Add qemu 2.4.0
[kvmfornfv.git] / qemu / pixman / demos / radial-test.c
1 #include "../test/utils.h"
2 #include "gtk-utils.h"
3
4 #define NUM_GRADIENTS 9
5 #define NUM_STOPS 3
6 #define NUM_REPEAT 4
7 #define SIZE 128
8 #define WIDTH (SIZE * NUM_GRADIENTS)
9 #define HEIGHT (SIZE * NUM_REPEAT)
10
11 /*
12  * We want to test all the possible relative positions of the start
13  * and end circle:
14  *
15  *  - The start circle can be smaller/equal/bigger than the end
16  *    circle. A radial gradient can be classified in one of these
17  *    three cases depending on the sign of dr.
18  *
19  *  - The smaller circle can be completely inside/internally
20  *    tangent/outside (at least in part) of the bigger circle. This
21  *    classification is the same as the one which can be computed by
22  *    examining the sign of a = (dx^2 + dy^2 - dr^2).
23  *
24  *  - If the two circles have the same size, neither can be inside or
25  *    internally tangent
26  *
27  * This test draws radial gradients whose circles always have the same
28  * centers (0, 0) and (1, 0), but with different radiuses. From left
29  * to right:
30  *
31  * - Degenerate start circle completely inside the end circle
32  *     0.00 -> 1.75; dr = 1.75 > 0; a = 1 - 1.75^2 < 0
33  *
34  * - Small start circle completely inside the end circle
35  *     0.25 -> 1.75; dr =  1.5 > 0; a = 1 - 1.50^2 < 0
36  *
37  * - Small start circle internally tangent to the end circle
38  *     0.50 -> 1.50; dr =  1.0 > 0; a = 1 - 1.00^2 = 0
39  *
40  * - Small start circle outside of the end circle
41  *     0.50 -> 1.00; dr =  0.5 > 0; a = 1 - 0.50^2 > 0
42  *
43  * - Start circle with the same size as the end circle
44  *     1.00 -> 1.00; dr =  0.0 = 0; a = 1 - 0.00^2 > 0
45  *
46  * - Small end circle outside of the start circle
47  *     1.00 -> 0.50; dr = -0.5 > 0; a = 1 - 0.50^2 > 0
48  *
49  * - Small end circle internally tangent to the start circle
50  *     1.50 -> 0.50; dr = -1.0 > 0; a = 1 - 1.00^2 = 0
51  *
52  * - Small end circle completely inside the start circle
53  *     1.75 -> 0.25; dr = -1.5 > 0; a = 1 - 1.50^2 < 0
54  *
55  * - Degenerate end circle completely inside the start circle
56  *     0.00 -> 1.75; dr = 1.75 > 0; a = 1 - 1.75^2 < 0
57  *
58  */
59
60 const static double radiuses[NUM_GRADIENTS] = {
61     0.00,
62     0.25,
63     0.50,
64     0.50,
65     1.00,
66     1.00,
67     1.50,
68     1.75,
69     1.75
70 };
71
72 #define double_to_color(x)                                      \
73     (((uint32_t) ((x)*65536)) - (((uint32_t) ((x)*65536)) >> 16))
74
75 #define PIXMAN_STOP(offset,r,g,b,a)             \
76     { pixman_double_to_fixed (offset),          \
77         {                                       \
78         double_to_color (r),                    \
79         double_to_color (g),                    \
80         double_to_color (b),                    \
81         double_to_color (a)                     \
82         }                                       \
83     }
84
85 static const pixman_gradient_stop_t stops[NUM_STOPS] = {
86     PIXMAN_STOP (0.0,        1, 0, 0, 0.75),
87     PIXMAN_STOP (0.70710678, 0, 1, 0, 0),
88     PIXMAN_STOP (1.0,        0, 0, 1, 1)
89 };
90
91 static pixman_image_t *
92 create_radial (int index)
93 {
94     pixman_point_fixed_t p0, p1;
95     pixman_fixed_t r0, r1;
96     double x0, x1, radius0, radius1, left, right, center;
97
98     x0 = 0;
99     x1 = 1;
100     radius0 = radiuses[index];
101     radius1 = radiuses[NUM_GRADIENTS - index - 1];
102
103     /* center the gradient */
104     left = MIN (x0 - radius0, x1 - radius1);
