_FULL;
499         }
500         else {
501                 bp->duplex = DUPLEX_HALF;
502         }
503
504         if (!(bmcr & BMCR_ANENABLE)) {
505                 return 0;
506         }
507
508         bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
509         bnx2_read_phy(bp, MII_LPA, &remote_adv);
510
511         common = local_adv & remote_adv;
512         if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
513
514                 if (common & ADVERTISE_1000XFULL) {
515                         bp->duplex = DUPLEX_FULL;
516                 }
517                 else {
518                         bp->duplex = DUPLEX_HALF;
519                 }
520         }
521
522         return 0;
523 }
524
525 static int
526 bnx2_copper_linkup(struct bnx2 *bp)
527 {
528         u32 bmcr;
529
530         bnx2_read_phy(bp, MII_BMCR, &bmcr);
531         if (bmcr & BMCR_ANENABLE) {
532                 u32 local_adv, remote_adv, common;
533
534                 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
535                 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
536
537                 common = local_adv & (remote_adv >> 2);
538                 if (common & ADVERTISE_1000FULL) {
539                         bp->line_speed = SPEED_1000;
540                         bp->duplex = DUPLEX_FULL;
541                 }
542                 else if (common & ADVERTISE_1000HALF) {
543                         bp->line_speed = SPEED_1000;
544                         bp->duplex = DUPLEX_HALF;
545                 }
546                 else {
547                         bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
548                         bnx2_read_phy(bp, MII_LPA, &remote_adv);
549
550                         common = local_adv & remote_adv;
551                         if (common & ADVERTISE_100FULL) {
552                                 bp->line_speed = SPEED_100;
553                                 bp->duplex = DUPLEX_FULL;
554                         }
555                         else if (common & ADVERTISE_100HALF) {
556                                 bp->line_speed = SPEED_100;
557                                 bp->duplex = DUPLEX_HALF;
558                         }
559                         else if (common & ADVERTISE_10FULL) {
560                                 bp->line_speed = SPEED_10;
561                                 bp->duplex = DUPLEX_FULL;
562                         }
563                         else if (common & ADVERTISE_10HALF) {
564                                 bp->line_speed = SPEED_10;
565                                 bp->duplex = DUPLEX_HALF;
566                         }
567                         else {
568                                 bp->line_speed = 0;
569                                 bp->link_up = 0;
570                         }
571                 }
572         }
573         else {
574                 if (bmcr & BMCR_SPEED100) {
575                         bp->line_speed = SPEED_100;
576                 }
577                 else {
578                         bp->line_speed = SPEED_10;
579                 }
580                 if (bmcr & BMCR_FULLDPLX) {
581                         bp->duplex = DUPLEX_FULL;
582                 }
583                 else {
584                         bp->duplex = DUPLEX_HALF;
585                 }
586         }
587
588         return 0;
589 }
590
591 static int
592 bnx2_set_mac_link(struct bnx2 *bp)
593 {
594         u32 val;
595
596         REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
597         if (bp->link_up && (bp->line_speed == SPEED_1000) &&
598                 (bp->duplex == DUPLEX_HALF)) {
599                 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
600         }
601
602         /* Configure the EMAC mode register. */
603         val = REG_RD(bp, BNX2_EMAC_MODE);
604
605         val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
606                 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
607                 BNX2_EMAC_MODE_25G);
608
609         if (bp->link_up) {
610                 switch (bp->line_speed) {
611                         case SPEED_10:
612                                 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
613                                         val |= BNX2_EMAC_MODE_PORT_MII_10;
614                                         break;
615                                 }
616                                 /* fall through */
617                         case SPEED_100:
618                                 val |= BNX2_EMAC_MODE_PORT_MII;
619                                 break;
620                         case SPEED_2500:
621                                 val |= BNX2_EMAC_MODE_25G;
622                                 /* fall through */
623                         case SPEED_1000:
624                                 val |= BNX2_EMAC_MODE_PORT_GMII;
625                                 break;
626                 }
627         }
628         else {
629                 val |= BNX2_EMAC_MODE_PORT_GMII;
630         }
631
632         /* Set the MAC to operate in the appropriate duplex mode. */
633         if (bp->duplex == DUPLEX_HALF)
634                 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
635         REG_WR(bp, BNX2_EMAC_MODE, val);
636
637         /* Enable/disable rx PAUSE. */
638         bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
639
640         if (bp->flow_ctrl & FLOW_CTRL_RX)
641                 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
642         REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
643
644         /* Enable/disable tx PAUSE. */
645         val = REG_RD(bp, BNX2_EMAC_TX_MODE);
646         val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
647
648         if (bp->flow_ctrl & FLOW_CTRL_TX)
649                 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
650         REG_WR(bp, BNX2_EMAC_TX_MODE, val);
651
652         /* Acknowledge the interrupt. */
653         REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
654
655         return 0;
656 }
657
658 static int
659 bnx2_set_link(struct bnx2 *bp)
660 {
661         u32 bmsr;
662         u8 link_up;
663
664         if (bp->loopback == MAC_LOOPBACK) {
665                 bp->link_up = 1;
666                 return 0;
667         }
668
669         link_up = bp->link_up;
670
671         bnx2_read_phy(bp, MII_BMSR, &bmsr);
672         bnx2_read_phy(bp, MII_BMSR, &bmsr);
673
674         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
675             (CHIP_NUM(bp) == CHIP_NUM_5706)) {
676                 u32 val;
677
678                 val = REG_RD(bp, BNX2_EMAC_STATUS);
679                 if (val & BNX2_EMAC_STATUS_LINK)
680                         bmsr |= BMSR_LSTATUS;
681                 else
682                         bmsr &= ~BMSR_LSTATUS;
683         }
684
685         if (bmsr & BMSR_LSTATUS) {
686                 bp->link_up = 1;
687
688                 if (bp->phy_flags & PHY_SERDES_FLAG) {
689                         if (CHIP_NUM(bp) == CHIP_NUM_5706)
690                                 bnx2_5706s_linkup(bp);
691                         else if (CHIP_NUM(bp) == CHIP_NUM_5708)
692                                 bnx2_5708s_linkup(bp);
693                 }
694                 else {
695                         bnx2_copper_linkup(bp);
696                 }
697                 bnx2_resolve_flow_ctrl(bp);
698         }
699         else {
700                 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
701                         (bp->autoneg & AUTONEG_SPEED)) {
702
703                         u32 bmcr;
704
705                         bnx2_read_phy(bp, MII_BMCR, &bmcr);
706                         if (!(bmcr & BMCR_ANENABLE)) {
707                                 bnx2_write_phy(bp, MII_BMCR, bmcr |
708                                         BMCR_ANENABLE);
709                         }
710                 }
711                 bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
712                 bp->link_up = 0;
713         }
714
715         if (bp->link_up != link_up) {
716                 bnx2_report_link(bp);
717         }
718
719         bnx2_set_mac_link(bp);
720
721         return 0;
722 }
723
724 static int
725 bnx2_reset_phy(struct bnx2 *bp)
726 {
727         int i;
728         u32 reg;
729
730         bnx2_write_phy(bp, MII_BMCR, BMCR_RESET);
731
732 #define PHY_RESET_MAX_WAIT 100
733         for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
734                 udelay(10);
735
736                 bnx2_read_phy(bp, MII_BMCR, &reg);
737                 if (!(reg & BMCR_RESET)) {
738                         udelay(20);
739                         break;
740                 }
741         }
742         if (i == PHY_RESET_MAX_WAIT) {
743                 return -EBUSY;
744         }
745         return 0;
746 }
747
748 static u32
749 bnx2_phy_get_pause_adv(struct bnx2 *bp)
750 {
751         u32 adv = 0;
752
753         if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
754                 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
755
756                 if (bp->phy_flags & PHY_SERDES_FLAG) {
757                         adv = ADVERTISE_1000XPAUSE;
758                 }
759                 else {
760                         adv = ADVERTISE_PAUSE_CAP;
761                 }
762         }
763         else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
