These changes are the raw update to qemu-2.6.
[kvmfornfv.git] / qemu / include / qom / object.h
1 /*
2  * QEMU Object Model
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16
17 #include <glib.h>
18 #include "qapi-types.h"
19 #include "qemu/queue.h"
20
21 struct TypeImpl;
22 typedef struct TypeImpl *Type;
23
24 typedef struct ObjectClass ObjectClass;
25 typedef struct Object Object;
26
27 typedef struct TypeInfo TypeInfo;
28
29 typedef struct InterfaceClass InterfaceClass;
30 typedef struct InterfaceInfo InterfaceInfo;
31
32 #define TYPE_OBJECT "object"
33
34 /**
35  * SECTION:object.h
36  * @title:Base Object Type System
37  * @short_description: interfaces for creating new types and objects
38  *
39  * The QEMU Object Model provides a framework for registering user creatable
40  * types and instantiating objects from those types.  QOM provides the following
41  * features:
42  *
43  *  - System for dynamically registering types
44  *  - Support for single-inheritance of types
45  *  - Multiple inheritance of stateless interfaces
46  *
47  * <example>
48  *   <title>Creating a minimal type</title>
49  *   <programlisting>
50  * #include "qdev.h"
51  *
52  * #define TYPE_MY_DEVICE "my-device"
53  *
54  * // No new virtual functions: we can reuse the typedef for the
55  * // superclass.
56  * typedef DeviceClass MyDeviceClass;
57  * typedef struct MyDevice
58  * {
59  *     DeviceState parent;
60  *
61  *     int reg0, reg1, reg2;
62  * } MyDevice;
63  *
64  * static const TypeInfo my_device_info = {
65  *     .name = TYPE_MY_DEVICE,
66  *     .parent = TYPE_DEVICE,
67  *     .instance_size = sizeof(MyDevice),
68  * };
69  *
70  * static void my_device_register_types(void)
71  * {
72  *     type_register_static(&my_device_info);
73  * }
74  *
75  * type_init(my_device_register_types)
76  *   </programlisting>
77  * </example>
78  *
79  * In the above example, we create a simple type that is described by #TypeInfo.
80  * #TypeInfo describes information about the type including what it inherits
81  * from, the instance and class size, and constructor/destructor hooks.
82  *
83  * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
84  * are instantiated dynamically but there is only ever one instance for any
85  * given type.  The #ObjectClass typically holds a table of function pointers
86  * for the virtual methods implemented by this type.
87  *
88  * Using object_new(), a new #Object derivative will be instantiated.  You can
89  * cast an #Object to a subclass (or base-class) type using
90  * object_dynamic_cast().  You typically want to define macro wrappers around
91  * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
92  * specific type:
93  *
94  * <example>
95  *   <title>Typecasting macros</title>
96  *   <programlisting>
97  *    #define MY_DEVICE_GET_CLASS(obj) \
98  *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
99  *    #define MY_DEVICE_CLASS(klass) \
100  *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
101  *    #define MY_DEVICE(obj) \
102  *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
103  *   </programlisting>
104  * </example>
105  *
106  * # Class Initialization #
107  *
108  * Before an object is initialized, the class for the object must be
109  * initialized.  There is only one class object for all instance objects
110  * that is created lazily.
111  *
112  * Classes are initialized by first initializing any parent classes (if
113  * necessary).  After the parent class object has initialized, it will be
114  * copied into the current class object and any additional storage in the
115  * class object is zero filled.
116  *
117  * The effect of this is that classes automatically inherit any virtual
118  * function pointers that the parent class has already initialized.  All
119  * other fields will be zero filled.
