Add qemu 2.4.0
[kvmfornfv.git] / qemu / migration / rdma.c
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  *
6  * Authors:
7  *  Michael R. Hines <mrhines@us.ibm.com>
8  *  Jiuxing Liu <jl@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or
11  * later.  See the COPYING file in the top-level directory.
12  *
13  */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "qemu/sockets.h"
21 #include "qemu/bitmap.h"
22 #include "block/coroutine.h"
23 #include <stdio.h>
24 #include <sys/types.h>
25 #include <sys/socket.h>
26 #include <netdb.h>
27 #include <arpa/inet.h>
28 #include <string.h>
29 #include <rdma/rdma_cma.h>
30 #include "trace.h"
31
32 /*
33  * Print and error on both the Monitor and the Log file.
34  */
35 #define ERROR(errp, fmt, ...) \
36     do { \
37         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
38         if (errp && (*(errp) == NULL)) { \
39             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
40         } \
41     } while (0)
42
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
44
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
48
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
50
51 /*
52  * This is only for non-live state being migrated.
53  * Instead of RDMA_WRITE messages, we use RDMA_SEND
54  * messages for that state, which requires a different
55  * delivery design than main memory.
56  */
57 #define RDMA_SEND_INCREMENT 32768
58
59 /*
60  * Maximum size infiniband SEND message
61  */
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
64
65 #define RDMA_CONTROL_VERSION_CURRENT 1
66 /*
67  * Capabilities for negotiation.
68  */
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
70
71 /*
72  * Add the other flags above to this list of known capabilities
73  * as they are introduced.
74  */
75 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
76
77 #define CHECK_ERROR_STATE() \
78     do { \
79         if (rdma->error_state) { \
80             if (!rdma->error_reported) { \
81                 error_report("RDMA is in an error state waiting migration" \
82                                 " to abort!"); \
83                 rdma->error_reported = 1; \
84             } \
85             return rdma->error_state; \
86         } \
87     } while (0);
88
89 /*
90  * A work request ID is 64-bits and we split up these bits
91  * into 3 parts:
92  *
93  * bits 0-15 : type of control message, 2^16
94  * bits 16-29: ram block index, 2^14
95  * bits 30-63: ram block chunk number, 2^34
96  *
97  * The last two bit ranges are only used for RDMA writes,
98  * in order to track their completion and potentially
99  * also track unregistration status of the message.
100  */
101 #define RDMA_WRID_TYPE_SHIFT  0UL
102 #define RDMA_WRID_BLOCK_SHIFT 16UL
103 #define RDMA_WRID_CHUNK_SHIFT 30UL
104
105 #define RDMA_WRID_TYPE_MASK \
106     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
107
108 #define RDMA_WRID_BLOCK_MASK \
109     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
110
111 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
112
113 /*
114  * RDMA migration protocol:
115  * 1. RDMA Writes (data messages, i.e. RAM)
116  * 2. IB Send/Recv (control channel messages)
117  */
118 enum {
119     RDMA_WRID_NONE = 0,
120     RDMA_WRID_RDMA_WRITE = 1,
121     RDMA_WRID_SEND_CONTROL = 2000,
122     RDMA_WRID_RECV_CONTROL = 4000,
123 };
124
125 static const char *wrid_desc[] = {
126     [RDMA_WRID_NONE] = "NONE",
127     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
128     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
129     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
130 };
131
132 /*
133  * Work request IDs for IB SEND messages only (not RDMA writes).
134  * This is used by the migration protocol to transmit
135  * control messages (such as device state and registration commands)
136  *
137  * We could use more WRs, but we have enough for now.
138  */
139 enum {
140     RDMA_WRID_READY = 0,
141     RDMA_WRID_DATA,
142     RDMA_WRID_CONTROL,
143     RDMA_WRID_MAX,
144 };
145
146 /*
147  * SEND/RECV IB Control Messages.
148  */
149 enum {
150     RDMA_CONTROL_NONE = 0,
151     RDMA_CONTROL_ERROR,
152     RDMA_CONTROL_READY,               /* ready to receive */
153     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
154     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
155     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
156     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
157     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
158     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
159     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
160     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
161     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
162 };
163
164 static const char *control_desc[] = {
165     [RDMA_CONTROL_NONE] = "NONE",
166     [RDMA_CONTROL_ERROR] = "ERROR",
167     [RDMA_CONTROL_READY] = "READY",
168     [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
169     [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
170     [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
171     [RDMA_CONTROL_COMPRESS] = "COMPRESS",
172     [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
173     [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
174     [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
175     [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
176     [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
177 };
178
179 /*
180  * Memory and MR structures used to represent an IB Send/Recv work request.
181  * This is *not* used for RDMA writes, only IB Send/Recv.
182  */
183 typedef struct {
184     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
185     struct   ibv_mr *control_mr;               /* registration metadata */
186     size_t   control_len;                      /* length of the message */
187     uint8_t *control_curr;                     /* start of unconsumed bytes */
188 } RDMAWorkRequestData;
189
190 /*
191  * Negotiate RDMA capabilities during connection-setup time.
192  */
193 typedef struct {
194     uint32_t version;
195     uint32_t flags;
196 } RDMACapabilities;
197
198 static void caps_to_network(RDMACapabilities *cap)
199 {
200     cap->version = htonl(cap->version);
201     cap->flags = htonl(cap->flags);
202 }
203
204 static void network_to_caps(RDMACapabilities *cap)
205 {
206     cap->version = ntohl(cap->version);
207     cap->flags = ntohl(cap->flags);
208 }
209
210 /*
211  * Representation of a RAMBlock from an RDMA perspective.
212  * This is not transmitted, only local.
213  * This and subsequent structures cannot be linked lists
214  * because we're using a single IB message to transmit
215  * the information. It's small anyway, so a list is overkill.
216  */
217 typedef struct RDMALocalBlock {
218     char          *block_name;
219     uint8_t       *local_host_addr; /* local virtual address */
220     uint64_t       remote_host_addr; /* remote virtual address */
221     uint64_t       offset;
222     uint64_t       length;
223     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
224     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
225     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
226     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
227     int            index;           /* which block are we */
228     unsigned int   src_index;       /* (Only used on dest) */
229     bool           is_ram_block;
230     int            nb_chunks;
231     unsigned long *transit_bitmap;
232     unsigned long *unregister_bitmap;
233 } RDMALocalBlock;
234
235 /*
236  * Also represents a RAMblock, but only on the dest.
237  * This gets transmitted by the dest during connection-time
238  * to the source VM and then is used to populate the
239  * corresponding RDMALocalBlock with
240  * the information needed to perform the actual RDMA.
241  */
242 typedef struct QEMU_PACKED RDMADestBlock {
243     uint64_t remote_host_addr;
244     uint64_t offset;
245     uint64_t length;
246     uint32_t remote_rkey;
247     uint32_t padding;
248 } RDMADestBlock;
249
250 static uint64_t htonll(uint64_t v)
251 {
252     union { uint32_t lv[2]; uint64_t llv; } u;
253     u.lv[0] = htonl(v >> 32);
254     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
255     return u.llv;
256 }
257
258 static uint64_t ntohll(uint64_t v) {
259     union { uint32_t lv[2]; uint64_t llv; } u;
260     u.llv = v;
261     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
262 }
263
264 static void dest_block_to_network(RDMADestBlock *db)
265 {
266     db->remote_host_addr = htonll(db->remote_host_addr);
267     db->offset = htonll(db->offset);
268     db->length = htonll(db->length);
269     db->remote_rkey = htonl(db->remote_rkey);
270 }
271
272 static void network_to_dest_block(RDMADestBlock *db)
273 {
274     db->remote_host_addr = ntohll(db->remote_host_addr);
275     db->offset = ntohll(db->offset);
276     db->length = ntohll(db->length);
277     db->remote_rkey = ntohl(db->remote_rkey);
278 }
279
280 /*
281  * Virtual address of the above structures used for transmitting
282  * the RAMBlock descriptions at connection-time.
283  * This structure is *not* transmitted.
284  */
285 typedef struct RDMALocalBlocks {
286     int nb_blocks;
287     bool     init;             /* main memory init complete */
288     RDMALocalBlock *block;
289 } RDMALocalBlocks;
290
291 /*
292  * Main data structure for RDMA state.
293  * While there is only one copy of this structure being allocated right now,
294  * this is the place where one would start if you wanted to consider
295  * having more than one RDMA connection open at the same time.
296  */
297 typedef struct RDMAContext {
298     char *host;
299     int port;
300
301     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
302
303     /*
304      * This is used by *_exchange_send() to figure out whether or not
305      * the initial "READY" message has already been received or not.
306      * This is because other functions may potentially poll() and detect
307      * the READY message before send() does, in which case we need to
308      * know if it completed.
309      */
310     int control_ready_expected;
311
312     /* number of outstanding writes */
313     int nb_sent;
314
315     /* store info about current buffer so that we can
316        merge it with future sends */
317     uint64_t current_addr;
318     uint64_t current_length;
319     /* index of ram block the current buffer belongs to */
320     int current_index;
321     /* index of the chunk in the current ram block */
322     int current_chunk;
323
324     bool pin_all;
325
326     /*
327      * infiniband-specific variables for opening the device
328      * and maintaining connection state and so forth.
329      *
330      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
331      * cm_id->verbs, cm_id->channel, and cm_id->qp.
332      */
333     struct rdma_cm_id *cm_id;               /* connection manager ID */
334     struct rdma_cm_id *listen_id;
335     bool connected;
336
337     struct ibv_context          *verbs;
338     struct rdma_event_channel   *channel;
339     struct ibv_qp *qp;                      /* queue pair */
340     struct ibv_comp_channel *comp_channel;  /* completion channel */
341     struct ibv_pd *pd;                      /* protection domain */
342     struct ibv_cq *cq;                      /* completion queue */
343
344     /*
345      * If a previous write failed (perhaps because of a failed
346      * memory registration, then do not attempt any future work
347      * and remember the error state.
348      */
349     int error_state;
350     int error_reported;
351
352     /*
353      * Description of ram blocks used throughout the code.
354      */
355     RDMALocalBlocks local_ram_blocks;
356     RDMADestBlock  *dest_blocks;
357
358     /* Index of the next RAMBlock received during block registration */
359     unsigned int    next_src_index;
360
361     /*
362      * Migration on *destination* started.
363      * Then use coroutine yield function.
364      * Source runs in a thread, so we don't care.
365      */
366     int migration_started_on_destination;
367
368     int total_registrations;
369     int total_writes;
370
371     int unregister_current, unregister_next;
372     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
373
374     GHashTable *blockmap;
375 } RDMAContext;
376
377 /*
378  * Interface to the rest of the migration call stack.
379  */
380 typedef struct QEMUFileRDMA {
381     RDMAContext *rdma;
382     size_t len;
383     void *file;
384 } QEMUFileRDMA;
385
386 /*
387  * Main structure for IB Send/Recv control messages.
388  * This gets prepended at the beginning of every Send/Recv.
389  */
390 typedef struct QEMU_PACKED {
391     uint32_t len;     /* Total length of data portion */
392     uint32_t type;    /* which control command to perform */
393     uint32_t repeat;  /* number of commands in data portion of same type */
394     uint32_t padding;
395 } RDMAControlHeader;
396
397 static void control_to_network(RDMAControlHeader *control)
398 {
399     control->type = htonl(control->type);
400     control->len = htonl(control->len);
401     control->repeat = htonl(control->repeat);
402 }
403
404 static void network_to_control(RDMAControlHeader *control)
405 {
406     control->type = ntohl(control->type);
407     control->len = ntohl(control->len);
408     control->repeat = ntohl(control->repeat);
409 }
410
411 /*
412  * Register a single Chunk.
413  * Information sent by the source VM to inform the dest
414  * to register an single chunk of memory before we can perform
415  * the actual RDMA operation.