764                 if (bp->phy_flags & PHY_SERDES_FLAG) {
765                         adv = ADVERTISE_1000XPSE_ASYM;
766                 }
767                 else {
768                         adv = ADVERTISE_PAUSE_ASYM;
769                 }
770         }
771         else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
772                 if (bp->phy_flags & PHY_SERDES_FLAG) {
773                         adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
774                 }
775                 else {
776                         adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
777                 }
778         }
779         return adv;
780 }
781
782 static int
783 bnx2_setup_serdes_phy(struct bnx2 *bp)
784 {
785         u32 adv, bmcr, up1;
786         u32 new_adv = 0;
787
788         if (!(bp->autoneg & AUTONEG_SPEED)) {
789                 u32 new_bmcr;
790                 int force_link_down = 0;
791
792                 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
793                         bnx2_read_phy(bp, BCM5708S_UP1, &up1);
794                         if (up1 & BCM5708S_UP1_2G5) {
795                                 up1 &= ~BCM5708S_UP1_2G5;
796                                 bnx2_write_phy(bp, BCM5708S_UP1, up1);
797                                 force_link_down = 1;
798                         }
799                 }
800
801                 bnx2_read_phy(bp, MII_ADVERTISE, &adv);
802                 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
803
804                 bnx2_read_phy(bp, MII_BMCR, &bmcr);
805                 new_bmcr = bmcr & ~BMCR_ANENABLE;
806                 new_bmcr |= BMCR_SPEED1000;
807                 if (bp->req_duplex == DUPLEX_FULL) {
808                         adv |= ADVERTISE_1000XFULL;
809                         new_bmcr |= BMCR_FULLDPLX;
810                 }
811                 else {
812                         adv |= ADVERTISE_1000XHALF;
813                         new_bmcr &= ~BMCR_FULLDPLX;
814                 }
815                 if ((new_bmcr != bmcr) || (force_link_down)) {
816                         /* Force a link down visible on the other side */
817                         if (bp->link_up) {
818                                 bnx2_write_phy(bp, MII_ADVERTISE, adv &
819                                                ~(ADVERTISE_1000XFULL |
820                                                  ADVERTISE_1000XHALF));
821                                 bnx2_write_phy(bp, MII_BMCR, bmcr |
822                                         BMCR_ANRESTART | BMCR_ANENABLE);
823
824                                 bp->link_up = 0;
825                                 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
826                         }
827                         bnx2_write_phy(bp, MII_ADVERTISE, adv);
828                         bnx2_write_phy(bp, MII_BMCR, new_bmcr);
829                 }
830                 return 0;
831         }
832
833         if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
834                 bnx2_read_phy(bp, BCM5708S_UP1, &up1);
835                 up1 |= BCM5708S_UP1_2G5;
836                 bnx2_write_phy(bp, BCM5708S_UP1, up1);
837         }
838
839         if (bp->advertising & ADVERTISED_1000baseT_Full)
840                 new_adv |= ADVERTISE_1000XFULL;
841
842         new_adv |= bnx2_phy_get_pause_adv(bp);
843
844         bnx2_read_phy(bp, MII_ADVERTISE, &adv);
845         bnx2_read_phy(bp, MII_BMCR, &bmcr);
846
847         bp->serdes_an_pending = 0;
848         if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
849                 /* Force a link down visible on the other side */
850                 if (bp->link_up) {
851                         int i;
852
853                         bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
854                         for (i = 0; i < 110; i++) {
855                                 udelay(100);
856                         }
857                 }
858
859                 bnx2_write_phy(bp, MII_ADVERTISE, new_adv);
860                 bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART |
861                         BMCR_ANENABLE);
862 #if 0
863                 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
864                         /* Speed up link-up time when the link partner
865                          * does not autonegotiate which is very common
866                          * in blade servers. Some blade servers use
867                          * IPMI for kerboard input and it's important
868                          * to minimize link disruptions. Autoneg. involves
869                          * exchanging base pages plus 3 next pages and
870                          * normally completes in about 120 msec.
871                          */
872                         bp->current_interval = SERDES_AN_TIMEOUT;
873                         bp->serdes_an_pending = 1;
874                         mod_timer(&bp->timer, jiffies + bp->current_interval);
875                 }
876 #endif
877         }
878
879         return 0;
880 }
881
882 #define ETHTOOL_ALL_FIBRE_SPEED                                         \
883         (ADVERTISED_1000baseT_Full)
884
885 #define ETHTOOL_ALL_COPPER_SPEED                                        \
886         (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |            \
887         ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |           \
888         ADVERTISED_1000baseT_Full)
889
890 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
891         ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
892         
893 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
894
895 static int
896 bnx2_setup_copper_phy(struct bnx2 *bp)
897 {
898         u32 bmcr;
899         u32 new_bmcr;
900
901         bnx2_read_phy(bp, MII_BMCR, &bmcr);
902
903         if (bp->autoneg & AUTONEG_SPEED) {
904                 u32 adv_reg, adv1000_reg;
905                 u32 new_adv_reg = 0;
906                 u32 new_adv1000_reg = 0;
907
908                 bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg);
909                 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
910                         ADVERTISE_PAUSE_ASYM);
911
912                 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
913                 adv1000_reg &= PHY_ALL_1000_SPEED;
914
915                 if (bp->advertising & ADVERTISED_10baseT_Half)
916                         new_adv_reg |= ADVERTISE_10HALF;
917                 if (bp->advertising & ADVERTISED_10baseT_Full)
918                         new_adv_reg |= ADVERTISE_10FULL;
919                 if (bp->advertising & ADVERTISED_100baseT_Half)
920                         new_adv_reg |= ADVERTISE_100HALF;
921                 if (bp->advertising & ADVERTISED_100baseT_Full)
922                         new_adv_reg |= ADVERTISE_100FULL;
923                 if (bp->advertising & ADVERTISED_1000baseT_Full)
924                         new_adv1000_reg |= ADVERTISE_1000FULL;
925                 
926                 new_adv_reg |= ADVERTISE_CSMA;
927
928                 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
929
930                 if ((adv1000_reg != new_adv1000_reg) ||
931                         (adv_reg != new_adv_reg) ||
932                         ((bmcr & BMCR_ANENABLE) == 0)) {
933
934                         bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg);
935                         bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
936                         bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART |
937                                 BMCR_ANENABLE);
938                 }
939                 else if (bp->link_up) {
940                         /* Flow ctrl may have changed from auto to forced */
941                         /* or vice-versa. */
942
943                         bnx2_resolve_flow_ctrl(bp);
944                         bnx2_set_mac_link(bp);
945                 }
946                 return 0;
947         }
948
949         new_bmcr = 0;
950         if (bp->req_line_speed == SPEED_100) {
951                 new_bmcr |= BMCR_SPEED100;
952         }
953         if (bp->req_duplex == DUPLEX_FULL) {
954                 new_bmcr |= BMCR_FULLDPLX;
955         }
956         if (new_bmcr != bmcr) {
957                 u32 bmsr;
958                 int i = 0;
959
960                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
961                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
962                 
963                 if (bmsr & BMSR_LSTATUS) {
964                         /* Force link down */
965                         bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
966                         do {
967                                 udelay(100);
968                                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
969                                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
970                                 i++;
971                         } while ((bmsr & BMSR_LSTATUS) && (i < 620));
972                 }
973
974                 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
975
976                 /* Normally, the new speed is setup after the link has
977                  * gone down and up again. In some cases, link will not go
978                  * down so we need to set up the new speed here.
