Add qemu 2.4.0
[kvmfornfv.git] / qemu / roms / ipxe / src / drivers / net / ath / ath5k / ath5k_eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Lightly modified for iPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  *
20  */
21
22 FILE_LICENCE ( MIT );
23
24 /*************************************\
25 * EEPROM access functions and helpers *
26 \*************************************/
27
28 #include <unistd.h>
29 #include <stdlib.h>
30
31 #include "ath5k.h"
32 #include "reg.h"
33 #include "base.h"
34
35 /*
36  * Read from eeprom
37  */
38 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
39 {
40         u32 status, timeout;
41
42         /*
43          * Initialize EEPROM access
44          */
45         if (ah->ah_version == AR5K_AR5210) {
46                 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
47                 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
48         } else {
49                 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
50                 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
51                                 AR5K_EEPROM_CMD_READ);
52         }
53
54         for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
55                 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
56                 if (status & AR5K_EEPROM_STAT_RDDONE) {
57                         if (status & AR5K_EEPROM_STAT_RDERR)
58                                 return -EIO;
59                         *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
60                                         0xffff);
61                         return 0;
62                 }
63                 udelay(15);
64         }
65
66         return -ETIMEDOUT;
67 }
68
69 /*
70  * Translate binary channel representation in EEPROM to frequency
71  */
72 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
73                                  unsigned int mode)
74 {
75         u16 val;
76
77         if (bin == AR5K_EEPROM_CHANNEL_DIS)
78                 return bin;
79
80         if (mode == AR5K_EEPROM_MODE_11A) {
81                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
82                         val = (5 * bin) + 4800;
83                 else
84                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
85                                 (bin * 10) + 5100;
86         } else {
87                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
88                         val = bin + 2300;
89                 else
90                         val = bin + 2400;
91         }
92
93         return val;
94 }
95
96 /*
97  * Initialize eeprom & capabilities structs
98  */
99 static int
100 ath5k_eeprom_init_header(struct ath5k_hw *ah)
101 {
102         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
103         int ret;
104         u16 val;
105
106         /*
107          * Read values from EEPROM and store them in the capability structure
108          */
109         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
110         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
111         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
112         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
113         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
114
115         /* Return if we have an old EEPROM */
116         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
117                 return 0;
118
119         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
120             ee_ant_gain);
121
122         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
123                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
124                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
125
126                 /* XXX: Don't know which versions include these two */
127                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
128
129                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
130                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
131
132                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
133                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
134                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
135                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
136                 }
137         }
138
139         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
140                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
141                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
142                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
143
144                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
145                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
146                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
147         }
148
149         AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
150
151         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
152                 ee->ee_is_hb63 = 1;
153         else
154                 ee->ee_is_hb63 = 0;
155
156         AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
157         ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
158         ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? 1 : 0;
159
160         return 0;
161 }
162
163
164 /*
165  * Read antenna infos from eeprom
166  */
167 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
168                 unsigned int mode)
169 {
170         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
171         u32 o = *offset;
172         u16 val;
173         int ret, i = 0;
174
175         AR5K_EEPROM_READ(o++, val);
176         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
177         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
178         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
179
180         AR5K_EEPROM_READ(o++, val);
181         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
182         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
183         ee->ee_ant_control[mode][i++]   = val & 0x3f;
184
185         AR5K_EEPROM_READ(o++, val);
186         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
187         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
188         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
189
190         AR5K_EEPROM_READ(o++, val);
191         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
192         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
193         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
194         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
195
196         AR5K_EEPROM_READ(o++, val);
197         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
198         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
199         ee->ee_ant_control[mode][i++]   = val & 0x3f;
200
201         /* Get antenna modes */
202         ah->ah_antenna[mode][0] =
203             (ee->ee_ant_control[mode][0] << 4);
204         ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
205              ee->ee_ant_control[mode][1]        |
206             (ee->ee_ant_control[mode][2] << 6)  |
207             (ee->ee_ant_control[mode][3] << 12) |
208             (ee->ee_ant_control[mode][4] << 18) |
209             (ee->ee_ant_control[mode][5] << 24);
210         ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
211              ee->ee_ant_control[mode][6]        |
212             (ee->ee_ant_control[mode][7] << 6)  |
213             (ee->ee_ant_control[mode][8] << 12) |
214             (ee->ee_ant_control[mode][9] << 18) |
215             (ee->ee_ant_control[mode][10] << 24);
216
217         /* return new offset */
218         *offset = o;
219
220         return 0;
221 }
222
223 /*
224  * Read supported modes and some mode-specific calibration data
225  * from eeprom
226  */
227 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
228                 unsigned int mode)
229 {
230         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
231         u32 o = *offset;
232         u16 val;
233         int ret;
234
235         ee->ee_n_piers[mode] = 0;
236         AR5K_EEPROM_READ(o++, val);
237         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
238         switch(mode) {
239         case AR5K_EEPROM_MODE_11A:
240                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
241                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
242                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
243
244                 AR5K_EEPROM_READ(o++, val);
245                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
246                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