416  */
417 typedef struct QEMU_PACKED {
418     union QEMU_PACKED {
419         uint64_t current_addr;  /* offset into the ram_addr_t space */
420         uint64_t chunk;         /* chunk to lookup if unregistering */
421     } key;
422     uint32_t current_index; /* which ramblock the chunk belongs to */
423     uint32_t padding;
424     uint64_t chunks;            /* how many sequential chunks to register */
425 } RDMARegister;
426
427 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
428 {
429     RDMALocalBlock *local_block;
430     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
431
432     if (local_block->is_ram_block) {
433         /*
434          * current_addr as passed in is an address in the local ram_addr_t
435          * space, we need to translate this for the destination
436          */
437         reg->key.current_addr -= local_block->offset;
438         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
439     }
440     reg->key.current_addr = htonll(reg->key.current_addr);
441     reg->current_index = htonl(reg->current_index);
442     reg->chunks = htonll(reg->chunks);
443 }
444
445 static void network_to_register(RDMARegister *reg)
446 {
447     reg->key.current_addr = ntohll(reg->key.current_addr);
448     reg->current_index = ntohl(reg->current_index);
449     reg->chunks = ntohll(reg->chunks);
450 }
451
452 typedef struct QEMU_PACKED {
453     uint32_t value;     /* if zero, we will madvise() */
454     uint32_t block_idx; /* which ram block index */
455     uint64_t offset;    /* Address in remote ram_addr_t space */
456     uint64_t length;    /* length of the chunk */
457 } RDMACompress;
458
459 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
460 {
461     comp->value = htonl(comp->value);
462     /*
463      * comp->offset as passed in is an address in the local ram_addr_t
464      * space, we need to translate this for the destination
465      */
466     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
467     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
468     comp->block_idx = htonl(comp->block_idx);
469     comp->offset = htonll(comp->offset);
470     comp->length = htonll(comp->length);
471 }
472
473 static void network_to_compress(RDMACompress *comp)
474 {
475     comp->value = ntohl(comp->value);
476     comp->block_idx = ntohl(comp->block_idx);
477     comp->offset = ntohll(comp->offset);
478     comp->length = ntohll(comp->length);
479 }
480
481 /*
482  * The result of the dest's memory registration produces an "rkey"
483  * which the source VM must reference in order to perform
484  * the RDMA operation.
485  */
486 typedef struct QEMU_PACKED {
487     uint32_t rkey;
488     uint32_t padding;
489     uint64_t host_addr;
490 } RDMARegisterResult;
491
492 static void result_to_network(RDMARegisterResult *result)
493 {
494     result->rkey = htonl(result->rkey);
495     result->host_addr = htonll(result->host_addr);
496 };
497
498 static void network_to_result(RDMARegisterResult *result)
499 {
500     result->rkey = ntohl(result->rkey);
501     result->host_addr = ntohll(result->host_addr);
502 };
503
504 const char *print_wrid(int wrid);
505 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
506                                    uint8_t *data, RDMAControlHeader *resp,
507                                    int *resp_idx,
508                                    int (*callback)(RDMAContext *rdma));
509
510 static inline uint64_t ram_chunk_index(const uint8_t *start,
511                                        const uint8_t *host)
512 {
513     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
514 }
515
516 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
517                                        uint64_t i)
518 {
519     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
520                                   (i << RDMA_REG_CHUNK_SHIFT));
521 }
522
523 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
524                                      uint64_t i)
525 {
526     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
527                                          (1UL << RDMA_REG_CHUNK_SHIFT);
528
529     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
530         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
531     }
532
533     return result;
534 }
535
536 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
537                          void *host_addr,
538                          ram_addr_t block_offset, uint64_t length)
539 {
540     RDMALocalBlocks *local = &rdma->local_ram_blocks;
541     RDMALocalBlock *block;
542     RDMALocalBlock *old = local->block;
543
544     local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
545
546     if (local->nb_blocks) {
547         int x;
548
549         if (rdma->blockmap) {
550             for (x = 0; x < local->nb_blocks; x++) {
551                 g_hash_table_remove(rdma->blockmap,
552                                     (void *)(uintptr_t)old[x].offset);
553                 g_hash_table_insert(rdma->blockmap,
554                                     (void *)(uintptr_t)old[x].offset,
555                                     &local->block[x]);
556             }
557         }
558         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
559         g_free(old);
560     }
561
562     block = &local->block[local->nb_blocks];
563
564     block->block_name = g_strdup(block_name);
565     block->local_host_addr = host_addr;
566     block->offset = block_offset;
567     block->length = length;
568     block->index = local->nb_blocks;
569     block->src_index = ~0U; /* Filled in by the receipt of the block list */
570     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
571     block->transit_bitmap = bitmap_new(block->nb_chunks);
572     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
573     block->unregister_bitmap = bitmap_new(block->nb_chunks);
574     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
575     block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
576
577     block->is_ram_block = local->init ? false : true;
578
579     if (rdma->blockmap) {
580         g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
581     }
582
583     trace_rdma_add_block(block_name, local->nb_blocks,
584                          (uintptr_t) block->local_host_addr,
585                          block->offset, block->length,
586                          (uintptr_t) (block->local_host_addr + block->length),
587                          BITS_TO_LONGS(block->nb_chunks) *
588                              sizeof(unsigned long) * 8,
589                          block->nb_chunks);
590
591     local->nb_blocks++;
592
593     return 0;
594 }
595
596 /*
597  * Memory regions need to be registered with the device and queue pairs setup
598  * in advanced before the migration starts. This tells us where the RAM blocks
599  * are so that we can register them individually.
600  */
601 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
602     ram_addr_t block_offset, ram_addr_t length, void *opaque)
603 {
604     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
605 }
606
607 /*
608  * Identify the RAMBlocks and their quantity. They will be references to
609  * identify chunk boundaries inside each RAMBlock and also be referenced
610  * during dynamic page registration.
611  */
612 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
613 {
614     RDMALocalBlocks *local = &rdma->local_ram_blocks;
615
616     assert(rdma->blockmap == NULL);
617     memset(local, 0, sizeof *local);
618     qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
619     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
620     rdma->dest_blocks = (RDMADestBlock *) g_malloc0(sizeof(RDMADestBlock) *
621                         rdma->local_ram_blocks.nb_blocks);
622     local->init = true;
623     return 0;
624 }
625
626 /*
627  * Note: If used outside of cleanup, the caller must ensure that the destination
628  * block structures are also updated
629  */
630 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
631 {
632     RDMALocalBlocks *local = &rdma->local_ram_blocks;
633     RDMALocalBlock *old = local->block;
634     int x;
635
636     if (rdma->blockmap) {
637         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
638     }
639     if (block->pmr) {
640         int j;
641
642         for (j = 0; j < block->nb_chunks; j++) {
643             if (!block->pmr[j]) {
644                 continue;
645             }
646             ibv_dereg_mr(block->pmr[j]);
647             rdma->total_registrations--;
648         }
649         g_free(block->pmr);
650         block->pmr = NULL;
651     }
652
653     if (block->mr) {
654         ibv_dereg_mr(block->mr);
655         rdma->total_registrations--;
656         block->mr = NULL;
657     }
658
659     g_free(block->transit_bitmap);
660     block->transit_bitmap = NULL;
661
662     g_free(block->unregister_bitmap);
663     block->unregister_bitmap = NULL;
664
665     g_free(block->remote_keys);
666     block->remote_keys = NULL;
667
668     g_free(block->block_name);
669     block->block_name = NULL;
670
671     if (rdma->blockmap) {
672         for (x = 0; x < local->nb_blocks; x++) {
673             g_hash_table_remove(rdma->blockmap,
674                                 (void *)(uintptr_t)old[x].offset);
675         }
676     }
677
678     if (local->nb_blocks > 1) {
679
680         local->block = g_malloc0(sizeof(RDMALocalBlock) *
681                                     (local->nb_blocks - 1));
682
683         if (block->index) {
684             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
685         }
686
687         if (block->index < (local->nb_blocks - 1)) {
688             memcpy(local->block + block->index, old + (block->index + 1),
689                 sizeof(RDMALocalBlock) *
690                     (local->nb_blocks - (block->index + 1)));
691         }
692     } else {
693         assert(block == local->block);
694         local->block = NULL;
695     }
696
697     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
698                            block->offset, block->length,
699                             (uintptr_t)(block->local_host_addr + block->length),
700                            BITS_TO_LONGS(block->nb_chunks) *
701                                sizeof(unsigned long) * 8, block->nb_chunks);
702
703     g_free(old);
704
705     local->nb_blocks--;
706
707     if (local->nb_blocks && rdma->blockmap) {
708         for (x = 0; x < local->nb_blocks; x++) {
709             g_hash_table_insert(rdma->blockmap,
710                                 (void *)(uintptr_t)local->block[x].offset,
711                                 &local->block[x]);
712         }
713     }
714
715     return 0;
716 }
717
718 /*
719  * Put in the log file which RDMA device was opened and the details
720  * associated with that device.
721  */
722 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
723 {
724     struct ibv_port_attr port;
725
726     if (ibv_query_port(verbs, 1, &port)) {
727         error_report("Failed to query port information");
728         return;
729     }
730
731     printf("%s RDMA Device opened: kernel name %s "
732            "uverbs device name %s, "
733            "infiniband_verbs class device path %s, "
734            "infiniband class device path %s, "
735            "transport: (%d) %s\n",
736                 who,
737                 verbs->device->name,
738                 verbs->device->dev_name,
739                 verbs->device->dev_path,
740                 verbs->device->ibdev_path,
741                 port.link_layer,
742                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
743                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
744                     ? "Ethernet" : "Unknown"));
745 }
746
747 /*
748  * Put in the log file the RDMA gid addressing information,
749  * useful for folks who have trouble understanding the
750  * RDMA device hierarchy in the kernel.
751  */
752 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
753 {
754     char sgid[33];
755     char dgid[33];
756     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
757     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
758     trace_qemu_rdma_dump_gid(who, sgid, dgid);
759 }
760
761 /*
762  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
763  * We will try the next addrinfo struct, and fail if there are
764  * no other valid addresses to bind against.
765  *
766  * If user is listening on '[::]', then we will not have a opened a device
767  * yet and have no way of verifying if the device is RoCE or not.
768  *
769  * In this case, the source VM will throw an error for ALL types of
770  * connections (both IPv4 and IPv6) if the destination machine does not have
771  * a regular infiniband network available for use.
772  *
773  * The only way to guarantee that an error is thrown for broken kernels is
774  * for the management software to choose a *specific* interface at bind time
775  * and validate what time of hardware it is.
776  *
777  * Unfortunately, this puts the user in a fix:
778  *
779  *  If the source VM connects with an IPv4 address without knowing that the
780  *  destination has bound to '[::]' the migration will unconditionally fail
781  *  unless the management software is explicitly listening on the the IPv4
782  *  address while using a RoCE-based device.
783  *
784  *  If the source VM connects with an IPv6 address, then we're OK because we can
785  *  throw an error on the source (and similarly on the destination).
786  *
787  *  But in mixed environments, this will be broken for a while until it is fixed
788  *  inside linux.
789  *
790  * We do provide a *tiny* bit of help in this function: We can list all of the
791  * devices in the system and check to see if all the devices are RoCE or
792  * Infiniband.
793  *
794  * If we detect that we have a *pure* RoCE environment, then we can safely
795  * thrown an error even if the management software has specified '[::]' as the
796  * bind address.
797  *
798  * However, if there is are multiple hetergeneous devices, then we cannot make
799  * this assumption and the user just has to be sure they know what they are
800  * doing.
801  *
802  * Patches are being reviewed on linux-rdma.
803  */
804 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
805 {
806     struct ibv_port_attr port_attr;
807
808     /* This bug only exists in linux, to our knowledge. */
809 #ifdef CONFIG_LINUX
810
811     /*
812      * Verbs are only NULL if management has bound to '[::]'.
813      *
814      * Let's iterate through all the devices and see if there any pure IB
815      * devices (non-ethernet).
816      *
817      * If not, then we can safely proceed with the migration.
818      * Otherwise, there are no guarantees until the bug is fixed in linux.
819      */
820     if (!verbs) {
821         int num_devices, x;
822         struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
823         bool roce_found = false;
824         bool ib_found = false;
825
826         for (x = 0; x < num_devices; x++) {
827             verbs = ibv_open_device(dev_list[x]);
828             if (!verbs) {
829                 if (errno == EPERM) {
830                     continue;
831                 } else {
832                     return -EINVAL;
833                 }
834             }
835
836             if (ibv_query_port(verbs, 1, &port_attr)) {
837                 ibv_close_device(verbs);
838                 ERROR(errp, "Could not query initial IB port");
839                 return -EINVAL;
840             }
841
842             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
843                 ib_found = true;
844             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
845                 roce_found = true;
846             }
847
848             ibv_close_device(verbs);
849
850         }
851
852         if (roce_found) {
853             if (ib_found) {
854                 fprintf(stderr, "WARN: migrations may fail:"
855                                 " IPv6 over RoCE / iWARP in linux"
856                                 " is broken. But since you appear to have a"
857                                 " mixed RoCE / IB environment, be sure to only"
858                                 " migrate over the IB fabric until the kernel "
859                                 " fixes the bug.\n");
860             } else {
861                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
862                             " and your management software has specified '[::]'"
863                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
864                 return -ENONET;
865             }
866         }
867
868         return 0;
869     }
870
871     /*
872      * If we have a verbs context, that means that some other than '[::]' was
873      * used by the management software for binding. In which case we can
874      * actually warn the user about a potentially broken kernel.