120  *
121  * Once all of the parent classes have been initialized, #TypeInfo::class_init
122  * is called to let the class being instantiated provide default initialize for
123  * its virtual functions.  Here is how the above example might be modified
124  * to introduce an overridden virtual function:
125  *
126  * <example>
127  *   <title>Overriding a virtual function</title>
128  *   <programlisting>
129  * #include "qdev.h"
130  *
131  * void my_device_class_init(ObjectClass *klass, void *class_data)
132  * {
133  *     DeviceClass *dc = DEVICE_CLASS(klass);
134  *     dc->reset = my_device_reset;
135  * }
136  *
137  * static const TypeInfo my_device_info = {
138  *     .name = TYPE_MY_DEVICE,
139  *     .parent = TYPE_DEVICE,
140  *     .instance_size = sizeof(MyDevice),
141  *     .class_init = my_device_class_init,
142  * };
143  *   </programlisting>
144  * </example>
145  *
146  * Introducing new virtual methods requires a class to define its own
147  * struct and to add a .class_size member to the #TypeInfo.  Each method
148  * will also have a wrapper function to call it easily:
149  *
150  * <example>
151  *   <title>Defining an abstract class</title>
152  *   <programlisting>
153  * #include "qdev.h"
154  *
155  * typedef struct MyDeviceClass
156  * {
157  *     DeviceClass parent;
158  *
159  *     void (*frobnicate) (MyDevice *obj);
160  * } MyDeviceClass;
161  *
162  * static const TypeInfo my_device_info = {
163  *     .name = TYPE_MY_DEVICE,
164  *     .parent = TYPE_DEVICE,
165  *     .instance_size = sizeof(MyDevice),
166  *     .abstract = true, // or set a default in my_device_class_init
167  *     .class_size = sizeof(MyDeviceClass),
168  * };
169  *
170  * void my_device_frobnicate(MyDevice *obj)
171  * {
172  *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
173  *
174  *     klass->frobnicate(obj);
175  * }
176  *   </programlisting>
177  * </example>
178  *
179  * # Interfaces #
180  *
181  * Interfaces allow a limited form of multiple inheritance.  Instances are
182  * similar to normal types except for the fact that are only defined by
183  * their classes and never carry any state.  You can dynamically cast an object
184  * to one of its #Interface types and vice versa.
185  *
186  * # Methods #
187  *
188  * A <emphasis>method</emphasis> is a function within the namespace scope of
189  * a class. It usually operates on the object instance by passing it as a
190  * strongly-typed first argument.
191  * If it does not operate on an object instance, it is dubbed
192  * <emphasis>class method</emphasis>.
193  *
194  * Methods cannot be overloaded. That is, the #ObjectClass and method name
195  * uniquely identity the function to be called; the signature does not vary
196  * except for trailing varargs.
197  *
198  * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
199  * #TypeInfo.class_init of a subclass leads to any user of the class obtained
200  * via OBJECT_GET_CLASS() accessing the overridden function.
201  * The original function is not automatically invoked. It is the responsibility
202  * of the overriding class to determine whether and when to invoke the method
203  * being overridden.
204  *
205  * To invoke the method being overridden, the preferred solution is to store
206  * the original value in the overriding class before overriding the method.
207  * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
208  * respectively; this frees the overriding class from hardcoding its parent
209  * class, which someone might choose to change at some point.
210  *
211  * <example>
212  *   <title>Overriding a virtual method</title>
213  *   <programlisting>
214  * typedef struct MyState MyState;
215  *
216  * typedef void (*MyDoSomething)(MyState *obj);
217  *
218  * typedef struct MyClass {
219  *     ObjectClass parent_class;
220  *
221  *     MyDoSomething do_something;
222  * } MyClass;
223  *
224  * static void my_do_something(MyState *obj)
225  * {
226  *     // do something
227  * }
228  *
229  * static void my_class_init(ObjectClass *oc, void *data)
230  * {
231  *     MyClass *mc = MY_CLASS(oc);
232  *
233  *     mc->do_something = my_do_something;
234  * }
235  *
236  * static const TypeInfo my_type_info = {
237  *     .name = TYPE_MY,
238  *     .parent = TYPE_OBJECT,
239  *     .instance_size = sizeof(MyState),
240  *     .class_size = sizeof(MyClass),
241  *     .class_init = my_class_init,
242  * };
243  *
244  * typedef struct DerivedClass {
245  *     MyClass parent_class;
246  *
247  *     MyDoSomething parent_do_something;
248  * } DerivedClass;
249  *
250  * static void derived_do_something(MyState *obj)
251  * {
252  *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
253  *
254  *     // do something here
255  *     dc->parent_do_something(obj);
256  *     // do something else here
257  * }
258  *
259  * static void derived_class_init(ObjectClass *oc, void *data)
260  * {
261  *     MyClass *mc = MY_CLASS(oc);
262  *     DerivedClass *dc = DERIVED_CLASS(oc);
263  *
264  *     dc->parent_do_something = mc->do_something;
265  *     mc->do_something = derived_do_something;
266  * }
267  *
268  * static const TypeInfo derived_type_info = {
269  *     .name = TYPE_DERIVED,
270  *     .parent = TYPE_MY,
271  *     .class_size = sizeof(DerivedClass),
272  *     .class_init = derived_class_init,
273  * };
274  *   </programlisting>
275  * </example>
276  *
277  * Alternatively, object_class_by_name() can be used to obtain the class and
278  * its non-overridden methods for a specific type. This would correspond to
279  * |[ MyClass::method(...) ]| in C++.