247                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
248                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
249                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
250                 ee->ee_db[mode][0]      = val & 0x7;
251                 break;
252         case AR5K_EEPROM_MODE_11G:
253         case AR5K_EEPROM_MODE_11B:
254                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
255                 ee->ee_db[mode][1]      = val & 0x7;
256                 break;
257         }
258
259         AR5K_EEPROM_READ(o++, val);
260         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
261         ee->ee_thr_62[mode]             = val & 0xff;
262
263         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
264                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
265
266         AR5K_EEPROM_READ(o++, val);
267         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
268         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
269
270         AR5K_EEPROM_READ(o++, val);
271         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
272
273         if ((val & 0xff) & 0x80)
274                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
275         else
276                 ee->ee_noise_floor_thr[mode] = val & 0xff;
277
278         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
279                 ee->ee_noise_floor_thr[mode] =
280                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
281
282         AR5K_EEPROM_READ(o++, val);
283         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
284         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
285         ee->ee_xpd[mode]                = val & 0x1;
286
287         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
288                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
289
290         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
291                 AR5K_EEPROM_READ(o++, val);
292                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
293
294                 if (mode == AR5K_EEPROM_MODE_11A)
295                         ee->ee_xr_power[mode] = val & 0x3f;
296                 else {
297                         ee->ee_ob[mode][0] = val & 0x7;
298                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
299                 }
300         }
301
302         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
303                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
304                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
305         } else {
306                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
307
308                 AR5K_EEPROM_READ(o++, val);
309                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
310
311                 if (mode == AR5K_EEPROM_MODE_11G) {
312                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
313                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
314                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
315                 }
316         }
317
318         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
319                         mode == AR5K_EEPROM_MODE_11A) {
320                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
321                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
322         }
323
324         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
325                 goto done;
326
327         /* Note: >= v5 have bg freq piers on another location
328          * so these freq piers are ignored for >= v5 (should be 0xff
329          * anyway) */
330         switch(mode) {
331         case AR5K_EEPROM_MODE_11A:
332                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
333                         break;
334
335                 AR5K_EEPROM_READ(o++, val);
336                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
337                 break;
338         case AR5K_EEPROM_MODE_11B:
339                 AR5K_EEPROM_READ(o++, val);
340
341                 ee->ee_pwr_cal_b[0].freq =
342                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
343                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
344                         ee->ee_n_piers[mode]++;
345
346                 ee->ee_pwr_cal_b[1].freq =
347                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
348                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
349                         ee->ee_n_piers[mode]++;
350
351                 AR5K_EEPROM_READ(o++, val);
352                 ee->ee_pwr_cal_b[2].freq =
353                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
354                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
355                         ee->ee_n_piers[mode]++;
356
357                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
358                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
359                 break;
360         case AR5K_EEPROM_MODE_11G:
361                 AR5K_EEPROM_READ(o++, val);
362
363                 ee->ee_pwr_cal_g[0].freq =
364                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
365                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
366                         ee->ee_n_piers[mode]++;
367
368                 ee->ee_pwr_cal_g[1].freq =
369                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
370                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
371                         ee->ee_n_piers[mode]++;
372
373                 AR5K_EEPROM_READ(o++, val);
374                 ee->ee_turbo_max_power[mode] = val & 0x7f;
375                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
376
377                 AR5K_EEPROM_READ(o++, val);
378                 ee->ee_pwr_cal_g[2].freq =
379                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
380                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
381                         ee->ee_n_piers[mode]++;
382
383                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
384                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
385
386                 AR5K_EEPROM_READ(o++, val);
387                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
388                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
389
390                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
391                         AR5K_EEPROM_READ(o++, val);
392                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
393                 }
394                 break;
395         }
396
397 done:
398         /* return new offset */
399         *offset = o;
400
401         return 0;
402 }
403
404 /*
405  * Read turbo mode information on newer EEPROM versions
406  */
407 static int
408 ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
409                               u32 *offset, unsigned int mode)
410 {
411         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
412         u32 o = *offset;
413         u16 val;
414         int ret;
415
416         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
417                 return 0;
418
419         switch (mode){
420         case AR5K_EEPROM_MODE_11A:
421                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
422
423                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
424                 AR5K_EEPROM_READ(o++, val);
425                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
426                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
427
428                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
429                 AR5K_EEPROM_READ(o++, val);
430                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
431                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
432
433                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
434                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
435                 break;
436         case AR5K_EEPROM_MODE_11G:
437                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
438
439                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
440                 AR5K_EEPROM_READ(o++, val);
441                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
442                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
443
444                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
445                 AR5K_EEPROM_READ(o++, val);
446                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
447                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