875      */
876
877     /* IB ports start with 1, not 0 */
878     if (ibv_query_port(verbs, 1, &port_attr)) {
879         ERROR(errp, "Could not query initial IB port");
880         return -EINVAL;
881     }
882
883     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
884         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
885                     "(but patches on linux-rdma in progress)");
886         return -ENONET;
887     }
888
889 #endif
890
891     return 0;
892 }
893
894 /*
895  * Figure out which RDMA device corresponds to the requested IP hostname
896  * Also create the initial connection manager identifiers for opening
897  * the connection.
898  */
899 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
900 {
901     int ret;
902     struct rdma_addrinfo *res;
903     char port_str[16];
904     struct rdma_cm_event *cm_event;
905     char ip[40] = "unknown";
906     struct rdma_addrinfo *e;
907
908     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
909         ERROR(errp, "RDMA hostname has not been set");
910         return -EINVAL;
911     }
912
913     /* create CM channel */
914     rdma->channel = rdma_create_event_channel();
915     if (!rdma->channel) {
916         ERROR(errp, "could not create CM channel");
917         return -EINVAL;
918     }
919
920     /* create CM id */
921     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
922     if (ret) {
923         ERROR(errp, "could not create channel id");
924         goto err_resolve_create_id;
925     }
926
927     snprintf(port_str, 16, "%d", rdma->port);
928     port_str[15] = '\0';
929
930     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
931     if (ret < 0) {
932         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
933         goto err_resolve_get_addr;
934     }
935
936     for (e = res; e != NULL; e = e->ai_next) {
937         inet_ntop(e->ai_family,
938             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
939         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
940
941         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
942                 RDMA_RESOLVE_TIMEOUT_MS);
943         if (!ret) {
944             if (e->ai_family == AF_INET6) {
945                 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
946                 if (ret) {
947                     continue;
948                 }
949             }
950             goto route;
951         }
952     }
953
954     ERROR(errp, "could not resolve address %s", rdma->host);
955     goto err_resolve_get_addr;
956
957 route:
958     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
959
960     ret = rdma_get_cm_event(rdma->channel, &cm_event);
961     if (ret) {
962         ERROR(errp, "could not perform event_addr_resolved");
963         goto err_resolve_get_addr;
964     }
965
966     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
967         ERROR(errp, "result not equal to event_addr_resolved %s",
968                 rdma_event_str(cm_event->event));
969         perror("rdma_resolve_addr");
970         rdma_ack_cm_event(cm_event);
971         ret = -EINVAL;
972         goto err_resolve_get_addr;
973     }
974     rdma_ack_cm_event(cm_event);
975
976     /* resolve route */
977     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
978     if (ret) {
979         ERROR(errp, "could not resolve rdma route");
980         goto err_resolve_get_addr;
981     }
982
983     ret = rdma_get_cm_event(rdma->channel, &cm_event);
984     if (ret) {
985         ERROR(errp, "could not perform event_route_resolved");
986         goto err_resolve_get_addr;
987     }
988     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
989         ERROR(errp, "result not equal to event_route_resolved: %s",
990                         rdma_event_str(cm_event->event));
991         rdma_ack_cm_event(cm_event);
992         ret = -EINVAL;
993         goto err_resolve_get_addr;
994     }
995     rdma_ack_cm_event(cm_event);
996     rdma->verbs = rdma->cm_id->verbs;
997     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
998     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
999     return 0;
1000
1001 err_resolve_get_addr:
1002     rdma_destroy_id(rdma->cm_id);
1003     rdma->cm_id = NULL;
1004 err_resolve_create_id:
1005     rdma_destroy_event_channel(rdma->channel);
1006     rdma->channel = NULL;
1007     return ret;
1008 }
1009
1010 /*
1011  * Create protection domain and completion queues
1012  */
1013 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1014 {
1015     /* allocate pd */
1016     rdma->pd = ibv_alloc_pd(rdma->verbs);
1017     if (!rdma->pd) {
1018         error_report("failed to allocate protection domain");
1019         return -1;
1020     }
1021
1022     /* create completion channel */
1023     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1024     if (!rdma->comp_channel) {
1025         error_report("failed to allocate completion channel");
1026         goto err_alloc_pd_cq;
1027     }
1028
1029     /*
1030      * Completion queue can be filled by both read and write work requests,
1031      * so must reflect the sum of both possible queue sizes.
1032      */
1033     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1034             NULL, rdma->comp_channel, 0);
1035     if (!rdma->cq) {
1036         error_report("failed to allocate completion queue");
1037         goto err_alloc_pd_cq;
1038     }
1039
1040     return 0;
1041
1042 err_alloc_pd_cq:
1043     if (rdma->pd) {
1044         ibv_dealloc_pd(rdma->pd);
1045     }
1046     if (rdma->comp_channel) {
1047         ibv_destroy_comp_channel(rdma->comp_channel);
1048     }
1049     rdma->pd = NULL;
1050     rdma->comp_channel = NULL;
1051     return -1;
1052
1053 }
1054
1055 /*
1056  * Create queue pairs.
1057  */
1058 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1059 {
1060     struct ibv_qp_init_attr attr = { 0 };
1061     int ret;
1062
1063     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1064     attr.cap.max_recv_wr = 3;
1065     attr.cap.max_send_sge = 1;
1066     attr.cap.max_recv_sge = 1;
1067     attr.send_cq = rdma->cq;
1068     attr.recv_cq = rdma->cq;
1069     attr.qp_type = IBV_QPT_RC;
1070
1071     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1072     if (ret) {
1073         return -1;
1074     }
1075
1076     rdma->qp = rdma->cm_id->qp;
1077     return 0;
1078 }
1079
1080 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1081 {
1082     int i;
1083     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1084
1085     for (i = 0; i < local->nb_blocks; i++) {
1086         local->block[i].mr =
1087             ibv_reg_mr(rdma->pd,
1088                     local->block[i].local_host_addr,
1089                     local->block[i].length,
1090                     IBV_ACCESS_LOCAL_WRITE |
1091                     IBV_ACCESS_REMOTE_WRITE
1092                     );
1093         if (!local->block[i].mr) {
1094             perror("Failed to register local dest ram block!\n");
1095             break;
1096         }
1097         rdma->total_registrations++;
1098     }
1099
1100     if (i >= local->nb_blocks) {
1101         return 0;
1102     }
1103
1104     for (i--; i >= 0; i--) {
1105         ibv_dereg_mr(local->block[i].mr);
1106         rdma->total_registrations--;
1107     }
1108
1109     return -1;
1110
1111 }
1112
1113 /*
1114  * Find the ram block that corresponds to the page requested to be
1115  * transmitted by QEMU.
1116  *
1117  * Once the block is found, also identify which 'chunk' within that
1118  * block that the page belongs to.
1119  *
1120  * This search cannot fail or the migration will fail.
1121  */
1122 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1123                                       uintptr_t block_offset,
1124                                       uint64_t offset,
1125                                       uint64_t length,
1126                                       uint64_t *block_index,
1127                                       uint64_t *chunk_index)
1128 {
1129     uint64_t current_addr = block_offset + offset;
1130     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1131                                                 (void *) block_offset);
1132     assert(block);
1133     assert(current_addr >= block->offset);
1134     assert((current_addr + length) <= (block->offset + block->length));
1135
1136     *block_index = block->index;
1137     *chunk_index = ram_chunk_index(block->local_host_addr,
1138                 block->local_host_addr + (current_addr - block->offset));
1139
1140     return 0;
1141 }
1142
1143 /*
1144  * Register a chunk with IB. If the chunk was already registered
1145  * previously, then skip.
1146  *
1147  * Also return the keys associated with the registration needed
1148  * to perform the actual RDMA operation.
1149  */
1150 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1151         RDMALocalBlock *block, uintptr_t host_addr,
1152         uint32_t *lkey, uint32_t *rkey, int chunk,
1153         uint8_t *chunk_start, uint8_t *chunk_end)
1154 {
1155     if (block->mr) {
1156         if (lkey) {
1157             *lkey = block->mr->lkey;
1158         }
1159         if (rkey) {
1160             *rkey = block->mr->rkey;
1161         }
1162         return 0;
1163     }
1164
1165     /* allocate memory to store chunk MRs */
1166     if (!block->pmr) {
1167         block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1168     }
1169
1170     /*
1171      * If 'rkey', then we're the destination, so grant access to the source.
1172      *
1173      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1174      */
1175     if (!block->pmr[chunk]) {
1176         uint64_t len = chunk_end - chunk_start;
1177
1178         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1179
1180         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1181                 chunk_start, len,
1182                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1183                         IBV_ACCESS_REMOTE_WRITE) : 0));
1184
1185         if (!block->pmr[chunk]) {
1186             perror("Failed to register chunk!");
1187             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1188                             " start %" PRIuPTR " end %" PRIuPTR
1189                             " host %" PRIuPTR
1190                             " local %" PRIuPTR " registrations: %d\n",
1191                             block->index, chunk, (uintptr_t)chunk_start,
1192                             (uintptr_t)chunk_end, host_addr,
1193                             (uintptr_t)block->local_host_addr,
1194                             rdma->total_registrations);
1195             return -1;
1196         }
1197         rdma->total_registrations++;
1198     }
1199
1200     if (lkey) {
1201         *lkey = block->pmr[chunk]->lkey;
1202     }
1203     if (rkey) {
1204         *rkey = block->pmr[chunk]->rkey;
1205     }
1206     return 0;
1207 }
1208
1209 /*
1210  * Register (at connection time) the memory used for control
1211  * channel messages.
1212  */
1213 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1214 {
1215     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1216             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1217             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1218     if (rdma->wr_data[idx].control_mr) {
1219         rdma->total_registrations++;
1220         return 0;
1221     }
1222     error_report("qemu_rdma_reg_control failed");
1223     return -1;
1224 }
1225
1226 const char *print_wrid(int wrid)
1227 {
1228     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1229         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1230     }
1231     return wrid_desc[wrid];
1232 }
1233
1234 /*
1235  * RDMA requires memory registration (mlock/pinning), but this is not good for
1236  * overcommitment.
1237  *
1238  * In preparation for the future where LRU information or workload-specific
1239  * writable writable working set memory access behavior is available to QEMU
1240  * it would be nice to have in place the ability to UN-register/UN-pin
1241  * particular memory regions from the RDMA hardware when it is determine that
1242  * those regions of memory will likely not be accessed again in the near future.
1243  *
1244  * While we do not yet have such information right now, the following
1245  * compile-time option allows us to perform a non-optimized version of this
1246  * behavior.
1247  *
1248  * By uncommenting this option, you will cause *all* RDMA transfers to be
1249  * unregistered immediately after the transfer completes on both sides of the
1250  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1251  *
1252  * This will have a terrible impact on migration performance, so until future
1253  * workload information or LRU information is available, do not attempt to use
1254  * this feature except for basic testing.
1255  */
1256 //#define RDMA_UNREGISTRATION_EXAMPLE
1257
1258 /*
1259  * Perform a non-optimized memory unregistration after every transfer
1260  * for demonstration purposes, only if pin-all is not requested.
1261  *
1262  * Potential optimizations:
1263  * 1. Start a new thread to run this function continuously
1264         - for bit clearing
1265         - and for receipt of unregister messages
1266  * 2. Use an LRU.
1267  * 3. Use workload hints.
1268  */
1269 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1270 {
1271     while (rdma->unregistrations[rdma->unregister_current]) {
1272         int ret;
1273         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1274         uint64_t chunk =
1275             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1276         uint64_t index =
1277             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1278         RDMALocalBlock *block =
1279             &(rdma->local_ram_blocks.block[index]);
1280         RDMARegister reg = { .current_index = index };
1281         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1282                                  };
1283         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1284                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1285                                    .repeat = 1,
1286                                  };
1287
1288         trace_qemu_rdma_unregister_waiting_proc(chunk,
1289                                                 rdma->unregister_current);
1290
1291         rdma->unregistrations[rdma->unregister_current] = 0;
1292         rdma->unregister_current++;
1293
1294         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1295             rdma->unregister_current = 0;
1296         }
1297
1298
1299         /*
1300          * Unregistration is speculative (because migration is single-threaded
1301          * and we cannot break the protocol's inifinband message ordering).
1302          * Thus, if the memory is currently being used for transmission,
1303          * then abort the attempt to unregister and try again
1304          * later the next time a completion is received for this memory.