979                  */
980                 if (bmsr & BMSR_LSTATUS) {
981                         bp->line_speed = bp->req_line_speed;
982                         bp->duplex = bp->req_duplex;
983                         bnx2_resolve_flow_ctrl(bp);
984                         bnx2_set_mac_link(bp);
985                 }
986         }
987         return 0;
988 }
989
990 static int
991 bnx2_setup_phy(struct bnx2 *bp)
992 {
993         if (bp->loopback == MAC_LOOPBACK)
994                 return 0;
995
996         if (bp->phy_flags & PHY_SERDES_FLAG) {
997                 return (bnx2_setup_serdes_phy(bp));
998         }
999         else {
1000                 return (bnx2_setup_copper_phy(bp));
1001         }
1002 }
1003
1004 static int
1005 bnx2_init_5708s_phy(struct bnx2 *bp)
1006 {
1007         u32 val;
1008
1009         bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
1010         bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
1011         bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1012
1013         bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
1014         val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
1015         bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
1016
1017         bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
1018         val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
1019         bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
1020
1021         if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
1022                 bnx2_read_phy(bp, BCM5708S_UP1, &val);
1023                 val |= BCM5708S_UP1_2G5;
1024                 bnx2_write_phy(bp, BCM5708S_UP1, val);
1025         }
1026
1027         if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
1028             (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
1029             (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
1030                 /* increase tx signal amplitude */
1031                 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1032                                BCM5708S_BLK_ADDR_TX_MISC);
1033                 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
1034                 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
1035                 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
1036                 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1037         }
1038
1039         val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
1040               BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
1041
1042         if (val) {
1043                 u32 is_backplane;
1044
1045                 is_backplane = REG_RD_IND(bp, bp->shmem_base +
1046                                           BNX2_SHARED_HW_CFG_CONFIG);
1047                 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
1048                         bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1049                                        BCM5708S_BLK_ADDR_TX_MISC);
1050                         bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
1051                         bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1052                                        BCM5708S_BLK_ADDR_DIG);
1053                 }
1054         }
1055         return 0;
1056 }
1057
1058 static int
1059 bnx2_init_5706s_phy(struct bnx2 *bp)
1060 {
1061         u32 val;
1062
1063         bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
1064
1065         if (CHIP_NUM(bp) == CHIP_NUM_5706) {
1066                 REG_WR(bp, BNX2_MISC_UNUSED0, 0x300);
1067         }
1068
1069
1070         bnx2_write_phy(bp, 0x18, 0x7);
1071         bnx2_read_phy(bp, 0x18, &val);
1072         bnx2_write_phy(bp, 0x18, val & ~0x4007);
1073
1074         bnx2_write_phy(bp, 0x1c, 0x6c00);
1075         bnx2_read_phy(bp, 0x1c, &val);
1076         bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
1077
1078         return 0;
1079 }
1080
1081 static int
1082 bnx2_init_copper_phy(struct bnx2 *bp)
1083 {
1084         u32 val;
1085
1086         bp->phy_flags |= PHY_CRC_FIX_FLAG;
1087
1088         if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
1089                 bnx2_write_phy(bp, 0x18, 0x0c00);
1090                 bnx2_write_phy(bp, 0x17, 0x000a);
1091                 bnx2_write_phy(bp, 0x15, 0x310b);
1092                 bnx2_write_phy(bp, 0x17, 0x201f);
1093                 bnx2_write_phy(bp, 0x15, 0x9506);
1094                 bnx2_write_phy(bp, 0x17, 0x401f);
1095                 bnx2_write_phy(bp, 0x15, 0x14e2);
1096                 bnx2_write_phy(bp, 0x18, 0x0400);
1097         }
1098
1099         bnx2_write_phy(bp, 0x18, 0x7);
1100         bnx2_read_phy(bp, 0x18, &val);
1101         bnx2_write_phy(bp, 0x18, val & ~0x4007);
1102
1103         bnx2_read_phy(bp, 0x10, &val);
1104         bnx2_write_phy(bp, 0x10, val & ~0x1);
1105
1106         /* ethernet@wirespeed */
1107         bnx2_write_phy(bp, 0x18, 0x7007);
1108         bnx2_read_phy(bp, 0x18, &val);
1109         bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
1110         return 0;
1111 }
1112
1113 static int
1114 bnx2_init_phy(struct bnx2 *bp)
1115 {
1116         u32 val;
1117         int rc = 0;
1118
1119         bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
1120         bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
1121
1122         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
1123
1124         bnx2_reset_phy(bp);
1125
1126         bnx2_read_phy(bp, MII_PHYSID1, &val);
1127         bp->phy_id = val << 16;
1128         bnx2_read_phy(bp, MII_PHYSID2, &val);
1129         bp->phy_id |= val & 0xffff;
1130
1131         if (bp->phy_flags & PHY_SERDES_FLAG) {
1132                 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1133                         rc = bnx2_init_5706s_phy(bp);
1134                 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1135                         rc = bnx2_init_5708s_phy(bp);
1136         }
1137         else {
1138                 rc = bnx2_init_copper_phy(bp);
1139         }
1140
1141         bnx2_setup_phy(bp);
1142
1143         return rc;
1144 }
1145
1146 static int
1147 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
1148 {
1149         int i;
1150         u32 val;
1151
1152         bp->fw_wr_seq++;
1153         msg_data |= bp->fw_wr_seq;
1154
1155         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
1156
1157         /* wait for an acknowledgement. */
1158         for (i = 0; i < (FW_ACK_TIME_OUT_MS / 50); i++) {
1159                 mdelay(50);
1160
1161                 val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
1162
1163                 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
1164                         break;
1165         }
1166         if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
1167                 return 0;
1168
1169         /* If we timed out, inform the firmware that this is the case. */
1170         if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
1171                 if (!silent)
1172                   printf("fw sync timeout, reset code = %x\n", (unsigned int) msg_data);
1173
1174                 msg_data &= ~BNX2_DRV_MSG_CODE;
1175                 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
1176
1177                 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
1178
1179                 return -EBUSY;
1180         }
1181
1182         if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
1183                 return -EIO;
1184
1185         return 0;
1186 }
1187
1188 static void
1189 bnx2_init_context(struct bnx2 *bp)
1190 {
1191         u32 vcid;
1192
1193         vcid = 96;
1194         while (vcid) {
1195                 u32 vcid_addr, pcid_addr, offset;
1196
1197                 vcid--;
1198
1199                 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
1200                         u32 new_vcid;
1201
1202                         vcid_addr = GET_PCID_ADDR(vcid);
1203                         if (vcid & 0x8) {
1204                                 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
1205                         }
1206                         else {
1207                                 new_vcid = vcid;
1208                         }
1209                         pcid_addr = GET_PCID_ADDR(new_vcid);
1210                 }
1211                 else {
1212                         vcid_addr = GET_CID_ADDR(vcid);
1213                         pcid_addr = vcid_addr;
1214                 }
1215
1216                 REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
1217                 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
1218
1219                 /* Zero out the context. */
1220                 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
1221                         CTX_WR(bp, 0x00, offset, 0);
1222                 }
1223
1224                 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
1225                 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
1226         }
1227 }
1228
1229 static int
1230 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
1231 {
1232         u16 good_mbuf[512];
1233         u32 good_mbuf_cnt;
1234         u32 val;
1235
1236         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
1237                 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
1238
1239         good_mbuf_cnt = 0;
1240
1241         /* Allocate a bunch of mbufs and save the good ones in an array. */
1242         val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
1243         while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
1244                 REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
1245
1246                 val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
1247
1248                 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
1249
1250                 /* The addresses with Bit 9 set are bad memory blocks. */
1251                 if (!(val & (1 << 9))) {
1252                         good_mbuf[good_mbuf_cnt] = (u16) val;
1253                         good_mbuf_cnt++;
1254                 }
1255
1256                 val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
1257         }
1258
1259         /* Free the good ones back to the mbuf pool thus discarding
1260          * all the bad ones. */
1261         while (good_mbuf_cnt) {
1262                 good_mbuf_cnt--;
1263
1264                 val = good_mbuf[good_mbuf_cnt];
1265                 val = (val << 9) | val | 1;
1266
1267                 REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
1268         }
1269         return 0;
1270 }
1271
1272 static void
1273 bnx2_set_mac_addr(struct bnx2 *bp) 
1274 {
1275         u32 val;
1276         u8 *mac_addr = bp->nic->node_addr;
1277
1278         val = (mac_addr[0] << 8) | mac_addr[1];
1279
1280         REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
1281
1282         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 
1283                 (mac_addr[4] << 8) | mac_addr[5];
1284
1285         REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
1286 }
1287
1288 static void
1289 bnx2_set_rx_mode(struct nic *nic __unused)
1290 {
1291         struct bnx2 *bp = &bnx2;
1292         u32 rx_mode, sort_mode;
1293         int i;
1294
1295         rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
1296                                   BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
1297         sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
1298
1299         if (!(bp->flags & ASF_ENABLE_FLAG)) {
1300                 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
1301         }
1302
1303         /* Accept all multicasts */
1304         for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
1305                 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
1306                        0xffffffff);
1307         }
1308         sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
1309
1310         if (rx_mode != bp->rx_mode) {
1311                 bp->rx_mode = rx_mode;
1312                 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
1313         }
1314
1315         REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
1316         REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
1317         REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
1318 }
1319
1320 static void
1321 load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len, u32 rv2p_proc)
1322 {
1323         unsigned int i;
1324         u32 val;
1325
1326
1327         for (i = 0; i < rv2p_code_len; i += 8) {
1328                 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, *rv2p_code);
1329                 rv2p_code++;
1330                 REG_WR(bp, BNX2_RV2P_INSTR_LOW, *rv2p_code);
1331                 rv2p_code++;
1332
1333                 if (rv2p_proc == RV2P_PROC1) {
1334                         val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
1335                         REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
1336                 }
1337                 else {
1338                         val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
1339                         REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
1340                 }
1341         }
1342
1343         /* Reset the processor, un-stall is done later. */
1344         if (rv2p_proc == RV2P_PROC1) {
1345                 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
1346         }
1347         else {
1348                 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
1349         }
1350 }
1351
1352 static void
1353 load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
1354 {
1355         u32 offset;
1356         u32 val;
1357
1358         /* Halt the CPU. */
1359         val = REG_RD_IND(bp, cpu_reg->mode);
1360         val |= cpu_reg->mode_value_halt;
1361         REG_WR_IND(bp, cpu_reg->mode, val);
1362         REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
1363
1364         /* Load the Text area. */
1365         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
1366         if (fw->text) {
1367                 unsigned int j;
1368
1369                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
1370                         REG_WR_IND(bp, offset, fw->text[j]);
1371                 }
1372         }
1373
1374         /* Load the Data area. */
1375         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
1376         if (fw->data) {
1377                 unsigned int j;
1378
1379                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
1380                         REG_WR_IND(bp, offset, fw->data[j]);
1381                 }
1382         }
1383
1384         /* Load the SBSS area. */
1385         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
1386         if (fw->sbss) {
1387                 unsigned int j;
1388
1389                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
1390                         REG_WR_IND(bp, offset, fw->sbss[j]);
1391                 }
1392         }
1393
1394         /* Load the BSS area. */
1395         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
1396         if (fw->bss) {
1397                 unsigned int j;
1398
1399                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
1400                         REG_WR_IND(bp, offset, fw->bss[j]);
1401                 }
1402         }
1403
1404         /* Load the Read-Only area. */
1405         offset = cpu_reg->spad_base +
1406                 (fw->rodata_addr - cpu_reg->mips_view_base);
1407         if (fw->rodata) {
1408                 unsigned int j;
1409
1410                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
1411                         REG_WR_IND(bp, offset, fw->rodata[j]);
1412                 }
1413         }
1414
1415         /* Clear the pre-fetch instruction. */
1416         REG_WR_IND(bp, cpu_reg->inst, 0);
1417         REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
1418
1419         /* Start the CPU. */
1420         val = REG_RD_IND(bp, cpu_reg->mode);
1421         val &= ~cpu_reg->mode_value_halt;
1422         REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
1423         REG_WR_IND(bp, cpu_reg->mode, val);
1424 }
1425
1426 static void
1427 bnx2_init_cpus(struct bnx2 *bp)
1428 {
1429         struct cpu_reg cpu_reg;
1430         struct fw_info fw;
1431
1432         /* Unfortunately, it looks like we need to load the firmware
1433          * before the card will work properly.  That means this driver
1434          * will be huge by Etherboot standards (approx. 50K compressed).