448                 break;
449         }
450
451         /* return new offset */
452         *offset = o;
453
454         return 0;
455 }
456
457 /* Read mode-specific data (except power calibration data) */
458 static int
459 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
460 {
461         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
462         u32 mode_offset[3];
463         unsigned int mode;
464         u32 offset;
465         int ret;
466
467         /*
468          * Get values for all modes
469          */
470         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
471         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
472         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
473
474         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
475                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
476
477         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
478                 offset = mode_offset[mode];
479
480                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
481                 if (ret)
482                         return ret;
483
484                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
485                 if (ret)
486                         return ret;
487
488                 ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
489                 if (ret)
490                         return ret;
491         }
492
493         /* override for older eeprom versions for better performance */
494         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
495                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
496                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
497                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
498         }
499
500         return 0;
501 }
502
503 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
504  * frequency mask) */
505 static inline int
506 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
507                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
508 {
509         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510         int o = *offset;
511         int i = 0;
512         u8 freq1, freq2;
513         int ret;
514         u16 val;
515
516         ee->ee_n_piers[mode] = 0;
517         while(i < max) {
518                 AR5K_EEPROM_READ(o++, val);
519
520                 freq1 = val & 0xff;
521                 if (!freq1)
522                         break;
523
524                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
525                                 freq1, mode);
526                 ee->ee_n_piers[mode]++;
527
528                 freq2 = (val >> 8) & 0xff;
529                 if (!freq2)
530                         break;
531
532                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
533                                 freq2, mode);
534                 ee->ee_n_piers[mode]++;
535         }
536
537         /* return new offset */
538         *offset = o;
539
540         return 0;
541 }
542
543 /* Read frequency piers for 802.11a */
544 static int
545 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
546 {
547         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
548         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
549         int i, ret;
550         u16 val;
551         u8 mask;
552
553         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
554                 ath5k_eeprom_read_freq_list(ah, &offset,
555                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
556                         AR5K_EEPROM_MODE_11A);
557         } else {
558                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
559
560                 AR5K_EEPROM_READ(offset++, val);
561                 pcal[0].freq  = (val >> 9) & mask;
562                 pcal[1].freq  = (val >> 2) & mask;
563                 pcal[2].freq  = (val << 5) & mask;
564
565                 AR5K_EEPROM_READ(offset++, val);
566                 pcal[2].freq |= (val >> 11) & 0x1f;
567                 pcal[3].freq  = (val >> 4) & mask;
568                 pcal[4].freq  = (val << 3) & mask;
569
570                 AR5K_EEPROM_READ(offset++, val);
571                 pcal[4].freq |= (val >> 13) & 0x7;
572                 pcal[5].freq  = (val >> 6) & mask;
573                 pcal[6].freq  = (val << 1) & mask;
574
575                 AR5K_EEPROM_READ(offset++, val);
576                 pcal[6].freq |= (val >> 15) & 0x1;
577                 pcal[7].freq  = (val >> 8) & mask;
578                 pcal[8].freq  = (val >> 1) & mask;
579                 pcal[9].freq  = (val << 6) & mask;
580
581                 AR5K_EEPROM_READ(offset++, val);
582                 pcal[9].freq |= (val >> 10) & 0x3f;
583
584                 /* Fixed number of piers */
585                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
586
587                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
588                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
589                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
590                 }
591         }
592
593         return 0;
594 }
595
596 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
597 static inline int
598 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
599 {
600         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
601         struct ath5k_chan_pcal_info *pcal;
602
603         switch(mode) {
604         case AR5K_EEPROM_MODE_11B:
605                 pcal = ee->ee_pwr_cal_b;
606                 break;
607         case AR5K_EEPROM_MODE_11G:
608                 pcal = ee->ee_pwr_cal_g;
609                 break;
610         default:
611                 return -EINVAL;
612         }
613
614         ath5k_eeprom_read_freq_list(ah, &offset,
615                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
616                 mode);
617
618         return 0;
619 }
620
621 /*
622  * Read power calibration for RF5111 chips
623  *
624  * For RF5111 we have an XPD -eXternal Power Detector- curve
625  * for each calibrated channel. Each curve has 0,5dB Power steps
626  * on x axis and PCDAC steps (offsets) on y axis and looks like an
627  * exponential function. To recreate the curve we read 11 points
628  * here and interpolate later.
629  */
630
631 /* Used to match PCDAC steps with power values on RF5111 chips
632  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
633  * steps that match with the power values we read from eeprom. On
634  * older eeprom versions (< 3.2) these steps are equaly spaced at
635  * 10% of the pcdac curve -until the curve reaches it's maximum-
636  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
637  * these 11 steps are spaced in a different way. This function returns
638  * the pcdac steps based on eeprom version and curve min/max so that we
639  * can have pcdac/pwr points.
640  */
641 static inline void
642 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
643 {
644         static const u16 intercepts3[] =
645                 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
646         static const u16 intercepts3_2[] =
647                 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
648         const u16 *ip;
649         unsigned i;
650
651         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
652                 ip = intercepts3_2;
653         else
654                 ip = intercepts3;
655
656         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
657                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
658 }
659
660 /* Convert RF5111 specific data to generic raw data
661  * used by interpolation code */
662 static int
663 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
664                                 struct ath5k_chan_pcal_info *chinfo)
665 {
666         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
667         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
668         struct ath5k_pdgain_info *pd;
669         u8 pier, point, idx;
670         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
671
672         /* Fill raw data for each calibration pier */
673         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
674
675                 pcinfo = &chinfo[pier].rf5111_info;
676
677                 /* Allocate pd_curves for this cal pier */
678                 chinfo[pier].pd_curves =
679                         calloc(AR5K_EEPROM_N_PD_CURVES,
680                                sizeof(struct ath5k_pdgain_info));
681
682                 if (!chinfo[pier].pd_curves)
683                         return -ENOMEM;
684
685                 /* Only one curve for RF5111
686                  * find out which one and place
687                  * in in pd_curves.