1305          */
1306         clear_bit(chunk, block->unregister_bitmap);
1307
1308         if (test_bit(chunk, block->transit_bitmap)) {
1309             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1310             continue;
1311         }
1312
1313         trace_qemu_rdma_unregister_waiting_send(chunk);
1314
1315         ret = ibv_dereg_mr(block->pmr[chunk]);
1316         block->pmr[chunk] = NULL;
1317         block->remote_keys[chunk] = 0;
1318
1319         if (ret != 0) {
1320             perror("unregistration chunk failed");
1321             return -ret;
1322         }
1323         rdma->total_registrations--;
1324
1325         reg.key.chunk = chunk;
1326         register_to_network(rdma, &reg);
1327         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1328                                 &resp, NULL, NULL);
1329         if (ret < 0) {
1330             return ret;
1331         }
1332
1333         trace_qemu_rdma_unregister_waiting_complete(chunk);
1334     }
1335
1336     return 0;
1337 }
1338
1339 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1340                                          uint64_t chunk)
1341 {
1342     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1343
1344     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1345     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1346
1347     return result;
1348 }
1349
1350 /*
1351  * Set bit for unregistration in the next iteration.
1352  * We cannot transmit right here, but will unpin later.
1353  */
1354 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1355                                         uint64_t chunk, uint64_t wr_id)
1356 {
1357     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1358         error_report("rdma migration: queue is full");
1359     } else {
1360         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1361
1362         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1363             trace_qemu_rdma_signal_unregister_append(chunk,
1364                                                      rdma->unregister_next);
1365
1366             rdma->unregistrations[rdma->unregister_next++] =
1367                     qemu_rdma_make_wrid(wr_id, index, chunk);
1368
1369             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1370                 rdma->unregister_next = 0;
1371             }
1372         } else {
1373             trace_qemu_rdma_signal_unregister_already(chunk);
1374         }
1375     }
1376 }
1377
1378 /*
1379  * Consult the connection manager to see a work request
1380  * (of any kind) has completed.
1381  * Return the work request ID that completed.
1382  */
1383 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1384                                uint32_t *byte_len)
1385 {
1386     int ret;
1387     struct ibv_wc wc;
1388     uint64_t wr_id;
1389
1390     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1391
1392     if (!ret) {
1393         *wr_id_out = RDMA_WRID_NONE;
1394         return 0;
1395     }
1396
1397     if (ret < 0) {
1398         error_report("ibv_poll_cq return %d", ret);
1399         return ret;
1400     }
1401
1402     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1403
1404     if (wc.status != IBV_WC_SUCCESS) {
1405         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1406                         wc.status, ibv_wc_status_str(wc.status));
1407         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1408
1409         return -1;
1410     }
1411
1412     if (rdma->control_ready_expected &&
1413         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1414         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1415                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1416         rdma->control_ready_expected = 0;
1417     }
1418
1419     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1420         uint64_t chunk =
1421             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1422         uint64_t index =
1423             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1424         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1425
1426         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1427                                    index, chunk, block->local_host_addr,
1428                                    (void *)(uintptr_t)block->remote_host_addr);
1429
1430         clear_bit(chunk, block->transit_bitmap);
1431
1432         if (rdma->nb_sent > 0) {
1433             rdma->nb_sent--;
1434         }
1435
1436         if (!rdma->pin_all) {
1437             /*
1438              * FYI: If one wanted to signal a specific chunk to be unregistered
1439              * using LRU or workload-specific information, this is the function
1440              * you would call to do so. That chunk would then get asynchronously
1441              * unregistered later.
1442              */
1443 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1444             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1445 #endif
1446         }
1447     } else {
1448         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1449     }
1450
1451     *wr_id_out = wc.wr_id;
1452     if (byte_len) {
1453         *byte_len = wc.byte_len;
1454     }
1455
1456     return  0;
1457 }
1458
1459 /*
1460  * Block until the next work request has completed.
1461  *
1462  * First poll to see if a work request has already completed,
1463  * otherwise block.
1464  *
1465  * If we encounter completed work requests for IDs other than
1466  * the one we're interested in, then that's generally an error.
1467  *
1468  * The only exception is actual RDMA Write completions. These
1469  * completions only need to be recorded, but do not actually
1470  * need further processing.
1471  */
1472 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1473                                     uint32_t *byte_len)
1474 {
1475     int num_cq_events = 0, ret = 0;
1476     struct ibv_cq *cq;
1477     void *cq_ctx;
1478     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1479
1480     if (ibv_req_notify_cq(rdma->cq, 0)) {
1481         return -1;
1482     }
1483     /* poll cq first */
1484     while (wr_id != wrid_requested) {
1485         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1486         if (ret < 0) {
1487             return ret;
1488         }
1489
1490         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1491
1492         if (wr_id == RDMA_WRID_NONE) {
1493             break;
1494         }
1495         if (wr_id != wrid_requested) {
1496             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1497                        wrid_requested, print_wrid(wr_id), wr_id);
1498         }
1499     }
1500
1501     if (wr_id == wrid_requested) {
1502         return 0;
1503     }
1504
1505     while (1) {
1506         /*
1507          * Coroutine doesn't start until process_incoming_migration()
1508          * so don't yield unless we know we're running inside of a coroutine.
1509          */
1510         if (rdma->migration_started_on_destination) {
1511             yield_until_fd_readable(rdma->comp_channel->fd);
1512         }
1513
1514         if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1515             perror("ibv_get_cq_event");
1516             goto err_block_for_wrid;
1517         }
1518
1519         num_cq_events++;
1520
1521         if (ibv_req_notify_cq(cq, 0)) {
1522             goto err_block_for_wrid;
1523         }
1524
1525         while (wr_id != wrid_requested) {
1526             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1527             if (ret < 0) {
1528                 goto err_block_for_wrid;
1529             }
1530
1531             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1532
1533             if (wr_id == RDMA_WRID_NONE) {
1534                 break;
1535             }
1536             if (wr_id != wrid_requested) {
1537                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1538                                    wrid_requested, print_wrid(wr_id), wr_id);
1539             }
1540         }
1541
1542         if (wr_id == wrid_requested) {
1543             goto success_block_for_wrid;
1544         }
1545     }
1546
1547 success_block_for_wrid:
1548     if (num_cq_events) {
1549         ibv_ack_cq_events(cq, num_cq_events);
1550     }
1551     return 0;
1552
1553 err_block_for_wrid:
1554     if (num_cq_events) {
1555         ibv_ack_cq_events(cq, num_cq_events);
1556     }
1557     return ret;
1558 }
1559
1560 /*
1561  * Post a SEND message work request for the control channel
1562  * containing some data and block until the post completes.
1563  */
1564 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1565                                        RDMAControlHeader *head)
1566 {
1567     int ret = 0;
1568     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1569     struct ibv_send_wr *bad_wr;
1570     struct ibv_sge sge = {
1571                            .addr = (uintptr_t)(wr->control),
1572                            .length = head->len + sizeof(RDMAControlHeader),
1573                            .lkey = wr->control_mr->lkey,
1574                          };
1575     struct ibv_send_wr send_wr = {
1576                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1577                                    .opcode = IBV_WR_SEND,
1578                                    .send_flags = IBV_SEND_SIGNALED,
1579                                    .sg_list = &sge,
1580                                    .num_sge = 1,
1581                                 };
1582
1583     trace_qemu_rdma_post_send_control(control_desc[head->type]);
1584
1585     /*
1586      * We don't actually need to do a memcpy() in here if we used
1587      * the "sge" properly, but since we're only sending control messages
1588      * (not RAM in a performance-critical path), then its OK for now.
1589      *
1590      * The copy makes the RDMAControlHeader simpler to manipulate
1591      * for the time being.
1592      */
1593     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1594     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1595     control_to_network((void *) wr->control);
1596
1597     if (buf) {
1598         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1599     }
1600
1601
1602     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1603
1604     if (ret > 0) {
1605         error_report("Failed to use post IB SEND for control");
1606         return -ret;
1607     }
1608
1609     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1610     if (ret < 0) {
1611         error_report("rdma migration: send polling control error");
1612     }
1613
1614     return ret;
1615 }
1616
1617 /*
1618  * Post a RECV work request in anticipation of some future receipt
1619  * of data on the control channel.
1620  */
1621 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1622 {
1623     struct ibv_recv_wr *bad_wr;
1624     struct ibv_sge sge = {
1625                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1626                             .length = RDMA_CONTROL_MAX_BUFFER,
1627                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1628                          };
1629
1630     struct ibv_recv_wr recv_wr = {
1631                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1632                                     .sg_list = &sge,
1633                                     .num_sge = 1,
1634                                  };
1635
1636
1637     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1638         return -1;
1639     }
1640
1641     return 0;
1642 }
1643
1644 /*
1645  * Block and wait for a RECV control channel message to arrive.
1646  */
1647 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1648                 RDMAControlHeader *head, int expecting, int idx)
1649 {
1650     uint32_t byte_len;
1651     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1652                                        &byte_len);
1653
1654     if (ret < 0) {
1655         error_report("rdma migration: recv polling control error!");
1656         return ret;
1657     }
1658
1659     network_to_control((void *) rdma->wr_data[idx].control);
1660     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1661
1662     trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]);
1663
1664     if (expecting == RDMA_CONTROL_NONE) {
1665         trace_qemu_rdma_exchange_get_response_none(control_desc[head->type],
1666                                              head->type);
1667     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1668         error_report("Was expecting a %s (%d) control message"
1669                 ", but got: %s (%d), length: %d",
1670                 control_desc[expecting], expecting,
1671                 control_desc[head->type], head->type, head->len);
1672         return -EIO;
1673     }
1674     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1675         error_report("too long length: %d", head->len);
1676         return -EINVAL;
1677     }
1678     if (sizeof(*head) + head->len != byte_len) {
1679         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1680         return -EINVAL;
1681     }
1682
1683     return 0;
1684 }
1685
1686 /*
1687  * When a RECV work request has completed, the work request's
1688  * buffer is pointed at the header.
1689  *
1690  * This will advance the pointer to the data portion
1691  * of the control message of the work request's buffer that
1692  * was populated after the work request finished.
1693  */
1694 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1695                                   RDMAControlHeader *head)
1696 {
1697     rdma->wr_data[idx].control_len = head->len;
1698     rdma->wr_data[idx].control_curr =
1699         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1700 }
1701
1702 /*
1703  * This is an 'atomic' high-level operation to deliver a single, unified
1704  * control-channel message.
1705  *
1706  * Additionally, if the user is expecting some kind of reply to this message,
1707  * they can request a 'resp' response message be filled in by posting an
1708  * additional work request on behalf of the user and waiting for an additional
1709  * completion.
1710  *
1711  * The extra (optional) response is used during registration to us from having
1712  * to perform an *additional* exchange of message just to provide a response by
1713  * instead piggy-backing on the acknowledgement.
1714  */
1715 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1716                                    uint8_t *data, RDMAControlHeader *resp,
1717                                    int *resp_idx,
1718                                    int (*callback)(RDMAContext *rdma))
1719 {
1720     int ret = 0;
1721
1722     /*
1723      * Wait until the dest is ready before attempting to deliver the message
1724      * by waiting for a READY message.
1725      */
1726     if (rdma->control_ready_expected) {
1727         RDMAControlHeader resp;
1728         ret = qemu_rdma_exchange_get_response(rdma,
1729                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1730         if (ret < 0) {
1731             return ret;
1732         }
1733     }
1734
1735     /*
1736      * If the user is expecting a response, post a WR in anticipation of it.
1737      */
1738     if (resp) {
1739         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1740         if (ret) {
1741             error_report("rdma migration: error posting"
1742                     " extra control recv for anticipated result!");
1743             return ret;
1744         }
1745     }
1746
1747     /*
1748      * Post a WR to replace the one we just consumed for the READY message.
1749      */
1750     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1751     if (ret) {
1752         error_report("rdma migration: error posting first control recv!");
1753         return ret;
1754     }
1755
1756     /*
1757      * Deliver the control message that was requested.
1758      */
1759     ret = qemu_rdma_post_send_control(rdma, data, head);
1760
1761     if (ret < 0) {
1762         error_report("Failed to send control buffer!");
1763         return ret;
1764     }
1765
1766     /*
1767      * If we're expecting a response, block and wait for it.
1768      */
1769     if (resp) {
1770         if (callback) {
1771             trace_qemu_rdma_exchange_send_issue_callback();
1772             ret = callback(rdma);
1773             if (ret < 0) {
1774                 return ret;
1775             }
1776         }
1777
1778         trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]);
1779         ret = qemu_rdma_exchange_get_response(rdma, resp,
1780                                               resp->type, RDMA_WRID_DATA);
1781
1782         if (ret < 0) {
1783             return ret;
1784         }
1785
1786         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1787         if (resp_idx) {
1788             *resp_idx = RDMA_WRID_DATA;
1789         }
1790         trace_qemu_rdma_exchange_send_received(control_desc[resp->type]);
1791     }
1792
1793     rdma->control_ready_expected = 1;
1794
1795     return 0;
1796 }
1797
1798 /*
1799  * This is an 'atomic' high-level operation to receive a single, unified
1800  * control-channel message.