105     right = MAX (x0 + radius0, x1 + radius1);
106     center = (left + right) * 0.5;
107     x0 -= center;
108     x1 -= center;
109
110     /* scale to make it fit within a 1x1 rect centered in (0,0) */
111     x0 *= 0.25;
112     x1 *= 0.25;
113     radius0 *= 0.25;
114     radius1 *= 0.25;
115
116     p0.x = pixman_double_to_fixed (x0);
117     p0.y = pixman_double_to_fixed (0);
118
119     p1.x = pixman_double_to_fixed (x1);
120     p1.y = pixman_double_to_fixed (0);
121
122     r0 = pixman_double_to_fixed (radius0);
123     r1 = pixman_double_to_fixed (radius1);
124
125     return pixman_image_create_radial_gradient (&p0, &p1,
126                                                 r0, r1,
127                                                 stops, NUM_STOPS);
128 }
129
130 static const pixman_repeat_t repeat[NUM_REPEAT] = {
131     PIXMAN_REPEAT_NONE,
132     PIXMAN_REPEAT_NORMAL,
133     PIXMAN_REPEAT_REFLECT,
134     PIXMAN_REPEAT_PAD
135 };
136
137 int
138 main (int argc, char **argv)
139 {
140     pixman_transform_t transform;
141     pixman_image_t *src_img, *dest_img;
142     int i, j;
143
144     enable_divbyzero_exceptions ();
145
146     dest_img = pixman_image_create_bits (PIXMAN_a8r8g8b8,
147                                          WIDTH, HEIGHT,
148                                          NULL, 0);
149
150     draw_checkerboard (dest_img, 25, 0xffaaaaaa, 0xffbbbbbb);
151     
152     pixman_transform_init_identity (&transform);
153
154     /*
155      * The create_radial() function returns gradients centered in the
156      * origin and whose interesting part fits a 1x1 square. We want to
157      * paint these gradients on a SIZExSIZE square and to make things
158      * easier we want the origin in the top-left corner of the square
159      * we want to see.
160      */
161     pixman_transform_translate (NULL, &transform,
162                                 pixman_double_to_fixed (0.5),
163                                 pixman_double_to_fixed (0.5));
164
165     pixman_transform_scale (NULL, &transform,
166                             pixman_double_to_fixed (SIZE),
167                             pixman_double_to_fixed (SIZE));
168
169     /*
170      * Gradients are evaluated at the center of each pixel, so we need
171      * to translate by half a pixel to trigger some interesting
172      * cornercases. In particular, the original implementation of PDF
173      * radial gradients tried to divide by 0 when using this transform
174      * on the "tangent circles" cases.
175      */
176     pixman_transform_translate (NULL, &transform,
177                                 pixman_double_to_fixed (0.5),
178                                 pixman_double_to_fixed (0.5));
179
180     for (i = 0; i < NUM_GRADIENTS; i++)
181     {
182         src_img = create_radial (i);
183         pixman_image_set_transform (src_img, &transform);
184
185         for (j = 0; j < NUM_REPEAT; j++)
186         {
187             pixman_image_set_repeat (src_img, repeat[j]);
188
189             pixman_image_composite32 (PIXMAN_OP_OVER,
190                                       src_img,
191                                       NULL,
192                                       dest_img,
193                                       0, 0,
194                                       0, 0,
195                                       i * SIZE, j * SIZE,
196                                       SIZE, SIZE);
197
198         }
199
200         pixman_image_unref (src_img);
201     }
202
203     show_image (dest_img);
204
205     pixman_image_unref (dest_img);
206
207     return 0;
208 }