These changes are the raw update to qemu-2.6.
[kvmfornfv.git] / qemu / linux-user / arm / nwfpe / single_cpdo.c
1 /*
2     NetWinder Floating Point Emulator
3     (c) Rebel.COM, 1998,1999
4
5     Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
6
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11
12     This program is distributed in the hope that it will be useful,
13     but WITHOUT ANY WARRANTY; without even the implied warranty of
14     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15     GNU General Public License for more details.
16
17     You should have received a copy of the GNU General Public License
18     along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "fpa11.h"
23 #include "fpu/softfloat.h"
24 #include "fpopcode.h"
25
26 float32 float32_exp(float32 Fm);
27 float32 float32_ln(float32 Fm);
28 float32 float32_sin(float32 rFm);
29 float32 float32_cos(float32 rFm);
30 float32 float32_arcsin(float32 rFm);
31 float32 float32_arctan(float32 rFm);
32 float32 float32_log(float32 rFm);
33 float32 float32_tan(float32 rFm);
34 float32 float32_arccos(float32 rFm);
35 float32 float32_pow(float32 rFn,float32 rFm);
36 float32 float32_pol(float32 rFn,float32 rFm);
37
38 unsigned int SingleCPDO(const unsigned int opcode)
39 {
40    FPA11 *fpa11 = GET_FPA11();
41    float32 rFm, rFn = float32_zero;
42    unsigned int Fd, Fm, Fn, nRc = 1;
43
44    Fm = getFm(opcode);
45    if (CONSTANT_FM(opcode))
46    {
47      rFm = getSingleConstant(Fm);
48    }
49    else
50    {
51      switch (fpa11->fType[Fm])
52      {
53         case typeSingle:
54           rFm = fpa11->fpreg[Fm].fSingle;
55         break;
56
57         default: return 0;
58      }
59    }
60
61    if (!MONADIC_INSTRUCTION(opcode))
62    {
63       Fn = getFn(opcode);
64       switch (fpa11->fType[Fn])
65       {
66         case typeSingle:
67           rFn = fpa11->fpreg[Fn].fSingle;
68         break;
69
70         default: return 0;
71       }
72    }
73
74    Fd = getFd(opcode);
75    switch (opcode & MASK_ARITHMETIC_OPCODE)
76    {
77       /* dyadic opcodes */
78       case ADF_CODE:
79          fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm, &fpa11->fp_status);
80       break;
81
82       case MUF_CODE:
83       case FML_CODE:
84         fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm, &fpa11->fp_status);
85       break;
86
87       case SUF_CODE:
88          fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm, &fpa11->fp_status);
89       break;
90
91       case RSF_CODE:
92          fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn, &fpa11->fp_status);
93       break;
94
95       case DVF_CODE:
96       case FDV_CODE:
97          fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm, &fpa11->fp_status);
98       break;
99
100       case RDF_CODE:
101       case FRD_CODE:
102          fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn, &fpa11->fp_status);
103       break;
104
105 #if 0
106       case POW_CODE:
107          fpa11->fpreg[Fd].fSingle = float32_pow(rFn,rFm);
108       break;
109
110       case RPW_CODE:
111          fpa11->fpreg[Fd].fSingle = float32_pow(rFm,rFn);
112       break;
113 #endif
114
115       case RMF_CODE:
116          fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm, &fpa11->fp_status);
117       break;
118
119 #if 0
120       case POL_CODE:
121          fpa11->fpreg[Fd].fSingle = float32_pol(rFn,rFm);
122       break;
123 #endif
124
125       /* monadic opcodes */
126       case MVF_CODE:
127          fpa11->fpreg[Fd].fSingle = rFm;
128       break;
129
130       case MNF_CODE:
131          fpa11->fpreg[Fd].fSingle = float32_chs(rFm);
132       break;
133
134       case ABS_CODE:
135          fpa11->fpreg[Fd].fSingle = float32_abs(rFm);
136       break;
137
138       case RND_CODE:
139       case URD_CODE:
140          fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm, &fpa11->fp_status);
141       break;
142
143       case SQT_CODE:
144          fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm, &fpa11->fp_status);
145       break;
146
147 #if 0
148       case LOG_CODE:
149          fpa11->fpreg[Fd].fSingle = float32_log(rFm);
150       break;
151
152       case LGN_CODE:
153          fpa11->fpreg[Fd].fSingle = float32_ln(rFm);
154       break;
155
156       case EXP_CODE:
157          fpa11->fpreg[Fd].fSingle = float32_exp(rFm);
158       break;
159
160       case SIN_CODE:
161          fpa11->fpreg[Fd].fSingle = float32_sin(rFm);
162       break;
163
164       case COS_CODE:
165          fpa11->fpreg[Fd].fSingle = float32_cos(rFm);
166       break;
167
168       case TAN_CODE:
169          fpa11->fpreg[Fd].fSingle = float32_tan(rFm);
170       break;
171
172       case ASN_CODE:
173          fpa11->fpreg[Fd].fSingle = float32_arcsin(rFm);
174       break;
175
176       case ACS_CODE:
177          fpa11->fpreg[Fd].fSingle = float32_arccos(rFm);
178       break;
179
180       case ATN_CODE:
181          fpa11->fpreg[Fd].fSingle = float32_arctan(rFm);
182       break;
183 #endif
184
185       case NRM_CODE:
186       break;
187
188       default:
189       {
190         nRc = 0;
191       }
192    }
193
194    if (0 != nRc) fpa11->fType[Fd] = typeSingle;
195    return nRc;
196 }
197
198 #if 0
199 float32 float32_exp(float32 Fm)
200 {
201 //series
202 }
203
204 float32 float32_ln(float32 Fm)
205 {
206 //series
207 }
208
209 float32 float32_sin(float32 rFm)
210 {
211 //series
212 }
213
214 float32 float32_cos(float32 rFm)
215 {
216 //series
217 }
218
219 float32 float32_arcsin(float32 rFm)
220 {
221 //series
222 }
223
224 float32 float32_arctan(float32 rFm)
225 {
226   //series
227 }
228
229 float32 float32_arccos(float32 rFm)
230 {
231    //return float32_sub(halfPi,float32_arcsin(rFm));
232 }
233
234 float32 float32_log(float32 rFm)
235 {
236   return float32_div(float32_ln(rFm),getSingleConstant(7));
237 }
238
239 float32 float32_tan(float32 rFm)
240 {
241   return float32_div(float32_sin(rFm),float32_cos(rFm));
242 }
243
244 float32 float32_pow(float32 rFn,float32 rFm)
245 {
246   return float32_exp(float32_mul(rFm,float32_ln(rFn)));
247 }
248
249 float32 float32_pol(float32 rFn,float32 rFm)
250 {
251   return float32_arctan(float32_div(rFn,rFm));
252 }
253 #endif