280  *
281  * The first example of such a QOM method was #CPUClass.reset,
282  * another example is #DeviceClass.realize.
283  */
284
285
286 /**
287  * ObjectPropertyAccessor:
288  * @obj: the object that owns the property
289  * @v: the visitor that contains the property data
290  * @name: the name of the property
291  * @opaque: the object property opaque
292  * @errp: a pointer to an Error that is filled if getting/setting fails.
293  *
294  * Called when trying to get/set a property.
295  */
296 typedef void (ObjectPropertyAccessor)(Object *obj,
297                                       Visitor *v,
298                                       const char *name,
299                                       void *opaque,
300                                       Error **errp);
301
302 /**
303  * ObjectPropertyResolve:
304  * @obj: the object that owns the property
305  * @opaque: the opaque registered with the property
306  * @part: the name of the property
307  *
308  * Resolves the #Object corresponding to property @part.
309  *
310  * The returned object can also be used as a starting point
311  * to resolve a relative path starting with "@part".
312  *
313  * Returns: If @path is the path that led to @obj, the function
314  * returns the #Object corresponding to "@path/@part".
315  * If "@path/@part" is not a valid object path, it returns #NULL.
316  */
317 typedef Object *(ObjectPropertyResolve)(Object *obj,
318                                         void *opaque,
319                                         const char *part);
320
321 /**
322  * ObjectPropertyRelease:
323  * @obj: the object that owns the property
324  * @name: the name of the property
325  * @opaque: the opaque registered with the property
326  *
327  * Called when a property is removed from a object.
328  */
329 typedef void (ObjectPropertyRelease)(Object *obj,
330                                      const char *name,
331                                      void *opaque);
332
333 typedef struct ObjectProperty
334 {
335     gchar *name;
336     gchar *type;
337     gchar *description;
338     ObjectPropertyAccessor *get;
339     ObjectPropertyAccessor *set;
340     ObjectPropertyResolve *resolve;
341     ObjectPropertyRelease *release;
342     void *opaque;
343 } ObjectProperty;
344
345 /**
346  * ObjectUnparent:
347  * @obj: the object that is being removed from the composition tree
348  *
349  * Called when an object is being removed from the QOM composition tree.
350  * The function should remove any backlinks from children objects to @obj.
351  */
352 typedef void (ObjectUnparent)(Object *obj);
353
354 /**
355  * ObjectFree:
356  * @obj: the object being freed
357  *
358  * Called when an object's last reference is removed.
359  */
360 typedef void (ObjectFree)(void *obj);
361
362 #define OBJECT_CLASS_CAST_CACHE 4
363
364 /**
365  * ObjectClass:
366  *
367  * The base for all classes.  The only thing that #ObjectClass contains is an
368  * integer type handle.
369  */
370 struct ObjectClass
371 {
372     /*< private >*/
373     Type type;
374     GSList *interfaces;
375
376     const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
377     const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
378
379     ObjectUnparent *unparent;
380
381     GHashTable *properties;
382 };
383
384 /**
385  * Object:
386  *
387  * The base for all objects.  The first member of this object is a pointer to
388  * a #ObjectClass.  Since C guarantees that the first member of a structure
389  * always begins at byte 0 of that structure, as long as any sub-object places
390  * its parent as the first member, we can cast directly to a #Object.
391  *
392  * As a result, #Object contains a reference to the objects type as its
393  * first member.  This allows identification of the real type of the object at
394  * run time.
395  */
396 struct Object
397 {
398     /*< private >*/
399     ObjectClass *class;
400     ObjectFree *free;
401     GHashTable *properties;
402     uint32_t ref;
403     Object *parent;
404 };
405
406 /**
407  * TypeInfo:
408  * @name: The name of the type.