688                  * Note: ee_x_gain is reversed here */
689                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
690
691                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
692                                 pdgain_idx[0] = idx;
693                                 break;
694                         }
695                 }
696
697                 ee->ee_pd_gains[mode] = 1;
698
699                 pd = &chinfo[pier].pd_curves[idx];
700
701                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
702
703                 /* Allocate pd points for this curve */
704                 pd->pd_step = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(u8));
705                 if (!pd->pd_step)
706                         return -ENOMEM;
707
708                 pd->pd_pwr = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(s16));
709                 if (!pd->pd_pwr)
710                         return -ENOMEM;
711
712                 /* Fill raw dataset
713                  * (convert power to 0.25dB units
714                  * for RF5112 combatibility) */
715                 for (point = 0; point < pd->pd_points; point++) {
716
717                         /* Absolute values */
718                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
719
720                         /* Already sorted */
721                         pd->pd_step[point] = pcinfo->pcdac[point];
722                 }
723
724                 /* Set min/max pwr */
725                 chinfo[pier].min_pwr = pd->pd_pwr[0];
726                 chinfo[pier].max_pwr = pd->pd_pwr[10];
727
728         }
729
730         return 0;
731 }
732
733 /* Parse EEPROM data */
734 static int
735 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
736 {
737         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
738         struct ath5k_chan_pcal_info *pcal;
739         int offset, ret;
740         int i;
741         u16 val;
742
743         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
744         switch(mode) {
745         case AR5K_EEPROM_MODE_11A:
746                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
747                         return 0;
748
749                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
750                         offset + AR5K_EEPROM_GROUP1_OFFSET);
751                 if (ret < 0)
752                         return ret;
753
754                 offset += AR5K_EEPROM_GROUP2_OFFSET;
755                 pcal = ee->ee_pwr_cal_a;
756                 break;
757         case AR5K_EEPROM_MODE_11B:
758                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
759                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
760                         return 0;
761
762                 pcal = ee->ee_pwr_cal_b;
763                 offset += AR5K_EEPROM_GROUP3_OFFSET;
764
765                 /* fixed piers */
766                 pcal[0].freq = 2412;
767                 pcal[1].freq = 2447;
768                 pcal[2].freq = 2484;
769                 ee->ee_n_piers[mode] = 3;
770                 break;
771         case AR5K_EEPROM_MODE_11G:
772                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
773                         return 0;
774
775                 pcal = ee->ee_pwr_cal_g;
776                 offset += AR5K_EEPROM_GROUP4_OFFSET;
777
778                 /* fixed piers */
779                 pcal[0].freq = 2312;
780                 pcal[1].freq = 2412;
781                 pcal[2].freq = 2484;
782                 ee->ee_n_piers[mode] = 3;
783                 break;
784         default:
785                 return -EINVAL;
786         }
787
788         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
789                 struct ath5k_chan_pcal_info_rf5111 *cdata =
790                         &pcal[i].rf5111_info;
791
792                 AR5K_EEPROM_READ(offset++, val);
793                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
794                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
795                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
796
797                 AR5K_EEPROM_READ(offset++, val);
798                 cdata->pwr[0] |= ((val >> 14) & 0x3);
799                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
800                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
801                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
802
803                 AR5K_EEPROM_READ(offset++, val);
804                 cdata->pwr[3] |= ((val >> 12) & 0xf);
805                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
806                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
807
808                 AR5K_EEPROM_READ(offset++, val);
809                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
810                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
811                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
812
813                 AR5K_EEPROM_READ(offset++, val);
814                 cdata->pwr[8] |= ((val >> 14) & 0x3);
815                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
816                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
817
818                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
819                         cdata->pcdac_max, cdata->pcdac);
820         }
821
822         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
823 }
824
825
826 /*
827  * Read power calibration for RF5112 chips
828  *
829  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
830  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
831  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
832  * power steps on x axis and PCDAC steps on y axis and looks like a
833  * linear function. To recreate the curve and pass the power values
834  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
835  * and 3 points for xpd 3 (higher gain -> lower power) here and
836  * interpolate later.
837  *
838  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
839  */
840
841 /* Convert RF5112 specific data to generic raw data
842  * used by interpolation code */
843 static int
844 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
845                                 struct ath5k_chan_pcal_info *chinfo)
846 {
847         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
848         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
849         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
850         unsigned int pier, pdg, point;
851
852         /* Fill raw data for each calibration pier */
853         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
854
855                 pcinfo = &chinfo[pier].rf5112_info;
856
857                 /* Allocate pd_curves for this cal pier */
858                 chinfo[pier].pd_curves =
859                                 calloc(AR5K_EEPROM_N_PD_CURVES,
860                                        sizeof(struct ath5k_pdgain_info));
861
862                 if (!chinfo[pier].pd_curves)
863                         return -ENOMEM;
864
865                 /* Fill pd_curves */
866                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
867
868                         u8 idx = pdgain_idx[pdg];
869                         struct ath5k_pdgain_info *pd =
870                                         &chinfo[pier].pd_curves[idx];
871
872                         /* Lowest gain curve (max power) */
873                         if (pdg == 0) {
874                                 /* One more point for better accuracy */
875                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
876
877                                 /* Allocate pd points for this curve */
878                                 pd->pd_step = calloc(pd->pd_points, sizeof(u8));
879
880                                 if (!pd->pd_step)
881                                         return -ENOMEM;
882
883                                 pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
884
885                                 if (!pd->pd_pwr)
886                                         return -ENOMEM;
887
888
889                                 /* Fill raw dataset
890                                  * (all power levels are in 0.25dB units) */
891                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
892                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
893
894                                 for (point = 1; point < pd->pd_points;
895                                 point++) {
896                                         /* Absolute values */
897                                         pd->pd_pwr[point] =
898                                                 pcinfo->pwr_x0[point];
899
900                                         /* Deltas */
901                                         pd->pd_step[point] =
902                                                 pd->pd_step[point - 1] +
903                                                 pcinfo->pcdac_x0[point];
904                                 }
905
906                                 /* Set min power for this frequency */
907                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
908
909                         /* Highest gain curve (min power) */
910                         } else if (pdg == 1) {
911
912                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
913
914                                 /* Allocate pd points for this curve */
915                                 pd->pd_step = calloc(pd->pd_points, sizeof(u8));
916
917                                 if (!pd->pd_step)
918                                         return -ENOMEM;
919
920                                 pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
921
922                                 if (!pd->pd_pwr)
923                                         return -ENOMEM;
924
925                                 /* Fill raw dataset
926                                  * (all power levels are in 0.25dB units) */
927                                 for (point = 0; point < pd->pd_points;
928                                 point++) {
929                                         /* Absolute values */
930                                         pd->pd_pwr[point] =
931                                                 pcinfo->pwr_x3[point];
932
933                                         /* Fixed points */
934                                         pd->pd_step[point] =
935                                                 pcinfo->pcdac_x3[point];
936                                 }
937
938                                 /* Since we have a higher gain curve
939                                  * override min power */
940                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
941                         }
942                 }
943         }
944
945         return 0;
946 }
947
948 /* Parse EEPROM data */
949 static int
950 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
951 {
952         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
953         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
954         struct ath5k_chan_pcal_info *gen_chan_info;
955         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
956         u32 offset;
957         u8 i, c;
958         u16 val;
959         int ret;
960         u8 pd_gains = 0;
961
962         /* Count how many curves we have and
963          * identify them (which one of the 4
964          * available curves we have on each count).