1801  */
1802 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1803                                 int expecting)
1804 {
1805     RDMAControlHeader ready = {
1806                                 .len = 0,
1807                                 .type = RDMA_CONTROL_READY,
1808                                 .repeat = 1,
1809                               };
1810     int ret;
1811
1812     /*
1813      * Inform the source that we're ready to receive a message.
1814      */
1815     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1816
1817     if (ret < 0) {
1818         error_report("Failed to send control buffer!");
1819         return ret;
1820     }
1821
1822     /*
1823      * Block and wait for the message.
1824      */
1825     ret = qemu_rdma_exchange_get_response(rdma, head,
1826                                           expecting, RDMA_WRID_READY);
1827
1828     if (ret < 0) {
1829         return ret;
1830     }
1831
1832     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1833
1834     /*
1835      * Post a new RECV work request to replace the one we just consumed.
1836      */
1837     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1838     if (ret) {
1839         error_report("rdma migration: error posting second control recv!");
1840         return ret;
1841     }
1842
1843     return 0;
1844 }
1845
1846 /*
1847  * Write an actual chunk of memory using RDMA.
1848  *
1849  * If we're using dynamic registration on the dest-side, we have to
1850  * send a registration command first.
1851  */
1852 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1853                                int current_index, uint64_t current_addr,
1854                                uint64_t length)
1855 {
1856     struct ibv_sge sge;
1857     struct ibv_send_wr send_wr = { 0 };
1858     struct ibv_send_wr *bad_wr;
1859     int reg_result_idx, ret, count = 0;
1860     uint64_t chunk, chunks;
1861     uint8_t *chunk_start, *chunk_end;
1862     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1863     RDMARegister reg;
1864     RDMARegisterResult *reg_result;
1865     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1866     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1867                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1868                                .repeat = 1,
1869                              };
1870
1871 retry:
1872     sge.addr = (uintptr_t)(block->local_host_addr +
1873                             (current_addr - block->offset));
1874     sge.length = length;
1875
1876     chunk = ram_chunk_index(block->local_host_addr,
1877                             (uint8_t *)(uintptr_t)sge.addr);
1878     chunk_start = ram_chunk_start(block, chunk);
1879
1880     if (block->is_ram_block) {
1881         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1882
1883         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1884             chunks--;
1885         }
1886     } else {
1887         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1888
1889         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1890             chunks--;
1891         }
1892     }
1893
1894     trace_qemu_rdma_write_one_top(chunks + 1,
1895                                   (chunks + 1) *
1896                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1897
1898     chunk_end = ram_chunk_end(block, chunk + chunks);
1899
1900     if (!rdma->pin_all) {
1901 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1902         qemu_rdma_unregister_waiting(rdma);
1903 #endif
1904     }
1905
1906     while (test_bit(chunk, block->transit_bitmap)) {
1907         (void)count;
1908         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1909                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1910
1911         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1912
1913         if (ret < 0) {
1914             error_report("Failed to Wait for previous write to complete "
1915                     "block %d chunk %" PRIu64
1916                     " current %" PRIu64 " len %" PRIu64 " %d",
1917                     current_index, chunk, sge.addr, length, rdma->nb_sent);
1918             return ret;
1919         }
1920     }
1921
1922     if (!rdma->pin_all || !block->is_ram_block) {
1923         if (!block->remote_keys[chunk]) {
1924             /*
1925              * This chunk has not yet been registered, so first check to see
1926              * if the entire chunk is zero. If so, tell the other size to
1927              * memset() + madvise() the entire chunk without RDMA.
1928              */
1929
1930             if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1931                                                    length)
1932                    && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1933                                                     length) == length) {
1934                 RDMACompress comp = {
1935                                         .offset = current_addr,
1936                                         .value = 0,
1937                                         .block_idx = current_index,
1938                                         .length = length,
1939                                     };
1940
1941                 head.len = sizeof(comp);
1942                 head.type = RDMA_CONTROL_COMPRESS;
1943
1944                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
1945                                                current_index, current_addr);
1946
1947                 compress_to_network(rdma, &comp);
1948                 ret = qemu_rdma_exchange_send(rdma, &head,
1949                                 (uint8_t *) &comp, NULL, NULL, NULL);
1950
1951                 if (ret < 0) {
1952                     return -EIO;
1953                 }
1954
1955                 acct_update_position(f, sge.length, true);
1956
1957                 return 1;
1958             }
1959
1960             /*
1961              * Otherwise, tell other side to register.
1962              */
1963             reg.current_index = current_index;
1964             if (block->is_ram_block) {
1965                 reg.key.current_addr = current_addr;
1966             } else {
1967                 reg.key.chunk = chunk;
1968             }
1969             reg.chunks = chunks;
1970
1971             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
1972                                               current_addr);
1973
1974             register_to_network(rdma, &reg);
1975             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1976                                     &resp, &reg_result_idx, NULL);
1977             if (ret < 0) {
1978                 return ret;
1979             }
1980
1981             /* try to overlap this single registration with the one we sent. */
1982             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1983                                                 &sge.lkey, NULL, chunk,
1984                                                 chunk_start, chunk_end)) {
1985                 error_report("cannot get lkey");
1986                 return -EINVAL;
1987             }
1988
1989             reg_result = (RDMARegisterResult *)
1990                     rdma->wr_data[reg_result_idx].control_curr;
1991
1992             network_to_result(reg_result);
1993
1994             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
1995                                                  reg_result->rkey, chunk);
1996
1997             block->remote_keys[chunk] = reg_result->rkey;
1998             block->remote_host_addr = reg_result->host_addr;
1999         } else {
2000             /* already registered before */
2001             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2002                                                 &sge.lkey, NULL, chunk,
2003                                                 chunk_start, chunk_end)) {
2004                 error_report("cannot get lkey!");
2005                 return -EINVAL;
2006             }
2007         }
2008
2009         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2010     } else {
2011         send_wr.wr.rdma.rkey = block->remote_rkey;
2012
2013         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2014                                                      &sge.lkey, NULL, chunk,
2015                                                      chunk_start, chunk_end)) {
2016             error_report("cannot get lkey!");
2017             return -EINVAL;
2018         }
2019     }
2020
2021     /*
2022      * Encode the ram block index and chunk within this wrid.
2023      * We will use this information at the time of completion
2024      * to figure out which bitmap to check against and then which
2025      * chunk in the bitmap to look for.
2026      */
2027     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2028                                         current_index, chunk);
2029
2030     send_wr.opcode = IBV_WR_RDMA_WRITE;
2031     send_wr.send_flags = IBV_SEND_SIGNALED;
2032     send_wr.sg_list = &sge;
2033     send_wr.num_sge = 1;
2034     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2035                                 (current_addr - block->offset);
2036
2037     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2038                                    sge.length);
2039
2040     /*
2041      * ibv_post_send() does not return negative error numbers,
2042      * per the specification they are positive - no idea why.
2043      */
2044     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2045
2046     if (ret == ENOMEM) {
2047         trace_qemu_rdma_write_one_queue_full();
2048         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2049         if (ret < 0) {
2050             error_report("rdma migration: failed to make "
2051                          "room in full send queue! %d", ret);
2052             return ret;
2053         }
2054
2055         goto retry;
2056
2057     } else if (ret > 0) {
2058         perror("rdma migration: post rdma write failed");
2059         return -ret;
2060     }
2061
2062     set_bit(chunk, block->transit_bitmap);
2063     acct_update_position(f, sge.length, false);
2064     rdma->total_writes++;
2065
2066     return 0;
2067 }
2068
2069 /*
2070  * Push out any unwritten RDMA operations.
2071  *
2072  * We support sending out multiple chunks at the same time.
2073  * Not all of them need to get signaled in the completion queue.
2074  */
2075 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2076 {
2077     int ret;
2078
2079     if (!rdma->current_length) {
2080         return 0;
2081     }
2082
2083     ret = qemu_rdma_write_one(f, rdma,
2084             rdma->current_index, rdma->current_addr, rdma->current_length);
2085
2086     if (ret < 0) {
2087         return ret;
2088     }
2089
2090     if (ret == 0) {
2091         rdma->nb_sent++;
2092         trace_qemu_rdma_write_flush(rdma->nb_sent);
2093     }
2094
2095     rdma->current_length = 0;
2096     rdma->current_addr = 0;
2097
2098     return 0;
2099 }
2100
2101 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2102                     uint64_t offset, uint64_t len)
2103 {
2104     RDMALocalBlock *block;
2105     uint8_t *host_addr;
2106     uint8_t *chunk_end;
2107
2108     if (rdma->current_index < 0) {
2109         return 0;
2110     }
2111
2112     if (rdma->current_chunk < 0) {
2113         return 0;
2114     }
2115
2116     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2117     host_addr = block->local_host_addr + (offset - block->offset);
2118     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2119
2120     if (rdma->current_length == 0) {
2121         return 0;
2122     }
2123
2124     /*
2125      * Only merge into chunk sequentially.
2126      */
2127     if (offset != (rdma->current_addr + rdma->current_length)) {
2128         return 0;
2129     }
2130
2131     if (offset < block->offset) {
2132         return 0;
2133     }
2134
2135     if ((offset + len) > (block->offset + block->length)) {
2136         return 0;
2137     }
2138
2139     if ((host_addr + len) > chunk_end) {
2140         return 0;
2141     }
2142
2143     return 1;
2144 }
2145
2146 /*
2147  * We're not actually writing here, but doing three things:
2148  *
2149  * 1. Identify the chunk the buffer belongs to.
2150  * 2. If the chunk is full or the buffer doesn't belong to the current
2151  *    chunk, then start a new chunk and flush() the old chunk.
2152  * 3. To keep the hardware busy, we also group chunks into batches
2153  *    and only require that a batch gets acknowledged in the completion
2154  *    qeueue instead of each individual chunk.
2155  */
2156 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2157                            uint64_t block_offset, uint64_t offset,
2158                            uint64_t len)
2159 {
2160     uint64_t current_addr = block_offset + offset;
2161     uint64_t index = rdma->current_index;
2162     uint64_t chunk = rdma->current_chunk;
2163     int ret;
2164
2165     /* If we cannot merge it, we flush the current buffer first. */
2166     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2167         ret = qemu_rdma_write_flush(f, rdma);
2168         if (ret) {
2169             return ret;
2170         }
2171         rdma->current_length = 0;
2172         rdma->current_addr = current_addr;
2173
2174         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2175                                          offset, len, &index, &chunk);
2176         if (ret) {
2177             error_report("ram block search failed");
2178             return ret;
2179         }
2180         rdma->current_index = index;
2181         rdma->current_chunk = chunk;
2182     }
2183
2184     /* merge it */
2185     rdma->current_length += len;
2186
2187     /* flush it if buffer is too large */
2188     if (rdma->current_length >= RDMA_MERGE_MAX) {
2189         return qemu_rdma_write_flush(f, rdma);
2190     }
2191
2192     return 0;
2193 }
2194
2195 static void qemu_rdma_cleanup(RDMAContext *rdma)
2196 {
2197     struct rdma_cm_event *cm_event;
2198     int ret, idx;
2199
2200     if (rdma->cm_id && rdma->connected) {
2201         if (rdma->error_state) {
2202             RDMAControlHeader head = { .len = 0,
2203                                        .type = RDMA_CONTROL_ERROR,
2204                                        .repeat = 1,
2205                                      };
2206             error_report("Early error. Sending error.");
2207             qemu_rdma_post_send_control(rdma, NULL, &head);
2208         }
2209
2210         ret = rdma_disconnect(rdma->cm_id);
2211         if (!ret) {
2212             trace_qemu_rdma_cleanup_waiting_for_disconnect();
2213             ret = rdma_get_cm_event(rdma->channel, &cm_event);
2214             if (!ret) {
2215                 rdma_ack_cm_event(cm_event);
2216             }
2217         }
2218         trace_qemu_rdma_cleanup_disconnect();
2219         rdma->connected = false;
2220     }
2221
2222     g_free(rdma->dest_blocks);
2223     rdma->dest_blocks = NULL;
2224
2225     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2226         if (rdma->wr_data[idx].control_mr) {
2227             rdma->total_registrations--;
2228             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2229         }
2230         rdma->wr_data[idx].control_mr = NULL;
2231     }
2232
2233     if (rdma->local_ram_blocks.block) {
2234         while (rdma->local_ram_blocks.nb_blocks) {
2235             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2236         }
2237     }
2238
2239     if (rdma->qp) {
2240         rdma_destroy_qp(rdma->cm_id);
2241         rdma->qp = NULL;
2242     }
2243     if (rdma->cq) {
2244         ibv_destroy_cq(rdma->cq);
2245         rdma->cq = NULL;
2246     }
2247     if (rdma->comp_channel) {
2248         ibv_destroy_comp_channel(rdma->comp_channel);
2249         rdma->comp_channel = NULL;
2250     }
2251     if (rdma->pd) {
2252         ibv_dealloc_pd(rdma->pd);
2253         rdma->pd = NULL;
2254     }
2255     if (rdma->cm_id) {
2256         rdma_destroy_id(rdma->cm_id);
2257         rdma->cm_id = NULL;
2258     }
2259     if (rdma->listen_id) {
2260         rdma_destroy_id(rdma->listen_id);
2261         rdma->listen_id = NULL;
2262     }
2263     if (rdma->channel) {
2264         rdma_destroy_event_channel(rdma->channel);
2265         rdma->channel = NULL;
2266     }
2267     g_free(rdma->host);
2268     rdma->host = NULL;
2269 }
2270
2271
2272 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2273 {
2274     int ret, idx;
2275     Error *local_err = NULL, **temp = &local_err;
2276
2277     /*
2278      * Will be validated against destination's actual capabilities
2279      * after the connect() completes.