409  * @parent: The name of the parent type.
410  * @instance_size: The size of the object (derivative of #Object).  If
411  *   @instance_size is 0, then the size of the object will be the size of the
412  *   parent object.
413  * @instance_init: This function is called to initialize an object.  The parent
414  *   class will have already been initialized so the type is only responsible
415  *   for initializing its own members.
416  * @instance_post_init: This function is called to finish initialization of
417  *   an object, after all @instance_init functions were called.
418  * @instance_finalize: This function is called during object destruction.  This
419  *   is called before the parent @instance_finalize function has been called.
420  *   An object should only free the members that are unique to its type in this
421  *   function.
422  * @abstract: If this field is true, then the class is considered abstract and
423  *   cannot be directly instantiated.
424  * @class_size: The size of the class object (derivative of #ObjectClass)
425  *   for this object.  If @class_size is 0, then the size of the class will be
426  *   assumed to be the size of the parent class.  This allows a type to avoid
427  *   implementing an explicit class type if they are not adding additional
428  *   virtual functions.
429  * @class_init: This function is called after all parent class initialization
430  *   has occurred to allow a class to set its default virtual method pointers.
431  *   This is also the function to use to override virtual methods from a parent
432  *   class.
433  * @class_base_init: This function is called for all base classes after all
434  *   parent class initialization has occurred, but before the class itself
435  *   is initialized.  This is the function to use to undo the effects of
436  *   memcpy from the parent class to the descendents.
437  * @class_finalize: This function is called during class destruction and is
438  *   meant to release and dynamic parameters allocated by @class_init.
439  * @class_data: Data to pass to the @class_init, @class_base_init and
440  *   @class_finalize functions.  This can be useful when building dynamic
441  *   classes.
442  * @interfaces: The list of interfaces associated with this type.  This
443  *   should point to a static array that's terminated with a zero filled
444  *   element.
445  */
446 struct TypeInfo
447 {
448     const char *name;
449     const char *parent;
450
451     size_t instance_size;
452     void (*instance_init)(Object *obj);
453     void (*instance_post_init)(Object *obj);
454     void (*instance_finalize)(Object *obj);
455
456     bool abstract;
457     size_t class_size;
458
459     void (*class_init)(ObjectClass *klass, void *data);
460     void (*class_base_init)(ObjectClass *klass, void *data);
461     void (*class_finalize)(ObjectClass *klass, void *data);
462     void *class_data;
463
464     InterfaceInfo *interfaces;
465 };
466
467 /**
468  * OBJECT:
469  * @obj: A derivative of #Object
470  *
471  * Converts an object to a #Object.  Since all objects are #Objects,
472  * this function will always succeed.
473  */
474 #define OBJECT(obj) \
475     ((Object *)(obj))
476
477 /**
478  * OBJECT_CLASS:
479  * @class: A derivative of #ObjectClass.
480  *
481  * Converts a class to an #ObjectClass.  Since all objects are #Objects,
482  * this function will always succeed.
483  */
484 #define OBJECT_CLASS(class) \
485     ((ObjectClass *)(class))
486
487 /**
488  * OBJECT_CHECK:
489  * @type: The C type to use for the return value.
490  * @obj: A derivative of @type to cast.
491  * @name: The QOM typename of @type
492  *
493  * A type safe version of @object_dynamic_cast_assert.  Typically each class
494  * will define a macro based on this type to perform type safe dynamic_casts to
495  * this object type.
496  *
497  * If an invalid object is passed to this function, a run time assert will be
498  * generated.
499  */
500 #define OBJECT_CHECK(type, obj, name) \
501     ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
502                                         __FILE__, __LINE__, __func__))
503
504 /**
505  * OBJECT_CLASS_CHECK:
506  * @class_type: The C type to use for the return value.
507  * @class: A derivative class of @class_type to cast.
508  * @name: the QOM typename of @class_type.
509  *
510  * A type safe version of @object_class_dynamic_cast_assert.  This macro is
511  * typically wrapped by each type to perform type safe casts of a class to a
512  * specific class type.