965          * Curves are stored from lower (x0) to
966          * higher (x3) gain */
967         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
968                 /* ee_x_gain[mode] is x gain mask */
969                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
970                         pdgain_idx[pd_gains++] = i;
971         }
972         ee->ee_pd_gains[mode] = pd_gains;
973
974         if (pd_gains == 0 || pd_gains > 2)
975                 return -EINVAL;
976
977         switch (mode) {
978         case AR5K_EEPROM_MODE_11A:
979                 /*
980                  * Read 5GHz EEPROM channels
981                  */
982                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
983                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
984
985                 offset += AR5K_EEPROM_GROUP2_OFFSET;
986                 gen_chan_info = ee->ee_pwr_cal_a;
987                 break;
988         case AR5K_EEPROM_MODE_11B:
989                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
990                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
991                         offset += AR5K_EEPROM_GROUP3_OFFSET;
992
993                 /* NB: frequency piers parsed during mode init */
994                 gen_chan_info = ee->ee_pwr_cal_b;
995                 break;
996         case AR5K_EEPROM_MODE_11G:
997                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
998                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
999                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1000                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1001                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1002
1003                 /* NB: frequency piers parsed during mode init */
1004                 gen_chan_info = ee->ee_pwr_cal_g;
1005                 break;
1006         default:
1007                 return -EINVAL;
1008         }
1009
1010         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1011                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1012
1013                 /* Power values in quarter dB
1014                  * for the lower xpd gain curve
1015                  * (0 dBm -> higher output power) */
1016                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1017                         AR5K_EEPROM_READ(offset++, val);
1018                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1019                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1020                 }
1021
1022                 /* PCDAC steps
1023                  * corresponding to the above power
1024                  * measurements */
1025                 AR5K_EEPROM_READ(offset++, val);
1026                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1027                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1028                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1029
1030                 /* Power values in quarter dB
1031                  * for the higher xpd gain curve
1032                  * (18 dBm -> lower output power) */
1033                 AR5K_EEPROM_READ(offset++, val);
1034                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1035                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1036
1037                 AR5K_EEPROM_READ(offset++, val);
1038                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1039
1040                 /* PCDAC steps
1041                  * corresponding to the above power
1042                  * measurements (fixed) */
1043                 chan_pcal_info->pcdac_x3[0] = 20;
1044                 chan_pcal_info->pcdac_x3[1] = 35;
1045                 chan_pcal_info->pcdac_x3[2] = 63;
1046
1047                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1048                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1049
1050                         /* Last xpd0 power level is also channel maximum */
1051                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1052                 } else {
1053                         chan_pcal_info->pcdac_x0[0] = 1;
1054                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1055                 }
1056
1057         }
1058
1059         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1060 }
1061
1062
1063 /*
1064  * Read power calibration for RF2413 chips
1065  *
1066  * For RF2413 we have a Power to PDDAC table (Power Detector)
1067  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1068  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1069  * axis and looks like an exponential function like the RF5111 curve.
1070  *
1071  * To recreate the curves we read here the points and interpolate
1072  * later. Note that in most cases only 2 (higher and lower) curves are
1073  * used (like RF5112) but vendors have the oportunity to include all
1074  * 4 curves on eeprom. The final curve (higher power) has an extra
1075  * point for better accuracy like RF5112.
1076  */
1077
1078 /* For RF2413 power calibration data doesn't start on a fixed location and
1079  * if a mode is not supported, it's section is missing -not zeroed-.
1080  * So we need to calculate the starting offset for each section by using
1081  * these two functions */
1082
1083 /* Return the size of each section based on the mode and the number of pd
1084  * gains available (maximum 4). */
1085 static inline unsigned int
1086 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1087 {
1088         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1089         unsigned int sz;
1090
1091         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1092         sz *= ee->ee_n_piers[mode];
1093
1094         return sz;
1095 }
1096
1097 /* Return the starting offset for a section based on the modes supported
1098  * and each section's size. */
1099 static unsigned int
1100 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1101 {
1102         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1103
1104         switch(mode) {
1105         case AR5K_EEPROM_MODE_11G:
1106                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1107                         offset += ath5k_pdgains_size_2413(ee,
1108                                         AR5K_EEPROM_MODE_11B) +
1109                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1110                 /* fall through */
1111         case AR5K_EEPROM_MODE_11B:
1112                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1113                         offset += ath5k_pdgains_size_2413(ee,
1114                                         AR5K_EEPROM_MODE_11A) +
1115                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1116                 /* fall through */
1117         case AR5K_EEPROM_MODE_11A:
1118                 break;
1119         default:
1120                 break;
1121         }
1122
1123         return offset;
1124 }
1125
1126 /* Convert RF2413 specific data to generic raw data
1127  * used by interpolation code */
1128 static int
1129 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1130                                 struct ath5k_chan_pcal_info *chinfo)
1131 {
1132         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1133         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1134         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1135         unsigned int pier, point;
1136         int pdg;
1137
1138         /* Fill raw data for each calibration pier */
1139         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1140
1141                 pcinfo = &chinfo[pier].rf2413_info;
1142
1143                 /* Allocate pd_curves for this cal pier */
1144                 chinfo[pier].pd_curves =
1145                                 calloc(AR5K_EEPROM_N_PD_CURVES,
1146                                        sizeof(struct ath5k_pdgain_info));
1147