2280      */
2281     rdma->pin_all = pin_all;
2282
2283     ret = qemu_rdma_resolve_host(rdma, temp);
2284     if (ret) {
2285         goto err_rdma_source_init;
2286     }
2287
2288     ret = qemu_rdma_alloc_pd_cq(rdma);
2289     if (ret) {
2290         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2291                     " limits may be too low. Please check $ ulimit -a # and "
2292                     "search for 'ulimit -l' in the output");
2293         goto err_rdma_source_init;
2294     }
2295
2296     ret = qemu_rdma_alloc_qp(rdma);
2297     if (ret) {
2298         ERROR(temp, "rdma migration: error allocating qp!");
2299         goto err_rdma_source_init;
2300     }
2301
2302     ret = qemu_rdma_init_ram_blocks(rdma);
2303     if (ret) {
2304         ERROR(temp, "rdma migration: error initializing ram blocks!");
2305         goto err_rdma_source_init;
2306     }
2307
2308     /* Build the hash that maps from offset to RAMBlock */
2309     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2310     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2311         g_hash_table_insert(rdma->blockmap,
2312                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2313                 &rdma->local_ram_blocks.block[idx]);
2314     }
2315
2316     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2317         ret = qemu_rdma_reg_control(rdma, idx);
2318         if (ret) {
2319             ERROR(temp, "rdma migration: error registering %d control!",
2320                                                             idx);
2321             goto err_rdma_source_init;
2322         }
2323     }
2324
2325     return 0;
2326
2327 err_rdma_source_init:
2328     error_propagate(errp, local_err);
2329     qemu_rdma_cleanup(rdma);
2330     return -1;
2331 }
2332
2333 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2334 {
2335     RDMACapabilities cap = {
2336                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2337                                 .flags = 0,
2338                            };
2339     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2340                                           .retry_count = 5,
2341                                           .private_data = &cap,
2342                                           .private_data_len = sizeof(cap),
2343                                         };
2344     struct rdma_cm_event *cm_event;
2345     int ret;
2346
2347     /*
2348      * Only negotiate the capability with destination if the user
2349      * on the source first requested the capability.
2350      */
2351     if (rdma->pin_all) {
2352         trace_qemu_rdma_connect_pin_all_requested();
2353         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2354     }
2355
2356     caps_to_network(&cap);
2357
2358     ret = rdma_connect(rdma->cm_id, &conn_param);
2359     if (ret) {
2360         perror("rdma_connect");
2361         ERROR(errp, "connecting to destination!");
2362         goto err_rdma_source_connect;
2363     }
2364
2365     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2366     if (ret) {
2367         perror("rdma_get_cm_event after rdma_connect");
2368         ERROR(errp, "connecting to destination!");
2369         rdma_ack_cm_event(cm_event);
2370         goto err_rdma_source_connect;
2371     }
2372
2373     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2374         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2375         ERROR(errp, "connecting to destination!");
2376         rdma_ack_cm_event(cm_event);
2377         goto err_rdma_source_connect;
2378     }
2379     rdma->connected = true;
2380
2381     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2382     network_to_caps(&cap);
2383
2384     /*
2385      * Verify that the *requested* capabilities are supported by the destination
2386      * and disable them otherwise.
2387      */
2388     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2389         ERROR(errp, "Server cannot support pinning all memory. "
2390                         "Will register memory dynamically.");
2391         rdma->pin_all = false;
2392     }
2393
2394     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2395
2396     rdma_ack_cm_event(cm_event);
2397
2398     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2399     if (ret) {
2400         ERROR(errp, "posting second control recv!");
2401         goto err_rdma_source_connect;
2402     }
2403
2404     rdma->control_ready_expected = 1;
2405     rdma->nb_sent = 0;
2406     return 0;
2407
2408 err_rdma_source_connect:
2409     qemu_rdma_cleanup(rdma);
2410     return -1;
2411 }
2412
2413 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2414 {
2415     int ret, idx;
2416     struct rdma_cm_id *listen_id;
2417     char ip[40] = "unknown";
2418     struct rdma_addrinfo *res, *e;
2419     char port_str[16];
2420
2421     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2422         rdma->wr_data[idx].control_len = 0;
2423         rdma->wr_data[idx].control_curr = NULL;
2424     }
2425
2426     if (!rdma->host || !rdma->host[0]) {
2427         ERROR(errp, "RDMA host is not set!");
2428         rdma->error_state = -EINVAL;
2429         return -1;
2430     }
2431     /* create CM channel */
2432     rdma->channel = rdma_create_event_channel();
2433     if (!rdma->channel) {
2434         ERROR(errp, "could not create rdma event channel");
2435         rdma->error_state = -EINVAL;
2436         return -1;
2437     }
2438
2439     /* create CM id */
2440     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2441     if (ret) {
2442         ERROR(errp, "could not create cm_id!");
2443         goto err_dest_init_create_listen_id;
2444     }
2445
2446     snprintf(port_str, 16, "%d", rdma->port);
2447     port_str[15] = '\0';
2448
2449     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2450     if (ret < 0) {
2451         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2452         goto err_dest_init_bind_addr;
2453     }
2454
2455     for (e = res; e != NULL; e = e->ai_next) {
2456         inet_ntop(e->ai_family,
2457             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2458         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2459         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2460         if (ret) {
2461             continue;
2462         }
2463         if (e->ai_family == AF_INET6) {
2464             ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2465             if (ret) {
2466                 continue;
2467             }
2468         }
2469         break;
2470     }
2471
2472     if (!e) {
2473         ERROR(errp, "Error: could not rdma_bind_addr!");
2474         goto err_dest_init_bind_addr;
2475     }
2476
2477     rdma->listen_id = listen_id;
2478     qemu_rdma_dump_gid("dest_init", listen_id);
2479     return 0;
2480
2481 err_dest_init_bind_addr:
2482     rdma_destroy_id(listen_id);
2483 err_dest_init_create_listen_id:
2484     rdma_destroy_event_channel(rdma->channel);
2485     rdma->channel = NULL;
2486     rdma->error_state = ret;
2487     return ret;
2488
2489 }
2490
2491 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2492 {
2493     RDMAContext *rdma = NULL;
2494     InetSocketAddress *addr;
2495
2496     if (host_port) {
2497         rdma = g_malloc0(sizeof(RDMAContext));
2498         rdma->current_index = -1;
2499         rdma->current_chunk = -1;
2500
2501         addr = inet_parse(host_port, NULL);
2502         if (addr != NULL) {
2503             rdma->port = atoi(addr->port);
2504             rdma->host = g_strdup(addr->host);
2505         } else {
2506             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2507             g_free(rdma);
2508             rdma = NULL;
2509         }
2510
2511         qapi_free_InetSocketAddress(addr);
2512     }
2513
2514     return rdma;
2515 }
2516
2517 /*
2518  * QEMUFile interface to the control channel.
2519  * SEND messages for control only.
2520  * VM's ram is handled with regular RDMA messages.
2521  */
2522 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2523                                 int64_t pos, int size)
2524 {
2525     QEMUFileRDMA *r = opaque;
2526     QEMUFile *f = r->file;
2527     RDMAContext *rdma = r->rdma;
2528     size_t remaining = size;
2529     uint8_t * data = (void *) buf;
2530     int ret;
2531
2532     CHECK_ERROR_STATE();
2533
2534     /*
2535      * Push out any writes that
2536      * we're queued up for VM's ram.
2537      */
2538     ret = qemu_rdma_write_flush(f, rdma);
2539     if (ret < 0) {
2540         rdma->error_state = ret;
2541         return ret;
2542     }
2543
2544     while (remaining) {
2545         RDMAControlHeader head;
2546
2547         r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2548         remaining -= r->len;
2549
2550         head.len = r->len;
2551         head.type = RDMA_CONTROL_QEMU_FILE;
2552
2553         ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2554
2555         if (ret < 0) {
2556             rdma->error_state = ret;
2557             return ret;
2558         }
2559
2560         data += r->len;
2561     }
2562
2563     return size;
2564 }
2565
2566 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2567                              int size, int idx)
2568 {
2569     size_t len = 0;
2570
2571     if (rdma->wr_data[idx].control_len) {
2572         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2573
2574         len = MIN(size, rdma->wr_data[idx].control_len);
2575         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2576         rdma->wr_data[idx].control_curr += len;
2577         rdma->wr_data[idx].control_len -= len;
2578     }
2579
2580     return len;
2581 }
2582
2583 /*
2584  * QEMUFile interface to the control channel.
2585  * RDMA links don't use bytestreams, so we have to
2586  * return bytes to QEMUFile opportunistically.
2587  */
2588 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2589                                 int64_t pos, int size)
2590 {
2591     QEMUFileRDMA *r = opaque;
2592     RDMAContext *rdma = r->rdma;
2593     RDMAControlHeader head;
2594     int ret = 0;
2595
2596     CHECK_ERROR_STATE();
2597
2598     /*
2599      * First, we hold on to the last SEND message we
2600      * were given and dish out the bytes until we run
2601      * out of bytes.
2602      */
2603     r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2604     if (r->len) {
2605         return r->len;
2606     }
2607
2608     /*
2609      * Once we run out, we block and wait for another
2610      * SEND message to arrive.
2611      */
2612     ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2613
2614     if (ret < 0) {
2615         rdma->error_state = ret;
2616         return ret;
2617     }
2618
2619     /*
2620      * SEND was received with new bytes, now try again.
2621      */
2622     return qemu_rdma_fill(r->rdma, buf, size, 0);
2623 }
2624
2625 /*
2626  * Block until all the outstanding chunks have been delivered by the hardware.
2627  */
2628 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2629 {
2630     int ret;
2631
2632     if (qemu_rdma_write_flush(f, rdma) < 0) {
2633         return -EIO;
2634     }
2635
2636     while (rdma->nb_sent) {
2637         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2638         if (ret < 0) {
2639             error_report("rdma migration: complete polling error!");
2640             return -EIO;
2641         }
2642     }
2643
2644     qemu_rdma_unregister_waiting(rdma);
2645
2646     return 0;
2647 }
2648
2649 static int qemu_rdma_close(void *opaque)
2650 {
2651     trace_qemu_rdma_close();
2652     QEMUFileRDMA *r = opaque;
2653     if (r->rdma) {
2654         qemu_rdma_cleanup(r->rdma);
2655         g_free(r->rdma);
2656     }
2657     g_free(r);
2658     return 0;
2659 }
2660
2661 /*
2662  * Parameters:
2663  *    @offset == 0 :
2664  *        This means that 'block_offset' is a full virtual address that does not
2665  *        belong to a RAMBlock of the virtual machine and instead
2666  *        represents a private malloc'd memory area that the caller wishes to
2667  *        transfer.
2668  *
2669  *    @offset != 0 :
2670  *        Offset is an offset to be added to block_offset and used
2671  *        to also lookup the corresponding RAMBlock.
2672  *
2673  *    @size > 0 :
2674  *        Initiate an transfer this size.
2675  *
2676  *    @size == 0 :
2677  *        A 'hint' or 'advice' that means that we wish to speculatively
2678  *        and asynchronously unregister this memory. In this case, there is no
2679  *        guarantee that the unregister will actually happen, for example,
2680  *        if the memory is being actively transmitted. Additionally, the memory
2681  *        may be re-registered at any future time if a write within the same
2682  *        chunk was requested again, even if you attempted to unregister it
2683  *        here.