513  */
514 #define OBJECT_CLASS_CHECK(class_type, class, name) \
515     ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
516                                                __FILE__, __LINE__, __func__))
517
518 /**
519  * OBJECT_GET_CLASS:
520  * @class: The C type to use for the return value.
521  * @obj: The object to obtain the class for.
522  * @name: The QOM typename of @obj.
523  *
524  * This function will return a specific class for a given object.  Its generally
525  * used by each type to provide a type safe macro to get a specific class type
526  * from an object.
527  */
528 #define OBJECT_GET_CLASS(class, obj, name) \
529     OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
530
531 /**
532  * InterfaceInfo:
533  * @type: The name of the interface.
534  *
535  * The information associated with an interface.
536  */
537 struct InterfaceInfo {
538     const char *type;
539 };
540
541 /**
542  * InterfaceClass:
543  * @parent_class: the base class
544  *
545  * The class for all interfaces.  Subclasses of this class should only add
546  * virtual methods.
547  */
548 struct InterfaceClass
549 {
550     ObjectClass parent_class;
551     /*< private >*/
552     ObjectClass *concrete_class;
553     Type interface_type;
554 };
555
556 #define TYPE_INTERFACE "interface"
557
558 /**
559  * INTERFACE_CLASS:
560  * @klass: class to cast from
561  * Returns: An #InterfaceClass or raise an error if cast is invalid
562  */
563 #define INTERFACE_CLASS(klass) \
564     OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
565
566 /**
567  * INTERFACE_CHECK:
568  * @interface: the type to return
569  * @obj: the object to convert to an interface
570  * @name: the interface type name
571  *
572  * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
573  */
574 #define INTERFACE_CHECK(interface, obj, name) \
575     ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
576                                              __FILE__, __LINE__, __func__))
577
578 /**
579  * object_new:
580  * @typename: The name of the type of the object to instantiate.
581  *
582  * This function will initialize a new object using heap allocated memory.
583  * The returned object has a reference count of 1, and will be freed when
584  * the last reference is dropped.
585  *
586  * Returns: The newly allocated and instantiated object.
587  */
588 Object *object_new(const char *typename);
589
590 /**
591  * object_new_with_type:
592  * @type: The type of the object to instantiate.
593  *
594  * This function will initialize a new object using heap allocated memory.
595  * The returned object has a reference count of 1, and will be freed when
596  * the last reference is dropped.
597  *
598  * Returns: The newly allocated and instantiated object.
599  */
600 Object *object_new_with_type(Type type);
601
602 /**
603  * object_new_with_props:
604  * @typename:  The name of the type of the object to instantiate.
605  * @parent: the parent object
606  * @id: The unique ID of the object
607  * @errp: pointer to error object
608  * @...: list of property names and values
609  *
610  * This function will initialize a new object using heap allocated memory.
611  * The returned object has a reference count of 1, and will be freed when
612  * the last reference is dropped.
613  *
614  * The @id parameter will be used when registering the object as a
615  * child of @parent in the composition tree.
616  *
617  * The variadic parameters are a list of pairs of (propname, propvalue)
618  * strings. The propname of %NULL indicates the end of the property
619  * list. If the object implements the user creatable interface, the
620  * object will be marked complete once all the properties have been
621  * processed.
622  *
623  * <example>
624  *   <title>Creating an object with properties</title>
625  *   <programlisting>
626  *   Error *err = NULL;
627  *   Object *obj;
628  *
629  *   obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
630  *                               object_get_objects_root(),
631  *                               "hostmem0",
632  *                               &err,
633  *                               "share", "yes",
634  *                               "mem-path", "/dev/shm/somefile",
635  *                               "prealloc", "yes",
636  *                               "size", "1048576",
637  *                               NULL);
638  *
639  *   if (!obj) {
640  *     g_printerr("Cannot create memory backend: %s\n",
641  *                error_get_pretty(err));
642  *   }
643  *   </programlisting>
644  * </example>
645  *
646  * The returned object will have one stable reference maintained
647  * for as long as it is present in the object hierarchy.
648  *
649  * Returns: The newly allocated, instantiated & initialized object.
650  */
651 Object *object_new_with_props(const char *typename,
652                               Object *parent,
653                               const char *id,
654                               Error **errp,
655                               ...) QEMU_SENTINEL;
656
657 /**
658  * object_new_with_propv:
659  * @typename:  The name of the type of the object to instantiate.