1148                 if (!chinfo[pier].pd_curves)
1149                         return -ENOMEM;
1150
1151                 /* Fill pd_curves */
1152                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1153
1154                         u8 idx = pdgain_idx[pdg];
1155                         struct ath5k_pdgain_info *pd =
1156                                         &chinfo[pier].pd_curves[idx];
1157
1158                         /* One more point for the highest power
1159                          * curve (lowest gain) */
1160                         if (pdg == ee->ee_pd_gains[mode] - 1)
1161                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1162                         else
1163                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1164
1165                         /* Allocate pd points for this curve */
1166                         pd->pd_step = calloc(pd->pd_points, sizeof(u8));
1167
1168                         if (!pd->pd_step)
1169                                 return -ENOMEM;
1170
1171                         pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
1172
1173                         if (!pd->pd_pwr)
1174                                 return -ENOMEM;
1175
1176                         /* Fill raw dataset
1177                          * convert all pwr levels to
1178                          * quarter dB for RF5112 combatibility */
1179                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1180                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1181
1182                         for (point = 1; point < pd->pd_points; point++) {
1183
1184                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1185                                         2 * pcinfo->pwr[pdg][point - 1];
1186
1187                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1188                                                 pcinfo->pddac[pdg][point - 1];
1189
1190                         }
1191
1192                         /* Highest gain curve -> min power */
1193                         if (pdg == 0)
1194                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1195
1196                         /* Lowest gain curve -> max power */
1197                         if (pdg == ee->ee_pd_gains[mode] - 1)
1198                                 chinfo[pier].max_pwr =
1199                                         pd->pd_pwr[pd->pd_points - 1];
1200                 }
1201         }
1202
1203         return 0;
1204 }
1205
1206 /* Parse EEPROM data */
1207 static int
1208 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1209 {
1210         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1211         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1212         struct ath5k_chan_pcal_info *chinfo;
1213         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1214         u32 offset;
1215         int idx, i, ret;
1216         u16 val;
1217         u8 pd_gains = 0;
1218
1219         /* Count how many curves we have and
1220          * identify them (which one of the 4
1221          * available curves we have on each count).
1222          * Curves are stored from higher to
1223          * lower gain so we go backwards */
1224         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1225                 /* ee_x_gain[mode] is x gain mask */
1226                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1227                         pdgain_idx[pd_gains++] = idx;
1228
1229         }
1230         ee->ee_pd_gains[mode] = pd_gains;
1231
1232         if (pd_gains == 0)
1233                 return -EINVAL;
1234
1235         offset = ath5k_cal_data_offset_2413(ee, mode);
1236         switch (mode) {
1237         case AR5K_EEPROM_MODE_11A:
1238                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1239                         return 0;
1240
1241                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1242                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1243                 chinfo = ee->ee_pwr_cal_a;
1244                 break;
1245         case AR5K_EEPROM_MODE_11B:
1246                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1247                         return 0;
1248
1249                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1250                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1251                 chinfo = ee->ee_pwr_cal_b;
1252                 break;
1253         case AR5K_EEPROM_MODE_11G:
1254                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1255                         return 0;
1256
1257                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1258                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1259                 chinfo = ee->ee_pwr_cal_g;
1260                 break;
1261         default:
1262                 return -EINVAL;
1263         }
1264
1265         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1266                 pcinfo = &chinfo[i].rf2413_info;
1267
1268                 /*
1269                  * Read pwr_i, pddac_i and the first
1270                  * 2 pd points (pwr, pddac)
1271                  */
1272                 AR5K_EEPROM_READ(offset++, val);
1273                 pcinfo->pwr_i[0] = val & 0x1f;
1274                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1275                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1276
1277                 AR5K_EEPROM_READ(offset++, val);
1278                 pcinfo->pddac[0][0] = val & 0x3f;
1279                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1280                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1281
1282                 AR5K_EEPROM_READ(offset++, val);
1283                 pcinfo->pwr[0][2] = val & 0xf;
1284                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1285
1286                 pcinfo->pwr[0][3] = 0;
1287                 pcinfo->pddac[0][3] = 0;
1288
1289                 if (pd_gains > 1) {
1290                         /*
1291                          * Pd gain 0 is not the last pd gain
1292                          * so it only has 2 pd points.
1293                          * Continue wih pd gain 1.
1294                          */
1295                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1296
1297                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1298                         AR5K_EEPROM_READ(offset++, val);
1299                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1300
1301                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1302                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1303
1304                         AR5K_EEPROM_READ(offset++, val);
1305                         pcinfo->pwr[1][1] = val & 0xf;
1306                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1307                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1308
1309                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1310                         AR5K_EEPROM_READ(offset++, val);
1311                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1312
1313                         pcinfo->pwr[1][3] = 0;
1314                         pcinfo->pddac[1][3] = 0;
1315                 } else if (pd_gains == 1) {
1316                         /*
1317                          * Pd gain 0 is the last one so
1318                          * read the extra point.
1319                          */
1320                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1321
1322                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1323                         AR5K_EEPROM_READ(offset++, val);
1324                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1325                 }
1326
1327                 /*
1328                  * Proceed with the other pd_gains
1329                  * as above.