2684  *
2685  *    @size < 0 : TODO, not yet supported
2686  *        Unregister the memory NOW. This means that the caller does not
2687  *        expect there to be any future RDMA transfers and we just want to clean
2688  *        things up. This is used in case the upper layer owns the memory and
2689  *        cannot wait for qemu_fclose() to occur.
2690  *
2691  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
2692  *                  sent. Usually, this will not be more than a few bytes of
2693  *                  the protocol because most transfers are sent asynchronously.
2694  */
2695 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2696                                   ram_addr_t block_offset, ram_addr_t offset,
2697                                   size_t size, uint64_t *bytes_sent)
2698 {
2699     QEMUFileRDMA *rfile = opaque;
2700     RDMAContext *rdma = rfile->rdma;
2701     int ret;
2702
2703     CHECK_ERROR_STATE();
2704
2705     qemu_fflush(f);
2706
2707     if (size > 0) {
2708         /*
2709          * Add this page to the current 'chunk'. If the chunk
2710          * is full, or the page doen't belong to the current chunk,
2711          * an actual RDMA write will occur and a new chunk will be formed.
2712          */
2713         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2714         if (ret < 0) {
2715             error_report("rdma migration: write error! %d", ret);
2716             goto err;
2717         }
2718
2719         /*
2720          * We always return 1 bytes because the RDMA
2721          * protocol is completely asynchronous. We do not yet know
2722          * whether an  identified chunk is zero or not because we're
2723          * waiting for other pages to potentially be merged with
2724          * the current chunk. So, we have to call qemu_update_position()
2725          * later on when the actual write occurs.
2726          */
2727         if (bytes_sent) {
2728             *bytes_sent = 1;
2729         }
2730     } else {
2731         uint64_t index, chunk;
2732
2733         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2734         if (size < 0) {
2735             ret = qemu_rdma_drain_cq(f, rdma);
2736             if (ret < 0) {
2737                 fprintf(stderr, "rdma: failed to synchronously drain"
2738                                 " completion queue before unregistration.\n");
2739                 goto err;
2740             }
2741         }
2742         */
2743
2744         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2745                                          offset, size, &index, &chunk);
2746
2747         if (ret) {
2748             error_report("ram block search failed");
2749             goto err;
2750         }
2751
2752         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2753
2754         /*
2755          * TODO: Synchronous, guaranteed unregistration (should not occur during
2756          * fast-path). Otherwise, unregisters will process on the next call to
2757          * qemu_rdma_drain_cq()
2758         if (size < 0) {
2759             qemu_rdma_unregister_waiting(rdma);
2760         }
2761         */
2762     }
2763
2764     /*
2765      * Drain the Completion Queue if possible, but do not block,
2766      * just poll.
2767      *
2768      * If nothing to poll, the end of the iteration will do this
2769      * again to make sure we don't overflow the request queue.
2770      */
2771     while (1) {
2772         uint64_t wr_id, wr_id_in;
2773         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2774         if (ret < 0) {
2775             error_report("rdma migration: polling error! %d", ret);
2776             goto err;
2777         }
2778
2779         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2780
2781         if (wr_id == RDMA_WRID_NONE) {
2782             break;
2783         }
2784     }
2785
2786     return RAM_SAVE_CONTROL_DELAYED;
2787 err:
2788     rdma->error_state = ret;
2789     return ret;
2790 }
2791
2792 static int qemu_rdma_accept(RDMAContext *rdma)
2793 {
2794     RDMACapabilities cap;
2795     struct rdma_conn_param conn_param = {
2796                                             .responder_resources = 2,
2797                                             .private_data = &cap,
2798                                             .private_data_len = sizeof(cap),
2799                                          };
2800     struct rdma_cm_event *cm_event;
2801     struct ibv_context *verbs;
2802     int ret = -EINVAL;
2803     int idx;
2804
2805     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2806     if (ret) {
2807         goto err_rdma_dest_wait;
2808     }
2809
2810     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2811         rdma_ack_cm_event(cm_event);
2812         goto err_rdma_dest_wait;
2813     }
2814
2815     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2816
2817     network_to_caps(&cap);
2818
2819     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2820             error_report("Unknown source RDMA version: %d, bailing...",
2821                             cap.version);
2822             rdma_ack_cm_event(cm_event);
2823             goto err_rdma_dest_wait;
2824     }
2825
2826     /*
2827      * Respond with only the capabilities this version of QEMU knows about.
2828      */
2829     cap.flags &= known_capabilities;
2830
2831     /*
2832      * Enable the ones that we do know about.
2833      * Add other checks here as new ones are introduced.
2834      */
2835     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2836         rdma->pin_all = true;
2837     }
2838
2839     rdma->cm_id = cm_event->id;
2840     verbs = cm_event->id->verbs;
2841
2842     rdma_ack_cm_event(cm_event);
2843
2844     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
2845
2846     caps_to_network(&cap);
2847
2848     trace_qemu_rdma_accept_pin_verbsc(verbs);
2849
2850     if (!rdma->verbs) {
2851         rdma->verbs = verbs;
2852     } else if (rdma->verbs != verbs) {
2853             error_report("ibv context not matching %p, %p!", rdma->verbs,
2854                          verbs);
2855             goto err_rdma_dest_wait;
2856     }
2857
2858     qemu_rdma_dump_id("dest_init", verbs);
2859
2860     ret = qemu_rdma_alloc_pd_cq(rdma);
2861     if (ret) {
2862         error_report("rdma migration: error allocating pd and cq!");
2863         goto err_rdma_dest_wait;
2864     }
2865
2866     ret = qemu_rdma_alloc_qp(rdma);
2867     if (ret) {
2868         error_report("rdma migration: error allocating qp!");
2869         goto err_rdma_dest_wait;
2870     }
2871
2872     ret = qemu_rdma_init_ram_blocks(rdma);
2873     if (ret) {
2874         error_report("rdma migration: error initializing ram blocks!");
2875         goto err_rdma_dest_wait;
2876     }
2877
2878     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2879         ret = qemu_rdma_reg_control(rdma, idx);
2880         if (ret) {
2881             error_report("rdma: error registering %d control", idx);
2882             goto err_rdma_dest_wait;
2883         }
2884     }
2885
2886     qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2887
2888     ret = rdma_accept(rdma->cm_id, &conn_param);
2889     if (ret) {
2890         error_report("rdma_accept returns %d", ret);
2891         goto err_rdma_dest_wait;
2892     }
2893
2894     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2895     if (ret) {
2896         error_report("rdma_accept get_cm_event failed %d", ret);
2897         goto err_rdma_dest_wait;
2898     }
2899
2900     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2901         error_report("rdma_accept not event established");
2902         rdma_ack_cm_event(cm_event);
2903         goto err_rdma_dest_wait;
2904     }
2905
2906     rdma_ack_cm_event(cm_event);
2907     rdma->connected = true;
2908
2909     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2910     if (ret) {
2911         error_report("rdma migration: error posting second control recv");
2912         goto err_rdma_dest_wait;
2913     }
2914
2915     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2916
2917     return 0;
2918
2919 err_rdma_dest_wait:
2920     rdma->error_state = ret;
2921     qemu_rdma_cleanup(rdma);
2922     return ret;
2923 }
2924
2925 static int dest_ram_sort_func(const void *a, const void *b)
2926 {
2927     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
2928     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
2929
2930     return (a_index < b_index) ? -1 : (a_index != b_index);
2931 }
2932
2933 /*
2934  * During each iteration of the migration, we listen for instructions
2935  * by the source VM to perform dynamic page registrations before they
2936  * can perform RDMA operations.
2937  *
2938  * We respond with the 'rkey'.
2939  *
2940  * Keep doing this until the source tells us to stop.
2941  */
2942 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
2943 {
2944     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2945                                .type = RDMA_CONTROL_REGISTER_RESULT,
2946                                .repeat = 0,
2947                              };
2948     RDMAControlHeader unreg_resp = { .len = 0,
2949                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2950                                .repeat = 0,
2951                              };
2952     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2953                                  .repeat = 1 };
2954     QEMUFileRDMA *rfile = opaque;
2955     RDMAContext *rdma = rfile->rdma;
2956     RDMALocalBlocks *local = &rdma->local_ram_blocks;
2957     RDMAControlHeader head;
2958     RDMARegister *reg, *registers;
2959     RDMACompress *comp;
2960     RDMARegisterResult *reg_result;
2961     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2962     RDMALocalBlock *block;
2963     void *host_addr;
2964     int ret = 0;
2965     int idx = 0;
2966     int count = 0;
2967     int i = 0;
2968
2969     CHECK_ERROR_STATE();
2970
2971     do {
2972         trace_qemu_rdma_registration_handle_wait();
2973
2974         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2975
2976         if (ret < 0) {
2977             break;
2978         }
2979
2980         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2981             error_report("rdma: Too many requests in this message (%d)."
2982                             "Bailing.", head.repeat);
2983             ret = -EIO;
2984             break;
2985         }
2986
2987         switch (head.type) {
2988         case RDMA_CONTROL_COMPRESS:
2989             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2990             network_to_compress(comp);
2991
2992             trace_qemu_rdma_registration_handle_compress(comp->length,
2993                                                          comp->block_idx,
2994                                                          comp->offset);
2995             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
2996                 error_report("rdma: 'compress' bad block index %u (vs %d)",
2997                              (unsigned int)comp->block_idx,
2998                              rdma->local_ram_blocks.nb_blocks);
2999                 ret = -EIO;
3000                 goto out;
3001             }
3002             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3003
3004             host_addr = block->local_host_addr +
3005                             (comp->offset - block->offset);
3006
3007             ram_handle_compressed(host_addr, comp->value, comp->length);
3008             break;
3009
3010         case RDMA_CONTROL_REGISTER_FINISHED:
3011             trace_qemu_rdma_registration_handle_finished();
3012             goto out;
3013
3014         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3015             trace_qemu_rdma_registration_handle_ram_blocks();
3016
3017             /* Sort our local RAM Block list so it's the same as the source,
3018              * we can do this since we've filled in a src_index in the list
3019              * as we received the RAMBlock list earlier.
3020              */
3021             qsort(rdma->local_ram_blocks.block,
3022                   rdma->local_ram_blocks.nb_blocks,
3023                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3024             if (rdma->pin_all) {
3025                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3026                 if (ret) {
3027                     error_report("rdma migration: error dest "
3028                                     "registering ram blocks");
3029                     goto out;
3030                 }
3031             }
3032
3033             /*
3034              * Dest uses this to prepare to transmit the RAMBlock descriptions
3035              * to the source VM after connection setup.
3036              * Both sides use the "remote" structure to communicate and update
3037              * their "local" descriptions with what was sent.