1435          */
1436
1437         /* Initialize the RV2P processor. */
1438         load_rv2p_fw(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), RV2P_PROC1);
1439         load_rv2p_fw(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), RV2P_PROC2);
1440
1441         /* Initialize the RX Processor. */
1442         cpu_reg.mode = BNX2_RXP_CPU_MODE;
1443         cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
1444         cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
1445         cpu_reg.state = BNX2_RXP_CPU_STATE;
1446         cpu_reg.state_value_clear = 0xffffff;
1447         cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
1448         cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
1449         cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
1450         cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
1451         cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
1452         cpu_reg.spad_base = BNX2_RXP_SCRATCH;
1453         cpu_reg.mips_view_base = 0x8000000;
1454
1455         fw.ver_major = bnx2_RXP_b06FwReleaseMajor;
1456         fw.ver_minor = bnx2_RXP_b06FwReleaseMinor;
1457         fw.ver_fix = bnx2_RXP_b06FwReleaseFix;
1458         fw.start_addr = bnx2_RXP_b06FwStartAddr;
1459
1460         fw.text_addr = bnx2_RXP_b06FwTextAddr;
1461         fw.text_len = bnx2_RXP_b06FwTextLen;
1462         fw.text_index = 0;
1463         fw.text = bnx2_RXP_b06FwText;
1464
1465         fw.data_addr = bnx2_RXP_b06FwDataAddr;
1466         fw.data_len = bnx2_RXP_b06FwDataLen;
1467         fw.data_index = 0;
1468         fw.data = bnx2_RXP_b06FwData;
1469
1470         fw.sbss_addr = bnx2_RXP_b06FwSbssAddr;
1471         fw.sbss_len = bnx2_RXP_b06FwSbssLen;
1472         fw.sbss_index = 0;
1473         fw.sbss = bnx2_RXP_b06FwSbss;
1474
1475         fw.bss_addr = bnx2_RXP_b06FwBssAddr;
1476         fw.bss_len = bnx2_RXP_b06FwBssLen;
1477         fw.bss_index = 0;
1478         fw.bss = bnx2_RXP_b06FwBss;
1479
1480         fw.rodata_addr = bnx2_RXP_b06FwRodataAddr;
1481         fw.rodata_len = bnx2_RXP_b06FwRodataLen;
1482         fw.rodata_index = 0;
1483         fw.rodata = bnx2_RXP_b06FwRodata;
1484
1485         load_cpu_fw(bp, &cpu_reg, &fw);
1486
1487         /* Initialize the TX Processor. */
1488         cpu_reg.mode = BNX2_TXP_CPU_MODE;
1489         cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
1490         cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
1491         cpu_reg.state = BNX2_TXP_CPU_STATE;
1492         cpu_reg.state_value_clear = 0xffffff;
1493         cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
1494         cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
1495         cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
1496         cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
1497         cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
1498         cpu_reg.spad_base = BNX2_TXP_SCRATCH;
1499         cpu_reg.mips_view_base = 0x8000000;
1500     
1501         fw.ver_major = bnx2_TXP_b06FwReleaseMajor;
1502         fw.ver_minor = bnx2_TXP_b06FwReleaseMinor;
1503         fw.ver_fix = bnx2_TXP_b06FwReleaseFix;
1504         fw.start_addr = bnx2_TXP_b06FwStartAddr;
1505
1506         fw.text_addr = bnx2_TXP_b06FwTextAddr;
1507         fw.text_len = bnx2_TXP_b06FwTextLen;
1508         fw.text_index = 0;
1509         fw.text = bnx2_TXP_b06FwText;
1510
1511         fw.data_addr = bnx2_TXP_b06FwDataAddr;
1512         fw.data_len = bnx2_TXP_b06FwDataLen;
1513         fw.data_index = 0;
1514         fw.data = bnx2_TXP_b06FwData;
1515
1516         fw.sbss_addr = bnx2_TXP_b06FwSbssAddr;
1517         fw.sbss_len = bnx2_TXP_b06FwSbssLen;
1518         fw.sbss_index = 0;
1519         fw.sbss = bnx2_TXP_b06FwSbss;
1520
1521         fw.bss_addr = bnx2_TXP_b06FwBssAddr;
1522         fw.bss_len = bnx2_TXP_b06FwBssLen;
1523         fw.bss_index = 0;
1524         fw.bss = bnx2_TXP_b06FwBss;
1525
1526         fw.rodata_addr = bnx2_TXP_b06FwRodataAddr;
1527         fw.rodata_len = bnx2_TXP_b06FwRodataLen;
1528         fw.rodata_index = 0;
1529         fw.rodata = bnx2_TXP_b06FwRodata;
1530
1531         load_cpu_fw(bp, &cpu_reg, &fw);
1532
1533         /* Initialize the TX Patch-up Processor. */
1534         cpu_reg.mode = BNX2_TPAT_CPU_MODE;
1535         cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
1536         cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
1537         cpu_reg.state = BNX2_TPAT_CPU_STATE;
1538         cpu_reg.state_value_clear = 0xffffff;
1539         cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
1540         cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
1541         cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
1542         cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
1543         cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
1544         cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
1545         cpu_reg.mips_view_base = 0x8000000;
1546     
1547         fw.ver_major = bnx2_TPAT_b06FwReleaseMajor;
1548         fw.ver_minor = bnx2_TPAT_b06FwReleaseMinor;
1549         fw.ver_fix = bnx2_TPAT_b06FwReleaseFix;
1550         fw.start_addr = bnx2_TPAT_b06FwStartAddr;
1551
1552         fw.text_addr = bnx2_TPAT_b06FwTextAddr;
1553         fw.text_len = bnx2_TPAT_b06FwTextLen;
1554         fw.text_index = 0;
1555         fw.text = bnx2_TPAT_b06FwText;
1556
1557         fw.data_addr = bnx2_TPAT_b06FwDataAddr;
1558         fw.data_len = bnx2_TPAT_b06FwDataLen;
1559         fw.data_index = 0;
1560         fw.data = bnx2_TPAT_b06FwData;
1561
1562         fw.sbss_addr = bnx2_TPAT_b06FwSbssAddr;
1563         fw.sbss_len = bnx2_TPAT_b06FwSbssLen;
1564         fw.sbss_index = 0;
1565         fw.sbss = bnx2_TPAT_b06FwSbss;
1566
1567         fw.bss_addr = bnx2_TPAT_b06FwBssAddr;
1568         fw.bss_len = bnx2_TPAT_b06FwBssLen;
1569         fw.bss_index = 0;
1570         fw.bss = bnx2_TPAT_b06FwBss;
1571
1572         fw.rodata_addr = bnx2_TPAT_b06FwRodataAddr;
1573         fw.rodata_len = bnx2_TPAT_b06FwRodataLen;
1574         fw.rodata_index = 0;
1575         fw.rodata = bnx2_TPAT_b06FwRodata;
1576
1577         load_cpu_fw(bp, &cpu_reg, &fw);
1578
1579         /* Initialize the Completion Processor. */
1580         cpu_reg.mode = BNX2_COM_CPU_MODE;
1581         cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
1582         cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
1583         cpu_reg.state = BNX2_COM_CPU_STATE;
1584         cpu_reg.state_value_clear = 0xffffff;
1585         cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
1586         cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
1587         cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
1588         cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
1589         cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
1590         cpu_reg.spad_base = BNX2_COM_SCRATCH;
1591         cpu_reg.mips_view_base = 0x8000000;
1592     
1593         fw.ver_major = bnx2_COM_b06FwReleaseMajor;
1594         fw.ver_minor = bnx2_COM_b06FwReleaseMinor;
1595         fw.ver_fix = bnx2_COM_b06FwReleaseFix;
1596         fw.start_addr = bnx2_COM_b06FwStartAddr;
1597
1598         fw.text_addr = bnx2_COM_b06FwTextAddr;
1599         fw.text_len = bnx2_COM_b06FwTextLen;
1600         fw.text_index = 0;
1601         fw.text = bnx2_COM_b06FwText;
1602
1603         fw.data_addr = bnx2_COM_b06FwDataAddr;
1604         fw.data_len = bnx2_COM_b06FwDataLen;
1605         fw.data_index = 0;
1606         fw.data = bnx2_COM_b06FwData;
1607
1608         fw.sbss_addr = bnx2_COM_b06FwSbssAddr;
1609         fw.sbss_len = bnx2_COM_b06FwSbssLen;
1610         fw.sbss_index = 0;
1611         fw.sbss = bnx2_COM_b06FwSbss;
1612
1613         fw.bss_addr = bnx2_COM_b06FwBssAddr;
1614         fw.bss_len = bnx2_COM_b06FwBssLen;
1615         fw.bss_index = 0;
1616         fw.bss = bnx2_COM_b06FwBss;
1617
1618         fw.rodata_addr = bnx2_COM_b06FwRodataAddr;
1619         fw.rodata_len = bnx2_COM_b06FwRodataLen;
1620         fw.rodata_index = 0;
1621         fw.rodata = bnx2_COM_b06FwRodata;
1622
1623         load_cpu_fw(bp, &cpu_reg, &fw);
1624
1625 }
1626
1627 static int
1628 bnx2_set_power_state_0(struct bnx2 *bp)
1629 {
1630         u16 pmcsr;
1631         u32 val;
1632
1633         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
1634
1635         pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
1636                 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
1637                 PCI_PM_CTRL_PME_STATUS);
1638
1639         if (pmcsr & PCI_PM_CTRL_STATE_MASK)
1640                 /* delay required during transition out of D3hot */
1641                 mdelay(20);
1642
1643         val = REG_RD(bp, BNX2_EMAC_MODE);
1644         val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
1645         val &= ~BNX2_EMAC_MODE_MPKT;
1646         REG_WR(bp, BNX2_EMAC_MODE, val);
1647
1648         val = REG_RD(bp, BNX2_RPM_CONFIG);
1649         val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
1650         REG_WR(bp, BNX2_RPM_CONFIG, val);
1651                 
1652         return 0;
1653 }
1654
1655 static void
1656 bnx2_enable_nvram_access(struct bnx2 *bp)
1657 {
1658         u32 val;
1659
1660         val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
1661         /* Enable both bits, even on read. */
1662         REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, 
1663                val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
1664 }
1665
1666 static void
1667 bnx2_disable_nvram_access(struct bnx2 *bp)