1330                  */
1331                 if (pd_gains > 2) {
1332                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1333                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1334
1335                         AR5K_EEPROM_READ(offset++, val);
1336                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1337                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1338                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1339
1340                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1341                         AR5K_EEPROM_READ(offset++, val);
1342                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1343
1344                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1345                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1346
1347                         pcinfo->pwr[2][3] = 0;
1348                         pcinfo->pddac[2][3] = 0;
1349                 } else if (pd_gains == 2) {
1350                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1351                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1352                 }
1353
1354                 if (pd_gains > 3) {
1355                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1356                         AR5K_EEPROM_READ(offset++, val);
1357                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1358
1359                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1360                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1361                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1362
1363                         AR5K_EEPROM_READ(offset++, val);
1364                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1365                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1366                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1367
1368                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1369                         AR5K_EEPROM_READ(offset++, val);
1370                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1371
1372                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1373                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1374
1375                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1376                         AR5K_EEPROM_READ(offset++, val);
1377                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1378                 } else if (pd_gains == 3) {
1379                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1380                         AR5K_EEPROM_READ(offset++, val);
1381                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1382
1383                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1384                 }
1385         }
1386
1387         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1388 }
1389
1390
1391 /*
1392  * Read per rate target power (this is the maximum tx power
1393  * supported by the card). This info is used when setting
1394  * tx power, no matter the channel.
1395  *
1396  * This also works for v5 EEPROMs.
1397  */
1398 static int
1399 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1400 {
1401         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1402         struct ath5k_rate_pcal_info *rate_pcal_info;
1403         u8 *rate_target_pwr_num;
1404         u32 offset;
1405         u16 val;
1406         int ret, i;
1407
1408         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1409         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1410         switch (mode) {
1411         case AR5K_EEPROM_MODE_11A:
1412                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1413                 rate_pcal_info = ee->ee_rate_tpwr_a;
1414                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1415                 break;
1416         case AR5K_EEPROM_MODE_11B:
1417                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1418                 rate_pcal_info = ee->ee_rate_tpwr_b;
1419                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1420                 break;
1421         case AR5K_EEPROM_MODE_11G:
1422                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1423                 rate_pcal_info = ee->ee_rate_tpwr_g;
1424                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1425                 break;
1426         default:
1427                 return -EINVAL;
1428         }
1429
1430         /* Different freq mask for older eeproms (<= v3.2) */
1431         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1432                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1433                         AR5K_EEPROM_READ(offset++, val);
1434                         rate_pcal_info[i].freq =
1435                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1436
1437                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1438                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1439
1440                         AR5K_EEPROM_READ(offset++, val);
1441
1442                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1443                             val == 0) {
1444                                 (*rate_target_pwr_num) = i;
1445                                 break;
1446                         }
1447
1448                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1449                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1450                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1451                 }
1452         } else {
1453                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1454                         AR5K_EEPROM_READ(offset++, val);
1455                         rate_pcal_info[i].freq =
1456                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1457
1458                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1459                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1460
1461                         AR5K_EEPROM_READ(offset++, val);
1462
1463                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1464                             val == 0) {
1465                                 (*rate_target_pwr_num) = i;
1466                                 break;
1467                         }
1468
1469                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1470                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1471                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1472                 }
1473         }
1474
1475         return 0;
1476 }
1477
1478 /*
1479  * Read per channel calibration info from EEPROM
1480  *
1481  * This info is used to calibrate the baseband power table. Imagine
1482  * that for each channel there is a power curve that's hw specific
1483  * (depends on amplifier etc) and we try to "correct" this curve using
1484  * offests we pass on to phy chip (baseband -> before amplifier) so that
1485  * it can use accurate power values when setting tx power (takes amplifier's
1486  * performance on each channel into account).
1487  *
1488  * EEPROM provides us with the offsets for some pre-calibrated channels
1489  * and we have to interpolate to create the full table for these channels and
1490  * also the table for any channel.
1491  */
1492 static int
1493 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1494 {
1495         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1496         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1497         int mode;
1498         int err;
1499
1500         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1501                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1502                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1503         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1504                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1505                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1506         else
1507                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1508
1509
1510         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1511         mode++) {
1512                 err = read_pcal(ah, mode);
1513                 if (err)
1514                         return err;
1515
1516                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1517                 if (err < 0)
1518                         return err;
1519         }
1520
1521         return 0;
1522 }
1523
1524 static int
1525 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1526 {