3038              */
3039             for (i = 0; i < local->nb_blocks; i++) {
3040                 rdma->dest_blocks[i].remote_host_addr =
3041                     (uintptr_t)(local->block[i].local_host_addr);
3042
3043                 if (rdma->pin_all) {
3044                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3045                 }
3046
3047                 rdma->dest_blocks[i].offset = local->block[i].offset;
3048                 rdma->dest_blocks[i].length = local->block[i].length;
3049
3050                 dest_block_to_network(&rdma->dest_blocks[i]);
3051                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3052                     local->block[i].block_name,
3053                     local->block[i].offset,
3054                     local->block[i].length,
3055                     local->block[i].local_host_addr,
3056                     local->block[i].src_index);
3057             }
3058
3059             blocks.len = rdma->local_ram_blocks.nb_blocks
3060                                                 * sizeof(RDMADestBlock);
3061
3062
3063             ret = qemu_rdma_post_send_control(rdma,
3064                                         (uint8_t *) rdma->dest_blocks, &blocks);
3065
3066             if (ret < 0) {
3067                 error_report("rdma migration: error sending remote info");
3068                 goto out;
3069             }
3070
3071             break;
3072         case RDMA_CONTROL_REGISTER_REQUEST:
3073             trace_qemu_rdma_registration_handle_register(head.repeat);
3074
3075             reg_resp.repeat = head.repeat;
3076             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3077
3078             for (count = 0; count < head.repeat; count++) {
3079                 uint64_t chunk;
3080                 uint8_t *chunk_start, *chunk_end;
3081
3082                 reg = &registers[count];
3083                 network_to_register(reg);
3084
3085                 reg_result = &results[count];
3086
3087                 trace_qemu_rdma_registration_handle_register_loop(count,
3088                          reg->current_index, reg->key.current_addr, reg->chunks);
3089
3090                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3091                     error_report("rdma: 'register' bad block index %u (vs %d)",
3092                                  (unsigned int)reg->current_index,
3093                                  rdma->local_ram_blocks.nb_blocks);
3094                     ret = -ENOENT;
3095                     goto out;
3096                 }
3097                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3098                 if (block->is_ram_block) {
3099                     if (block->offset > reg->key.current_addr) {
3100                         error_report("rdma: bad register address for block %s"
3101                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3102                             block->block_name, block->offset,
3103                             reg->key.current_addr);
3104                         ret = -ERANGE;
3105                         goto out;
3106                     }
3107                     host_addr = (block->local_host_addr +
3108                                 (reg->key.current_addr - block->offset));
3109                     chunk = ram_chunk_index(block->local_host_addr,
3110                                             (uint8_t *) host_addr);
3111                 } else {
3112                     chunk = reg->key.chunk;
3113                     host_addr = block->local_host_addr +
3114                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3115                     /* Check for particularly bad chunk value */
3116                     if (host_addr < (void *)block->local_host_addr) {
3117                         error_report("rdma: bad chunk for block %s"
3118                             " chunk: %" PRIx64,
3119                             block->block_name, reg->key.chunk);
3120                         ret = -ERANGE;
3121                         goto out;
3122                     }
3123                 }
3124                 chunk_start = ram_chunk_start(block, chunk);
3125                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3126                 if (qemu_rdma_register_and_get_keys(rdma, block,
3127                             (uintptr_t)host_addr, NULL, &reg_result->rkey,
3128                             chunk, chunk_start, chunk_end)) {
3129                     error_report("cannot get rkey");
3130                     ret = -EINVAL;
3131                     goto out;
3132                 }
3133
3134                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3135
3136                 trace_qemu_rdma_registration_handle_register_rkey(
3137                                                            reg_result->rkey);
3138
3139                 result_to_network(reg_result);
3140             }
3141
3142             ret = qemu_rdma_post_send_control(rdma,
3143                             (uint8_t *) results, &reg_resp);
3144
3145             if (ret < 0) {
3146                 error_report("Failed to send control buffer");
3147                 goto out;
3148             }
3149             break;
3150         case RDMA_CONTROL_UNREGISTER_REQUEST:
3151             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3152             unreg_resp.repeat = head.repeat;
3153             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3154
3155             for (count = 0; count < head.repeat; count++) {
3156                 reg = &registers[count];
3157                 network_to_register(reg);
3158
3159                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3160                            reg->current_index, reg->key.chunk);
3161
3162                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3163
3164                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3165                 block->pmr[reg->key.chunk] = NULL;
3166
3167                 if (ret != 0) {
3168                     perror("rdma unregistration chunk failed");
3169                     ret = -ret;
3170                     goto out;
3171                 }
3172
3173                 rdma->total_registrations--;
3174
3175                 trace_qemu_rdma_registration_handle_unregister_success(
3176                                                        reg->key.chunk);
3177             }
3178
3179             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3180
3181             if (ret < 0) {
3182                 error_report("Failed to send control buffer");
3183                 goto out;
3184             }
3185             break;
3186         case RDMA_CONTROL_REGISTER_RESULT:
3187             error_report("Invalid RESULT message at dest.");
3188             ret = -EIO;
3189             goto out;
3190         default:
3191             error_report("Unknown control message %s", control_desc[head.type]);
3192             ret = -EIO;
3193             goto out;
3194         }
3195     } while (1);
3196 out:
3197     if (ret < 0) {
3198         rdma->error_state = ret;
3199     }
3200     return ret;
3201 }
3202
3203 /* Destination:
3204  * Called via a ram_control_load_hook during the initial RAM load section which
3205  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3206  * on the source.
3207  * We've already built our local RAMBlock list, but not yet sent the list to
3208  * the source.
3209  */
3210 static int rdma_block_notification_handle(QEMUFileRDMA *rfile, const char *name)
3211 {
3212     RDMAContext *rdma = rfile->rdma;
3213     int curr;
3214     int found = -1;
3215
3216     /* Find the matching RAMBlock in our local list */
3217     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3218         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3219             found = curr;
3220             break;
3221         }
3222     }
3223
3224     if (found == -1) {
3225         error_report("RAMBlock '%s' not found on destination", name);
3226         return -ENOENT;
3227     }
3228
3229     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3230     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3231     rdma->next_src_index++;
3232
3233     return 0;
3234 }
3235
3236 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3237 {
3238     switch (flags) {
3239     case RAM_CONTROL_BLOCK_REG:
3240         return rdma_block_notification_handle(opaque, data);
3241
3242     case RAM_CONTROL_HOOK:
3243         return qemu_rdma_registration_handle(f, opaque);
3244
3245     default:
3246         /* Shouldn't be called with any other values */
3247         abort();
3248     }
3249 }
3250
3251 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3252                                         uint64_t flags, void *data)
3253 {
3254     QEMUFileRDMA *rfile = opaque;
3255     RDMAContext *rdma = rfile->rdma;
3256
3257     CHECK_ERROR_STATE();
3258
3259     trace_qemu_rdma_registration_start(flags);
3260     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3261     qemu_fflush(f);
3262
3263     return 0;
3264 }
3265
3266 /*
3267  * Inform dest that dynamic registrations are done for now.
3268  * First, flush writes, if any.
3269  */
3270 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3271                                        uint64_t flags, void *data)
3272 {
3273     Error *local_err = NULL, **errp = &local_err;
3274     QEMUFileRDMA *rfile = opaque;
3275     RDMAContext *rdma = rfile->rdma;
3276     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3277     int ret = 0;
3278
3279     CHECK_ERROR_STATE();
3280
3281     qemu_fflush(f);
3282     ret = qemu_rdma_drain_cq(f, rdma);
3283
3284     if (ret < 0) {
3285         goto err;
3286     }
3287
3288     if (flags == RAM_CONTROL_SETUP) {
3289         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3290         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3291         int reg_result_idx, i, nb_dest_blocks;
3292
3293         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3294         trace_qemu_rdma_registration_stop_ram();
3295
3296         /*
3297          * Make sure that we parallelize the pinning on both sides.
3298          * For very large guests, doing this serially takes a really
3299          * long time, so we have to 'interleave' the pinning locally
3300          * with the control messages by performing the pinning on this
3301          * side before we receive the control response from the other
3302          * side that the pinning has completed.
3303          */
3304         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3305                     &reg_result_idx, rdma->pin_all ?
3306                     qemu_rdma_reg_whole_ram_blocks : NULL);
3307         if (ret < 0) {
3308             ERROR(errp, "receiving remote info!");
3309             return ret;
3310         }
3311
3312         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3313
3314         /*
3315          * The protocol uses two different sets of rkeys (mutually exclusive):
3316          * 1. One key to represent the virtual address of the entire ram block.
3317          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3318          * 2. One to represent individual chunks within a ram block.
3319          *    (dynamic chunk registration enabled - pin individual chunks.)
3320          *
3321          * Once the capability is successfully negotiated, the destination transmits
3322          * the keys to use (or sends them later) including the virtual addresses
3323          * and then propagates the remote ram block descriptions to his local copy.
3324          */
3325
3326         if (local->nb_blocks != nb_dest_blocks) {
3327             ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3328                         "Your QEMU command line parameters are probably "
3329                         "not identical on both the source and destination.",
3330                         local->nb_blocks, nb_dest_blocks);
3331             rdma->error_state = -EINVAL;
3332             return -EINVAL;
3333         }
3334
3335         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3336         memcpy(rdma->dest_blocks,
3337             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3338         for (i = 0; i < nb_dest_blocks; i++) {
3339             network_to_dest_block(&rdma->dest_blocks[i]);
3340
3341             /* We require that the blocks are in the same order */
3342             if (rdma->dest_blocks[i].length != local->block[i].length) {
3343                 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3344                             "vs %" PRIu64, local->block[i].block_name, i,
3345                             local->block[i].length,
3346                             rdma->dest_blocks[i].length);
3347                 rdma->error_state = -EINVAL;
3348                 return -EINVAL;
3349             }
3350             local->block[i].remote_host_addr =
3351                     rdma->dest_blocks[i].remote_host_addr;
3352             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3353         }
3354     }
3355
3356     trace_qemu_rdma_registration_stop(flags);
3357
3358     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3359     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3360
3361     if (ret < 0) {
3362         goto err;
3363     }
3364
3365     return 0;
3366 err:
3367     rdma->error_state = ret;
3368     return ret;
3369 }
3370
3371 static int qemu_rdma_get_fd(void *opaque)
3372 {
3373     QEMUFileRDMA *rfile = opaque;
3374     RDMAContext *rdma = rfile->rdma;
3375
3376     return rdma->comp_channel->fd;
3377 }
3378
3379 static const QEMUFileOps rdma_read_ops = {
3380     .get_buffer    = qemu_rdma_get_buffer,
3381     .get_fd        = qemu_rdma_get_fd,
3382     .close         = qemu_rdma_close,
3383     .hook_ram_load = rdma_load_hook,
3384 };
3385
3386 static const QEMUFileOps rdma_write_ops = {
3387     .put_buffer         = qemu_rdma_put_buffer,
3388     .close              = qemu_rdma_close,
3389     .before_ram_iterate = qemu_rdma_registration_start,
3390     .after_ram_iterate  = qemu_rdma_registration_stop,
3391     .save_page          = qemu_rdma_save_page,
3392 };
3393
3394 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3395 {
3396     QEMUFileRDMA *r;
3397
3398     if (qemu_file_mode_is_not_valid(mode)) {
3399         return NULL;
3400     }
3401
3402     r = g_malloc0(sizeof(QEMUFileRDMA));
3403     r->rdma = rdma;
3404
3405     if (mode[0] == 'w') {
3406         r->file = qemu_fopen_ops(r, &rdma_write_ops);
3407     } else {
3408         r->file = qemu_fopen_ops(r, &rdma_read_ops);
3409     }
3410
3411     return r->file;
3412 }
3413
3414 static void rdma_accept_incoming_migration(void *opaque)
3415 {
3416     RDMAContext *rdma = opaque;
3417     int ret;
3418     QEMUFile *f;
3419     Error *local_err = NULL, **errp = &local_err;
3420
3421     trace_qemu_rdma_accept_incoming_migration();
3422     ret = qemu_rdma_accept(rdma);
3423
3424     if (ret) {
3425         ERROR(errp, "RDMA Migration initialization failed!");
3426         return;
3427     }
3428
3429     trace_qemu_rdma_accept_incoming_migration_accepted();
3430
3431     f = qemu_fopen_rdma(rdma, "rb");
3432     if (f == NULL) {
3433         ERROR(errp, "could not qemu_fopen_rdma!");
3434         qemu_rdma_cleanup(rdma);
3435         return;
3436     }
3437
3438     rdma->migration_started_on_destination = 1;
3439     process_incoming_migration(f);
3440 }
3441
3442 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3443 {
3444     int ret;
3445     RDMAContext *rdma;
3446     Error *local_err = NULL;
3447
3448     trace_rdma_start_incoming_migration();
3449     rdma = qemu_rdma_data_init(host_port, &local_err);
3450
3451     if (rdma == NULL) {
3452         goto err;
3453     }
3454
3455     ret = qemu_rdma_dest_init(rdma, &local_err);
3456
3457     if (ret) {
3458         goto err;
3459     }
3460
3461     trace_rdma_start_incoming_migration_after_dest_init();
3462
3463     ret = rdma_listen(rdma->listen_id, 5);
3464
3465     if (ret) {
3466         ERROR(errp, "listening on socket!");
3467         goto err;
3468     }
3469
3470     trace_rdma_start_incoming_migration_after_rdma_listen();
3471
3472     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3473                         NULL, (void *)(intptr_t)rdma);
3474     return;
3475 err:
3476     error_propagate(errp, local_err);
3477     g_free(rdma);
3478 }
3479
3480 void rdma_start_outgoing_migration(void *opaque,
3481                             const char *host_port, Error **errp)
3482 {
3483     MigrationState *s = opaque;
3484     Error *local_err = NULL, **temp = &local_err;
3485     RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3486     int ret = 0;
3487
3488     if (rdma == NULL) {
3489         ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3490         goto err;
3491     }
3492
3493     ret = qemu_rdma_source_init(rdma, &local_err,
3494         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3495
3496     if (ret) {
3497         goto err;
3498     }
3499
3500     trace_rdma_start_outgoing_migration_after_rdma_source_init();
3501     ret = qemu_rdma_connect(rdma, &local_err);
3502
3503     if (ret) {
3504         goto err;
3505     }
3506
3507     trace_rdma_start_outgoing_migration_after_rdma_connect();
3508
3509     s->file = qemu_fopen_rdma(rdma, "wb");
3510     migrate_fd_connect(s);
3511     return;
3512 err:
3513     error_propagate(errp, local_err);
3514     g_free(rdma);
3515     migrate_fd_error(s);
3516 }