1668 {
1669         u32 val;
1670
1671         val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
1672         /* Disable both bits, even after read. */
1673         REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, 
1674                 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
1675                         BNX2_NVM_ACCESS_ENABLE_WR_EN));
1676 }
1677
1678 static int
1679 bnx2_init_nvram(struct bnx2 *bp)
1680 {
1681         u32 val;
1682         int j, entry_count, rc;
1683         struct flash_spec *flash;
1684
1685         /* Determine the selected interface. */
1686         val = REG_RD(bp, BNX2_NVM_CFG1);
1687
1688         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1689
1690         rc = 0;
1691         if (val & 0x40000000) {
1692                 /* Flash interface has been reconfigured */
1693                 for (j = 0, flash = &flash_table[0]; j < entry_count;
1694                      j++, flash++) {
1695                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
1696                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1697                                 bp->flash_info = flash;
1698                                 break;
1699                         }
1700                 }
1701         }
1702         else {
1703                 u32 mask;
1704                 /* Not yet been reconfigured */
1705
1706                 if (val & (1 << 23))
1707                         mask = FLASH_BACKUP_STRAP_MASK;
1708                 else
1709                         mask = FLASH_STRAP_MASK;
1710
1711                 for (j = 0, flash = &flash_table[0]; j < entry_count;
1712                         j++, flash++) {
1713
1714                         if ((val & mask) == (flash->strapping & mask)) {
1715                                 bp->flash_info = flash;
1716
1717                                 /* Enable access to flash interface */
1718                                 bnx2_enable_nvram_access(bp);
1719
1720                                 /* Reconfigure the flash interface */
1721                                 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
1722                                 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
1723                                 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
1724                                 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
1725
1726                                 /* Disable access to flash interface */
1727                                 bnx2_disable_nvram_access(bp);
1728
1729                                 break;
1730                         }
1731                 }
1732         } /* if (val & 0x40000000) */
1733
1734         if (j == entry_count) {
1735                 bp->flash_info = NULL;
1736                 printf("Unknown flash/EEPROM type.\n");
1737                 return -ENODEV;
1738         }
1739
1740         val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
1741         val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
1742         if (val) {
1743                 bp->flash_size = val;
1744         }
1745         else {
1746                 bp->flash_size = bp->flash_info->total_size;
1747         }
1748
1749         return rc;
1750 }
1751
1752 static int
1753 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
1754 {
1755         u32 val;
1756         int i, rc = 0;
1757
1758         /* Wait for the current PCI transaction to complete before
1759          * issuing a reset. */
1760         REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
1761                BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
1762                BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
1763                BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
1764                BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
1765         val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
1766         udelay(5);
1767
1768
1769         /* Wait for the firmware to tell us it is ok to issue a reset. */
1770         bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
1771
1772         /* Deposit a driver reset signature so the firmware knows that
1773          * this is a soft reset. */
1774         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
1775                    BNX2_DRV_RESET_SIGNATURE_MAGIC);
1776
1777         /* Do a dummy read to force the chip to complete all current transaction
1778          * before we issue a reset. */
1779         val = REG_RD(bp, BNX2_MISC_ID);
1780
1781         val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
1782               BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1783               BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
1784
1785         /* Chip reset. */
1786         REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
1787
1788         if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
1789             (CHIP_ID(bp) == CHIP_ID_5706_A1))
1790                 mdelay(15);
1791
1792         /* Reset takes approximate 30 usec */
1793         for (i = 0; i < 10; i++) {
1794                 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
1795                 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
1796                             BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
1797                         break;
1798                 }
1799                 udelay(10);
1800         }
1801
1802         if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
1803                    BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
1804                 printf("Chip reset did not complete\n");
1805                 return -EBUSY;
1806         }
1807
1808         /* Make sure byte swapping is properly configured. */
1809         val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
1810         if (val != 0x01020304) {
1811                 printf("Chip not in correct endian mode\n");
1812                 return -ENODEV;
1813         }
1814
1815         /* Wait for the firmware to finish its initialization. */
1816         rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
1817         if (rc) {
1818                 return rc;
1819         }
1820
1821         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
1822                 /* Adjust the voltage regular to two steps lower.  The default
1823                  * of this register is 0x0000000e. */
1824                 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
1825
1826                 /* Remove bad rbuf memory from the free pool. */
1827                 rc = bnx2_alloc_bad_rbuf(bp);
1828         }
1829
1830         return rc;
1831 }
1832
1833 static void
1834 bnx2_disable(struct nic *nic __unused)
1835 {
1836         struct bnx2* bp = &bnx2;
1837
1838         if (bp->regview) {
1839                 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_UNLOAD);
1840                 iounmap(bp->regview);
1841         }
1842 }
1843
1844 static int
1845 bnx2_init_chip(struct bnx2 *bp)
1846 {
1847         u32 val;
1848         int rc;
1849
1850         /* Make sure the interrupt is not active. */
1851         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
1852
1853         val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
1854               BNX2_DMA_CONFIG_DATA_WORD_SWAP |
1855 #if __BYTE_ORDER ==  __BIG_ENDIAN
1856               BNX2_DMA_CONFIG_CNTL_BYTE_SWAP | 
1857 #endif
1858               BNX2_DMA_CONFIG_CNTL_WORD_SWAP | 
1859               DMA_READ_CHANS << 12 |
1860               DMA_WRITE_CHANS << 16;
1861
1862         val |= (0x2 << 20) | (1 << 11);
1863
1864         if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
1865                 val |= (1 << 23);
1866
1867         if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
1868             (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
1869                 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
1870
1871         REG_WR(bp, BNX2_DMA_CONFIG, val);
1872
1873         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
1874                 val = REG_RD(bp, BNX2_TDMA_CONFIG);
1875                 val |= BNX2_TDMA_CONFIG_ONE_DMA;
1876                 REG_WR(bp, BNX2_TDMA_CONFIG, val);
1877         }
1878
1879         if (bp->flags & PCIX_FLAG) {
1880                 u16 val16;
1881
1882                 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
1883                                      &val16);
1884                 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
1885                                       val16 & ~PCI_X_CMD_ERO);
1886         }
1887
1888         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
1889                BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
1890                BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
1891                BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
1892
1893         /* Initialize context mapping and zero out the quick contexts.  The
1894          * context block must have already been enabled. */
1895         bnx2_init_context(bp);
1896
1897         bnx2_init_nvram(bp);
1898         bnx2_init_cpus(bp);
1899
1900         bnx2_set_mac_addr(bp);
1901
1902         val = REG_RD(bp, BNX2_MQ_CONFIG);
1903         val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
1904         val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
1905         REG_WR(bp, BNX2_MQ_CONFIG, val);
1906
1907         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