660  * @parent: the parent object
661  * @id: The unique ID of the object
662  * @errp: pointer to error object
663  * @vargs: list of property names and values
664  *
665  * See object_new_with_props() for documentation.
666  */
667 Object *object_new_with_propv(const char *typename,
668                               Object *parent,
669                               const char *id,
670                               Error **errp,
671                               va_list vargs);
672
673 /**
674  * object_set_props:
675  * @obj: the object instance to set properties on
676  * @errp: pointer to error object
677  * @...: list of property names and values
678  *
679  * This function will set a list of properties on an existing object
680  * instance.
681  *
682  * The variadic parameters are a list of pairs of (propname, propvalue)
683  * strings. The propname of %NULL indicates the end of the property
684  * list.
685  *
686  * <example>
687  *   <title>Update an object's properties</title>
688  *   <programlisting>
689  *   Error *err = NULL;
690  *   Object *obj = ...get / create object...;
691  *
692  *   obj = object_set_props(obj,
693  *                          &err,
694  *                          "share", "yes",
695  *                          "mem-path", "/dev/shm/somefile",
696  *                          "prealloc", "yes",
697  *                          "size", "1048576",
698  *                          NULL);
699  *
700  *   if (!obj) {
701  *     g_printerr("Cannot set properties: %s\n",
702  *                error_get_pretty(err));
703  *   }
704  *   </programlisting>
705  * </example>
706  *
707  * The returned object will have one stable reference maintained
708  * for as long as it is present in the object hierarchy.
709  *
710  * Returns: -1 on error, 0 on success
711  */
712 int object_set_props(Object *obj,
713                      Error **errp,
714                      ...) QEMU_SENTINEL;
715
716 /**
717  * object_set_propv:
718  * @obj: the object instance to set properties on
719  * @errp: pointer to error object
720  * @vargs: list of property names and values
721  *
722  * See object_set_props() for documentation.
723  *
724  * Returns: -1 on error, 0 on success
725  */
726 int object_set_propv(Object *obj,
727                      Error **errp,
728                      va_list vargs);
729
730 /**
731  * object_initialize_with_type:
732  * @data: A pointer to the memory to be used for the object.
733  * @size: The maximum size available at @data for the object.
734  * @type: The type of the object to instantiate.
735  *
736  * This function will initialize an object.  The memory for the object should
737  * have already been allocated.  The returned object has a reference count of 1,
738  * and will be finalized when the last reference is dropped.
739  */
740 void object_initialize_with_type(void *data, size_t size, Type type);
741
742 /**
743  * object_initialize:
744  * @obj: A pointer to the memory to be used for the object.
745  * @size: The maximum size available at @obj for the object.
746  * @typename: The name of the type of the object to instantiate.
747  *
748  * This function will initialize an object.  The memory for the object should
749  * have already been allocated.  The returned object has a reference count of 1,
750  * and will be finalized when the last reference is dropped.
751  */
752 void object_initialize(void *obj, size_t size, const char *typename);
753
754 /**
755  * object_dynamic_cast:
756  * @obj: The object to cast.
757  * @typename: The @typename to cast to.
758  *
759  * This function will determine if @obj is-a @typename.  @obj can refer to an
760  * object or an interface associated with an object.
761  *
762  * Returns: This function returns @obj on success or #NULL on failure.
763  */
764 Object *object_dynamic_cast(Object *obj, const char *typename);
765
766 /**
767  * object_dynamic_cast_assert:
768  *
769  * See object_dynamic_cast() for a description of the parameters of this
770  * function.  The only difference in behavior is that this function asserts
771  * instead of returning #NULL on failure if QOM cast debugging is enabled.
772  * This function is not meant to be called directly, but only through
773  * the wrapper macro OBJECT_CHECK.
774  */
775 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
776                                    const char *file, int line, const char *func);
777
778 /**
779  * object_get_class:
780  * @obj: A derivative of #Object
781  *
782  * Returns: The #ObjectClass of the type associated with @obj.
783  */
784 ObjectClass *object_get_class(Object *obj);
785
786 /**
787  * object_get_typename:
788  * @obj: A derivative of #Object.
789  *
790  * Returns: The QOM typename of @obj.