1527         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1528         struct ath5k_chan_pcal_info *chinfo;
1529         u8 pier, pdg;
1530
1531         switch (mode) {
1532         case AR5K_EEPROM_MODE_11A:
1533                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1534                         return 0;
1535                 chinfo = ee->ee_pwr_cal_a;
1536                 break;
1537         case AR5K_EEPROM_MODE_11B:
1538                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1539                         return 0;
1540                 chinfo = ee->ee_pwr_cal_b;
1541                 break;
1542         case AR5K_EEPROM_MODE_11G:
1543                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1544                         return 0;
1545                 chinfo = ee->ee_pwr_cal_g;
1546                 break;
1547         default:
1548                 return -EINVAL;
1549         }
1550
1551         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1552                 if (!chinfo[pier].pd_curves)
1553                         continue;
1554
1555                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1556                         struct ath5k_pdgain_info *pd =
1557                                         &chinfo[pier].pd_curves[pdg];
1558
1559                         if (pd != NULL) {
1560                                 free(pd->pd_step);
1561                                 free(pd->pd_pwr);
1562                         }
1563                 }
1564
1565                 free(chinfo[pier].pd_curves);
1566         }
1567
1568         return 0;
1569 }
1570
1571 void
1572 ath5k_eeprom_detach(struct ath5k_hw *ah)
1573 {
1574         u8 mode;
1575
1576         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1577                 ath5k_eeprom_free_pcal_info(ah, mode);
1578 }
1579
1580 /* Read conformance test limits used for regulatory control */
1581 static int
1582 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1583 {
1584         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1585         struct ath5k_edge_power *rep;
1586         unsigned int fmask, pmask;
1587         unsigned int ctl_mode;
1588         int ret, i, j;
1589         u32 offset;
1590         u16 val;
1591
1592         pmask = AR5K_EEPROM_POWER_M;
1593         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1594         offset = AR5K_EEPROM_CTL(ee->ee_version);
1595         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1596         for (i = 0; i < ee->ee_ctls; i += 2) {
1597                 AR5K_EEPROM_READ(offset++, val);
1598                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1599                 ee->ee_ctl[i + 1] = val & 0xff;
1600         }
1601
1602         offset = AR5K_EEPROM_GROUP8_OFFSET;
1603         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1604                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1605                         AR5K_EEPROM_GROUP5_OFFSET;
1606         else
1607                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1608
1609         rep = ee->ee_ctl_pwr;
1610         for(i = 0; i < ee->ee_ctls; i++) {
1611                 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1612                 case AR5K_CTL_11A:
1613                 case AR5K_CTL_TURBO:
1614                         ctl_mode = AR5K_EEPROM_MODE_11A;
1615                         break;
1616                 default:
1617                         ctl_mode = AR5K_EEPROM_MODE_11G;
1618                         break;
1619                 }
1620                 if (ee->ee_ctl[i] == 0) {
1621                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1622                                 offset += 8;
1623                         else
1624                                 offset += 7;
1625                         rep += AR5K_EEPROM_N_EDGES;
1626                         continue;
1627                 }
1628                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1629                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1630                                 AR5K_EEPROM_READ(offset++, val);
1631                                 rep[j].freq = (val >> 8) & fmask;
1632                                 rep[j + 1].freq = val & fmask;
1633                         }
1634                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1635                                 AR5K_EEPROM_READ(offset++, val);
1636                                 rep[j].edge = (val >> 8) & pmask;
1637                                 rep[j].flag = (val >> 14) & 1;
1638                                 rep[j + 1].edge = val & pmask;
1639                                 rep[j + 1].flag = (val >> 6) & 1;
1640                         }
1641                 } else {
1642                         AR5K_EEPROM_READ(offset++, val);
1643                         rep[0].freq = (val >> 9) & fmask;
1644                         rep[1].freq = (val >> 2) & fmask;
1645                         rep[2].freq = (val << 5) & fmask;
1646
1647                         AR5K_EEPROM_READ(offset++, val);
1648                         rep[2].freq |= (val >> 11) & 0x1f;
1649                         rep[3].freq = (val >> 4) & fmask;
1650                         rep[4].freq = (val << 3) & fmask;
1651
1652                         AR5K_EEPROM_READ(offset++, val);
1653                         rep[4].freq |= (val >> 13) & 0x7;
1654                         rep[5].freq = (val >> 6) & fmask;
1655                         rep[6].freq = (val << 1) & fmask;
1656
1657                         AR5K_EEPROM_READ(offset++, val);
1658                         rep[6].freq |= (val >> 15) & 0x1;
1659                         rep[7].freq = (val >> 8) & fmask;
1660
1661                         rep[0].edge = (val >> 2) & pmask;
1662                         rep[1].edge = (val << 4) & pmask;
1663
1664                         AR5K_EEPROM_READ(offset++, val);
1665                         rep[1].edge |= (val >> 12) & 0xf;
1666                         rep[2].edge = (val >> 6) & pmask;
1667                         rep[3].edge = val & pmask;
1668
1669                         AR5K_EEPROM_READ(offset++, val);
1670                         rep[4].edge = (val >> 10) & pmask;
1671                         rep[5].edge = (val >> 4) & pmask;
1672                         rep[6].edge = (val << 2) & pmask;
1673
1674                         AR5K_EEPROM_READ(offset++, val);
1675                         rep[6].edge |= (val >> 14) & 0x3;
1676                         rep[7].edge = (val >> 8) & pmask;
1677                 }
1678                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1679                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1680                                 rep[j].freq, ctl_mode);
1681                 }
1682                 rep += AR5K_EEPROM_N_EDGES;
1683         }
1684
1685         return 0;
1686 }
1687
1688
1689 /*
1690  * Initialize eeprom power tables
1691  */
1692 int
1693 ath5k_eeprom_init(struct ath5k_hw *ah)
1694 {
1695         int err;
1696
1697         err = ath5k_eeprom_init_header(ah);
1698         if (err < 0)
1699                 return err;
1700
1701         err = ath5k_eeprom_init_modes(ah);
1702         if (err < 0)
1703                 return err;
1704
1705         err = ath5k_eeprom_read_pcal_info(ah);
1706         if (err < 0)
1707                 return err;
1708
1709         err = ath5k_eeprom_read_ctl_info(ah);
1710         if (err < 0)
1711                 return err;
1712
1713         return 0;
1714 }
1715
1716 /*
1717  * Read the MAC address from eeprom
1718  */
1719 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1720 {
1721         u8 mac_d[ETH_ALEN] = {};
1722         u32 total, offset;
1723         u16 data;
1724         int octet, ret;
1725
1726         ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1727         if (ret)
1728                 return ret;
1729
1730         for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1731                 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1732                 if (ret)
1733                         return ret;
1734
1735                 total += data;
1736                 mac_d[octet + 1] = data & 0xff;
1737                 mac_d[octet] = data >> 8;
1738                 octet += 2;
1739         }
1740
1741         if (!total || total == 3 * 0xffff)
1742                 return -EINVAL;
1743
1744         memcpy(mac, mac_d, ETH_ALEN);
1745
1746         return 0;
1747 }
1748
1749 int ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
1750 {
1751         u16 data;
1752
1753         ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
1754
1755         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
1756                 return 1;
1757         else
1758                 return 0;
1759 }
1760