1908         REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
1909         REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
1910
1911         val = (BCM_PAGE_BITS - 8) << 24;
1912         REG_WR(bp, BNX2_RV2P_CONFIG, val);
1913
1914         /* Configure page size. */
1915         val = REG_RD(bp, BNX2_TBDR_CONFIG);
1916         val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
1917         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
1918         REG_WR(bp, BNX2_TBDR_CONFIG, val);
1919
1920         val = bp->mac_addr[0] +
1921               (bp->mac_addr[1] << 8) +
1922               (bp->mac_addr[2] << 16) +
1923               bp->mac_addr[3] +
1924               (bp->mac_addr[4] << 8) +
1925               (bp->mac_addr[5] << 16);
1926         REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
1927
1928         /* Program the MTU.  Also include 4 bytes for CRC32. */
1929         val = ETH_MAX_MTU + ETH_HLEN + 4;
1930         if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
1931                 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
1932         REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
1933
1934         bp->last_status_idx = 0;
1935         bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
1936
1937         /* Set up how to generate a link change interrupt. */
1938         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
1939
1940         REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
1941                (u64) bp->status_blk_mapping & 0xffffffff);
1942         REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
1943
1944         REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
1945                (u64) bp->stats_blk_mapping & 0xffffffff);
1946         REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
1947                (u64) bp->stats_blk_mapping >> 32);
1948
1949         REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP, 
1950                (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
1951
1952         REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
1953                (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
1954
1955         REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
1956                (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
1957
1958         REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
1959
1960         REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
1961
1962         REG_WR(bp, BNX2_HC_COM_TICKS,
1963                (bp->com_ticks_int << 16) | bp->com_ticks);
1964
1965         REG_WR(bp, BNX2_HC_CMD_TICKS,
1966                (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
1967
1968         REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
1969         REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
1970
1971         if (CHIP_ID(bp) == CHIP_ID_5706_A1)
1972                 REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS);
1973         else {
1974                 REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE |
1975                        BNX2_HC_CONFIG_TX_TMR_MODE |
1976                        BNX2_HC_CONFIG_COLLECT_STATS);
1977         }
1978
1979         /* Clear internal stats counters. */
1980         REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
1981
1982         REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
1983
1984         if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
1985             BNX2_PORT_FEATURE_ASF_ENABLED)
1986                 bp->flags |= ASF_ENABLE_FLAG;
1987
1988         /* Initialize the receive filter. */
1989         bnx2_set_rx_mode(bp->nic);
1990
1991         rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
1992                           0);
1993
1994         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
1995         REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
1996
1997         udelay(20);
1998
1999         bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
2000
2001         return rc;
2002 }
2003
2004 static void
2005 bnx2_init_tx_ring(struct bnx2 *bp)
2006 {
2007         struct tx_bd *txbd;
2008         u32 val;
2009
2010         txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
2011                 
2012         /* Etherboot lives below 4GB, so hi is always 0 */
2013         txbd->tx_bd_haddr_hi = 0;
2014         txbd->tx_bd_haddr_lo = bp->tx_desc_mapping;
2015
2016         bp->tx_prod = 0;
2017         bp->tx_cons = 0;
2018         bp->hw_tx_cons = 0;
2019         bp->tx_prod_bseq = 0;
2020         
2021         val = BNX2_L2CTX_TYPE_TYPE_L2;
2022         val |= BNX2_L2CTX_TYPE_SIZE_L2;
2023         CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TYPE, val);
2024
2025         val = BNX2_L2CTX_CMD_TYPE_TYPE_L2;
2026         val |= 8 << 16;
2027         CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_CMD_TYPE, val);
2028
2029         /* Etherboot lives below 4GB, so hi is always 0 */
2030         CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_HI, 0);
2031
2032         val = (u64) bp->tx_desc_mapping & 0xffffffff;
2033         CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_LO, val);
2034 }
2035
2036 static void
2037 bnx2_init_rx_ring(struct bnx2 *bp)
2038 {
2039         struct rx_bd *rxbd;
2040         unsigned int i;
2041         u16 prod, ring_prod;
2042         u32 val;
2043
2044         bp->rx_buf_use_size = RX_BUF_USE_SIZE;
2045         bp->rx_buf_size = RX_BUF_SIZE;
2046
2047         ring_prod = prod = bp->rx_prod = 0;
2048         bp->rx_cons = 0;
2049         bp->hw_rx_cons = 0;
2050         bp->rx_prod_bseq = 0;
2051
2052         memset(bnx2_bss.rx_buf, 0, sizeof(bnx2_bss.rx_buf));
2053                 
2054         rxbd = &bp->rx_desc_ring[0];
2055         for (i = 0; i < MAX_RX_DESC_CNT; i++, rxbd++) {
2056                 rxbd->rx_bd_len = bp->rx_buf_use_size;
2057                 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
2058         }
2059         rxbd->rx_bd_haddr_hi = 0;
2060         rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping & 0xffffffff;
2061
2062         val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
2063         val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
2064         val |= 0x02 << 8;
2065         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
2066
2067         /* Etherboot doesn't use memory above 4GB, so this is always 0 */
2068         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, 0);
2069
2070         val = bp->rx_desc_mapping & 0xffffffff;
2071         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
2072
2073         for (i = 0; (int) i < bp->rx_ring_size; i++) {
2074                 rxbd = &bp->rx_desc_ring[RX_RING_IDX(ring_prod)];
2075                 rxbd->rx_bd_haddr_hi = 0;
2076                 rxbd->rx_bd_haddr_lo = virt_to_bus(&bnx2_bss.rx_buf[ring_prod][0]);
2077                 bp->rx_prod_bseq += bp->rx_buf_use_size;
2078                 prod = NEXT_RX_BD(prod);
2079                 ring_prod = RX_RING_IDX(prod);
2080         }
2081         bp->rx_prod = prod;
2082
2083         REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, bp->rx_prod);
2084
2085         REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
2086 }
2087
2088 static int
2089 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
2090 {
2091         int rc;
2092
2093         rc = bnx2_reset_chip(bp, reset_code);
2094         if (rc) {
2095                 return rc;
2096         }
2097
2098         bnx2_init_chip(bp);
2099         bnx2_init_tx_ring(bp);
2100         bnx2_init_rx_ring(bp);
2101         return 0;
2102 }
2103
2104 static int
2105 bnx2_init_nic(struct bnx2 *bp)
2106 {
2107         int rc;
2108
2109         if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
2110                 return rc;
2111
2112         bnx2_init_phy(bp);
2113         bnx2_set_link(bp);
2114         return 0;
2115 }
2116
2117 static int
2118 bnx2_init_board(struct pci_device *pdev, struct nic *nic)
2119 {
2120         unsigned long bnx2reg_base, bnx2reg_len;
2121         struct bnx2 *bp = &bnx2;
2122         int rc;
2123         u32 reg;
2124
2125         bp->flags = 0;
2126         bp->phy_flags = 0;
2127
2128         /* enable device (incl. PCI PM wakeup), and bus-mastering */
2129         adjust_pci_device(pdev);
2130
2131         nic->ioaddr = pdev->ioaddr & ~3;
2132         nic->irqno = 0;
2133
2134         rc = 0;
2135         bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
2136         if (bp->pm_cap == 0) {
2137                 printf("Cannot find power management capability, aborting.\n");
2138                 rc = -EIO;
2139                 goto err_out_disable;
2140         }
2141
2142         bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
2143         if (bp->pcix_cap == 0) {
2144                 printf("Cannot find PCIX capability, aborting.\n");
2145                 rc = -EIO;
2146                 goto err_out_disable;
2147         }
2148
2149         bp->pdev = pdev;
2150         bp->nic = nic;
2151
2152         bnx2reg_base = pci_bar_start(pdev, PCI_BASE_ADDRESS_0);
2153         bnx2reg_len = MB_GET_CID_ADDR(17);
2154
2155         bp->regview = ioremap(bnx2reg_base, bnx2reg_len);
2156
2157         if (!bp->regview) {
2158                 printf("Cannot map register space, aborting.\n");
2159                 rc = -EIO;
2160                 goto err_out_disable;
2161         }
2162
2163         /* Configure byte swap and enable write to the reg_window registers.
2164          * Rely on CPU to do target byte swapping on big endian systems
2165          * The chip's target access swapping will not swap all accesses
2166          */
2167         pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
2168                                BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2169                                BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
2170
2171         bnx2_set_power_state_0(bp);
2172
2173         bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
2174
2175         /* Get bus information. */
2176         reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
2177         if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
2178                 u32 clkreg;
2179
2180                 bp->flags |= PCIX_FLAG;
2181
2182                 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
2183                 
2184                 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
2185                 switch (clkreg) {
2186                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
2187                         bp->bus_speed_mhz = 133;
2188                         break;
2189
2190                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
2191                         bp->bus_speed_mhz = 100;
2192                         break;
2193
2194                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
2195                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
2196                         bp->bus_speed_mhz = 66;
2197                         break;
2198
2199                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
2200                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
2201                         bp->bus_speed_mhz = 50;
2202                         break;
2203
2204                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
2205                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
2206                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
2207                         bp->bus_speed_mhz = 33;
2208                         break;
2209                 }
2210         }
2211         else {
2212                 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
2213                         bp->bus_speed_mhz = 66;
2214                 else
2215                         bp->bus_speed_mhz = 33;
2216         }
2217
2218         if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
2219                 bp->flags |= PCI_32BIT_FLAG;
2220
2221         /* 5706A0 may falsely detect SERR and PERR. */
2222         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2223                 reg = REG_RD(bp, PCI_COMMAND);
2224                 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
2225                 REG_WR(bp, PCI_COMMAND, reg);
2226         }
2227         else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
2228                 !(bp->flags & PCIX_FLAG)) {
2229
2230                 printf("5706 A1 can only be used in a PCIX bus, aborting.\n");
2231                 goto err_out_disable;
2232         }
2233
2234         bnx2_init_nvram(bp);
2235
2236         reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
2237
2238         if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
2239             BNX2_SHM_HDR_SIGNATURE_SIG)
2240                 bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0);
2241         else
2242                 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
2243
2244         /* Get the permanent MAC address.  First we need to make sure the
2245          * firmware is actually running.
2246          */
2247         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
2248
2249         if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
2250             BNX2_DEV_INFO_SIGNATURE_MAGIC) {
2251                 printf("Firmware not running, aborting.\n");
2252                 rc = -ENODEV;
2253                 goto err_out_disable;
2254         }
2255
2256         bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
2257
2258         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
2259         bp->mac_addr[0] = (u8) (reg >> 8);
2260         bp->mac_addr[1] = (u8) reg;
2261
2262         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
2263         bp->mac_addr[2] = (u8) (reg >> 24);
2264         bp->mac_addr[3] = (u8) (reg >> 16);
2265         bp->mac_addr[4] = (u8) (reg >> 8);
2266         bp->mac_addr[5] = (u8) reg;
2267
2268         bp->tx_ring_size = MAX_TX_DESC_CNT;
2269         bp->rx_ring_size = RX_BUF_CNT;
2270         bp->rx_max_ring_idx = MAX_RX_DESC_CNT;
2271
2272         bp->rx_offset = RX_OFFSET;
2273
2274         bp->tx_quick_cons_trip_int = 20;
2275         bp->tx_quick_cons_trip = 20;
2276         bp->tx_ticks_int = 80;
2277         bp->tx_ticks = 80;
2278                 
2279         bp->rx_quick_cons_trip_int = 6;
2280         bp->rx_quick_cons_trip = 6;
2281         bp->rx_ticks_int = 18;
2282         bp->rx_ticks = 18;
2283
2284         bp->stats_ticks = 1000000 & 0xffff00;
2285
2286         bp->phy_addr = 1;
2287
2288         /* No need for WOL support in Etherboot */
2289         bp->flags |= NO_WOL_FLAG;
2290
2291         /* Disable WOL support if we are running on a SERDES chip. */
2292         if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) {
2293                 bp->phy_flags |= PHY_SERDES_FLAG;
2294                 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
2295                         bp->phy_addr = 2;
2296                         reg = REG_RD_IND(bp, bp->shmem_base +
2297                                          BNX2_SHARED_HW_CFG_CONFIG);
2298                         if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
2299                                 bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
2300                 }
2301         }
2302
2303         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2304                 bp->tx_quick_cons_trip_int =
2305                         bp->tx_quick_cons_trip;
2306                 bp->tx_ticks_int = bp->tx_ticks;
2307                 bp->rx_quick_cons_trip_int =
2308                         bp->rx_quick_cons_trip;
2309                 bp->rx_ticks_int = bp->rx_ticks;
2310                 bp->comp_prod_trip_int = bp->comp_prod_trip;
2311                 bp->com_ticks_int = bp->com_ticks;
2312                 bp->cmd_ticks_int = bp->cmd_ticks;
2313         }
2314
2315         bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
2316         bp->req_line_speed = 0;
2317         if (bp->phy_flags & PHY_SERDES_FLAG) {
2318                 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
2319
2320                 reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
2321                 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
2322                 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
2323                         bp->autoneg = 0;
2324                         bp->req_line_speed = bp->line_speed = SPEED_1000;
2325                         bp->req_duplex = DUPLEX_FULL;
2326                 }
2327         }
2328         else {
2329                 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
2330         }
2331
2332         bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
2333
2334         /* Disable driver heartbeat checking */
2335         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB,
2336                         BNX2_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE);
2337         REG_RD_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB);
2338
2339         return 0;
2340
2341 err_out_disable:
2342         bnx2_disable(nic);
2343
2344         return rc;
2345 }
2346
2347 static void
2348 bnx2_transmit(struct nic *nic, const char *dst_addr,
2349                 unsigned int type, unsigned int size, const char *packet)
2350 {
2351         /* Sometimes the nic will be behind by a frame.  Using two transmit
2352          * buffers prevents us from timing out in that case.
2353          */
2354         static struct eth_frame {
2355                 uint8_t  dst_addr[ETH_ALEN];
2356                 uint8_t  src_addr[ETH_ALEN];
2357                 uint16_t type;
2358                 uint8_t  data [ETH_FRAME_LEN - ETH_HLEN];
2359         } frame[2];
2360         static int frame_idx = 0;
2361         
2362         /* send the packet to destination */
2363         struct tx_bd *txbd;
2364         struct bnx2 *bp = &bnx2;
2365         u16 prod, ring_prod;
2366         u16 hw_cons;
2367         int i = 0;
2368
2369         prod = bp->tx_prod;
2370         ring_prod = TX_RING_IDX(prod);
2371         hw_cons = bp->status_blk->status_tx_quick_consumer_index0;
2372         if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
2373                 hw_cons++;
2374         }
2375
2376         while((hw_cons != prod) && (hw_cons != (PREV_TX_BD(prod)))) {
2377                 mdelay(10);     /* give the nic a chance */
2378                 //poll_interruptions();
2379                 if (++i > 500) { /* timeout 5s for transmit */
2380                         printf("transmit timed out\n");
2381                         bnx2_disable(bp->nic);
2382                         bnx2_init_board(bp->pdev, bp->nic);
2383                         return;
2384                 }
2385         }
2386         if (i != 0) {
2387                 printf("#");
2388         }
2389
2390         /* Copy the packet to the our local buffer */
2391         memcpy(&frame[frame_idx].dst_addr, dst_addr, ETH_ALEN);
2392         memcpy(&frame[frame_idx].src_addr, nic->node_addr, ETH_ALEN);
2393         frame[frame_idx].type = htons(type);
2394         memset(&frame[frame_idx].data, 0, sizeof(frame[frame_idx].data));
2395         memcpy(&frame[frame_idx].data, packet, size);
2396
2397         /* Setup the ring buffer entry to transmit */
2398         txbd = &bp->tx_desc_ring[ring_prod];
2399         txbd->tx_bd_haddr_hi = 0; /* Etherboot runs under 4GB */
2400         txbd->tx_bd_haddr_lo = virt_to_bus(&frame[frame_idx]);
2401         txbd->tx_bd_mss_nbytes = (size + ETH_HLEN);
2402         txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
2403
2404         /* Advance to the next entry */
2405         prod = NEXT_TX_BD(prod);
2406         frame_idx ^= 1;
2407
2408         bp->tx_prod_bseq += (size + ETH_HLEN);
2409
2410         REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, prod);
2411         REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq);
2412
2413         wmb();
2414
2415         bp->tx_prod = prod;
2416 }
2417
2418 static int
2419 bnx2_poll_link(struct bnx2 *bp)
2420 {
2421         u32 new_link_state, old_link_state, emac_status;
2422
2423         new_link_state = bp->status_blk->status_attn_bits &
2424                 STATUS_ATTN_BITS_LINK_STATE;
2425
2426         old_link_state = bp->status_blk->status_attn_bits_ack &
2427                 STATUS_ATTN_BITS_LINK_STATE;
2428
2429         if (!new_link_state && !old_link_state) {
2430                 /* For some reason the card doesn't always update the link
2431                  * status bits properly.  Kick the stupid thing and try again.
2432                  */
2433                 u32 bmsr;
2434
2435                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
2436                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
2437
2438                 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
2439                     (CHIP_NUM(bp) == CHIP_NUM_5706)) {
2440                         REG_RD(bp, BNX2_EMAC_STATUS);
2441                 }
2442
2443                 new_link_state = bp->status_blk->status_attn_bits &
2444                         STATUS_ATTN_BITS_LINK_STATE;
2445
2446                 old_link_state = bp->status_blk->status_attn_bits_ack &
2447                         STATUS_ATTN_BITS_LINK_STATE;
2448
2449                 /* Okay, for some reason the above doesn't work with some
2450                  * switches (like HP ProCurve). If the above doesn't work,
2451                  * check the MAC directly to see if we have a link.  Perhaps we
2452                  * should always check the MAC instead probing the MII.
2453                  */
2454                 if (!new_link_state && !old_link_state) {
2455                         emac_status = REG_RD(bp, BNX2_EMAC_STATUS);
2456                         if (emac_status & BNX2_EMAC_STATUS_LINK_CHANGE) {
2457                                 /* Acknowledge the link change */
2458                                 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
2459                         } else if (emac_status & BNX2_EMAC_STATUS_LINK) {
2460                                 new_link_state = !old_link_state;
2461                         }
2462                 }
2463
2464         }
2465
2466         if (new_link_state != old_link_state) {
2467                 if (new_link_state) {
2468                         REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD,
2469                                 STATUS_ATTN_BITS_LINK_STATE);
2470                 }
2471                 else {
2472                         REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD,
2473                                 STATUS_ATTN_BITS_LINK_STATE);
2474                 }
2475
2476                 bnx2_set_link(bp);
2477
2478                 /* This is needed to take care of transient status
2479                  * during link changes.
2480                  */
2481
2482                 REG_WR(bp, BNX2_HC_COMMAND,
2483                        bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
2484                 REG_RD(bp, BNX2_HC_COMMAND);
2485
2486         }
2487
2488         return bp->link_up;
2489 }
2490
2491 static int
2492 bnx2_poll(struct nic* nic, int retrieve)
2493 {
2494         struct bnx2 *bp = &bnx2;
2495         struct rx_bd *cons_bd, *prod_bd;
2496         u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
2497         struct l2_fhdr *rx_hdr;
2498         int result = 0;
2499         unsigned int len;
2500         unsigned char *data;
2501         u32 status;
2502         
2503 #if 0
2504         if ((bp->status_blk->status_idx == bp->last_status_idx) &&
2505             (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
2506              BNX2_PCICFG_MISC_STATUS_INTA_VALUE)) {
2507
2508                 bp->last_status_idx = bp->status_blk->status_idx;
2509                 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2510                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2511                BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
2512                bp->last_status_idx);
2513                 return 0;
2514         }
2515 #endif
2516
2517         if ((bp->status_blk->status_rx_quick_consumer_index0 != bp->rx_cons) && !retrieve)
2518                 return 1;
2519
2520         if (bp->status_blk->status_rx_quick_consumer_index0 != bp->rx_cons) {
2521
2522                 hw_cons = bp->hw_rx_cons = bp->status_blk->status_rx_quick_consumer_index0;
2523                 if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
2524                         hw_cons++;
2525                 }
2526                 sw_cons = bp->rx_cons;
2527                 sw_prod = bp->rx_prod;
2528
2529                 rmb();
2530                 if (sw_cons != hw_cons) {
2531
2532                         sw_ring_cons = RX_RING_IDX(sw_cons);
2533                         sw_ring_prod = RX_RING_IDX(sw_prod);
2534
2535                         data = bus_to_virt(bp->rx_desc_ring[sw_ring_cons].rx_bd_haddr_lo);
2536
2537                         rx_hdr = (struct l2_fhdr *)data;
2538                         len = rx_hdr->l2_fhdr_pkt_len - 4;
2539                         if ((len > (ETH_MAX_MTU + ETH_HLEN)) ||
2540                                 ((status = rx_hdr->l2_fhdr_status) &
2541                                 (L2_FHDR_ERRORS_BAD_CRC |
2542                                 L2_FHDR_ERRORS_PHY_DECODE |
2543                                 L2_FHDR_ERRORS_ALIGNMENT |
2544                                 L2_FHDR_ERRORS_TOO_SHORT |
2545                                 L2_FHDR_ERRORS_GIANT_FRAME))) {
2546                                 result = 0;
2547                         }
2548                         else
2549                         {
2550                                 nic->packetlen = len;
2551                                 memcpy(nic->packet, data + bp->rx_offset, len);
2552                                 result = 1;
2553                         }
2554
2555                         /* Reuse the buffer */
2556                         bp->rx_prod_bseq += bp->rx_buf_use_size;
2557                         if (sw_cons != sw_prod) {
2558                                 cons_bd = &bp->rx_desc_ring[sw_ring_cons];
2559                                 prod_bd = &bp->rx_desc_ring[sw_ring_prod];
2560                                 prod_bd->rx_bd_haddr_hi = 0; /* Etherboot runs under 4GB */
2561                                 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2562                         }
2563
2564                         sw_cons = NEXT_RX_BD(sw_cons);
2565                         sw_prod = NEXT_RX_BD(sw_prod);
2566
2567                 }
2568
2569                 bp->rx_cons = sw_cons;
2570                 bp->rx_prod = sw_prod;
2571
2572                 REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, bp->rx_prod);
2573
2574                 REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
2575
2576                 wmb();
2577
2578         }
2579
2580         bnx2_poll_link(bp);
2581
2582 #if 0
2583         bp->last_status_idx = bp->status_blk->status_idx;
2584         rmb();
2585
2586         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2587                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2588                BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
2589                bp->last_status_idx);
2590
2591         REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
2592 #endif
2593
2594         return result;
2595 }
2596
2597 static void
2598 bnx2_irq(struct nic *nic __unused, irq_action_t action __unused)
2599 {
2600         switch ( action ) {
2601                 case DISABLE: break;
2602                 case ENABLE: break;
2603                 case FORCE: break;
2604         }
2605 }
2606
2607 static struct nic_operations bnx2_operations = {
2608         .connect        = dummy_connect,
2609         .poll           = bnx2_poll,
2610         .transmit       = bnx2_transmit,
2611         .irq            = bnx2_irq,
2612 };
2613
2614 static int
2615 bnx2_probe(struct nic *nic, struct pci_device *pdev)
2616 {
2617         struct bnx2 *bp = &bnx2;
2618         int i, rc;
2619
2620         memset(bp, 0, sizeof(*bp));
2621
2622         rc = bnx2_init_board(pdev, nic);
2623         if (rc < 0) {
2624                 return 0;
2625         }
2626
2627         /*
2628         nic->disable = bnx2_disable;
2629         nic->transmit = bnx2_transmit;
2630         nic->poll = bnx2_poll;
2631         nic->irq = bnx2_irq;
2632         */
2633         
2634         nic->nic_op     = &bnx2_operations;
2635
2636         memcpy(nic->node_addr, bp->mac_addr, ETH_ALEN);
2637         printf("Ethernet addr: %s\n", eth_ntoa( nic->node_addr ) );
2638         printf("Broadcom NetXtreme II (%c%d) PCI%s %s %dMHz\n",
2639                 (int) ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
2640                 (int) ((CHIP_ID(bp) & 0x0ff0) >> 4),
2641                 ((bp->flags & PCIX_FLAG) ? "-X" : ""),
2642                 ((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
2643                 bp->bus_speed_mhz);
2644
2645         bnx2_set_power_state_0(bp);
2646         bnx2_disable_int(bp);
2647
2648         bnx2_alloc_mem(bp);
2649
2650         rc = bnx2_init_nic(bp);
2651         if (rc) {
2652                 return 0;
2653         }
2654
2655         bnx2_poll_link(bp);
2656         for(i = 0; !bp->link_up && (i < VALID_LINK_TIMEOUT*100); i++) {
2657                 mdelay(1);
2658                 bnx2_poll_link(bp);
2659         }
2660 #if 1
2661         if (!bp->link_up){
2662                 printf("Valid link not established\n");
2663                 goto err_out_disable;
2664         }
2665 #endif
2666         
2667         return 1;
2668
2669 err_out_disable:
2670         bnx2_disable(nic);
2671         return 0;
2672 }
2673
2674 static struct pci_device_id bnx2_nics[] = {
2675         PCI_ROM(0x14e4, 0x164a, "bnx2-5706",        "Broadcom NetXtreme II BCM5706", 0),
2676         PCI_ROM(0x14e4, 0x164c, "bnx2-5708",        "Broadcom NetXtreme II BCM5708", 0),
2677         PCI_ROM(0x14e4, 0x16aa, "bnx2-5706S",       "Broadcom NetXtreme II BCM5706S", 0),
2678         PCI_ROM(0x14e4, 0x16ac, "bnx2-5708S",       "Broadcom NetXtreme II BCM5708S", 0),
2679 };
2680
2681 PCI_DRIVER ( bnx2_driver, bnx2_nics, PCI_NO_CLASS );
2682
2683 DRIVER ( "BNX2", nic_driver, pci_driver, bnx2_driver, bnx2_probe, bnx2_disable );
2684
2685 /*
2686 static struct pci_driver bnx2_driver __pci_driver = {
2687         .type     = NIC_DRIVER,
2688         .name     = "BNX2",              
2689         .probe    = bnx2_probe,
2690         .ids      = bnx2_nics,                  
2691         .id_count = sizeof(bnx2_nics)/sizeof(bnx2_nics[0]), 
2692         .class    = 0,    
2693 };
2694 */