791  */
792 const char *object_get_typename(Object *obj);
793
794 /**
795  * type_register_static:
796  * @info: The #TypeInfo of the new type.
797  *
798  * @info and all of the strings it points to should exist for the life time
799  * that the type is registered.
800  *
801  * Returns: 0 on failure, the new #Type on success.
802  */
803 Type type_register_static(const TypeInfo *info);
804
805 /**
806  * type_register:
807  * @info: The #TypeInfo of the new type
808  *
809  * Unlike type_register_static(), this call does not require @info or its
810  * string members to continue to exist after the call returns.
811  *
812  * Returns: 0 on failure, the new #Type on success.
813  */
814 Type type_register(const TypeInfo *info);
815
816 /**
817  * object_class_dynamic_cast_assert:
818  * @klass: The #ObjectClass to attempt to cast.
819  * @typename: The QOM typename of the class to cast to.
820  *
821  * See object_class_dynamic_cast() for a description of the parameters
822  * of this function.  The only difference in behavior is that this function
823  * asserts instead of returning #NULL on failure if QOM cast debugging is
824  * enabled.  This function is not meant to be called directly, but only through
825  * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
826  */
827 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
828                                               const char *typename,
829                                               const char *file, int line,
830                                               const char *func);
831
832 /**
833  * object_class_dynamic_cast:
834  * @klass: The #ObjectClass to attempt to cast.
835  * @typename: The QOM typename of the class to cast to.
836  *
837  * Returns: If @typename is a class, this function returns @klass if
838  * @typename is a subtype of @klass, else returns #NULL.
839  *
840  * If @typename is an interface, this function returns the interface
841  * definition for @klass if @klass implements it unambiguously; #NULL
842  * is returned if @klass does not implement the interface or if multiple
843  * classes or interfaces on the hierarchy leading to @klass implement
844  * it.  (FIXME: perhaps this can be detected at type definition time?)
845  */
846 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
847                                        const char *typename);
848
849 /**
850  * object_class_get_parent:
851  * @klass: The class to obtain the parent for.
852  *
853  * Returns: The parent for @klass or %NULL if none.
854  */
855 ObjectClass *object_class_get_parent(ObjectClass *klass);
856
857 /**
858  * object_class_get_name:
859  * @klass: The class to obtain the QOM typename for.
860  *
861  * Returns: The QOM typename for @klass.
862  */
863 const char *object_class_get_name(ObjectClass *klass);
864
865 /**
866  * object_class_is_abstract:
867  * @klass: The class to obtain the abstractness for.
868  *
869  * Returns: %true if @klass is abstract, %false otherwise.
870  */
871 bool object_class_is_abstract(ObjectClass *klass);
872
873 /**
874  * object_class_by_name:
875  * @typename: The QOM typename to obtain the class for.
876  *
877  * Returns: The class for @typename or %NULL if not found.
878  */
879 ObjectClass *object_class_by_name(const char *typename);
880
881 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
882                           const char *implements_type, bool include_abstract,
883                           void *opaque);
884
885 /**
886  * object_class_get_list:
887  * @implements_type: The type to filter for, including its derivatives.
888  * @include_abstract: Whether to include abstract classes.
889  *
890  * Returns: A singly-linked list of the classes in reverse hashtable order.
891  */
892 GSList *object_class_get_list(const char *implements_type,
893                               bool include_abstract);
894
895 /**
896  * object_ref:
897  * @obj: the object
898  *
899  * Increase the reference count of a object.  A object cannot be freed as long
900  * as its reference count is greater than zero.
901  */
902 void object_ref(Object *obj);
903
904 /**
905  * qdef_unref:
906  * @obj: the object
907  *
908  * Decrease the reference count of a object.  A object cannot be freed as long
909  * as its reference count is greater than zero.
910  */
911 void object_unref(Object *obj);
912
913 /**
914  * object_property_add:
915  * @obj: the object to add a property to
916  * @name: the name of the property.  This can contain any character except for
917  *  a forward slash.  In general, you should use hyphens '-' instead of
918  *  underscores '_' when naming properties.
919  * @type: the type name of the property.  This namespace is pretty loosely
920  *   defined.  Sub namespaces are constructed by using a prefix and then
921  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
922  *   'link' namespace would be 'link<virtio-net-pci>'.
923  * @get: The getter to be called to read a property.  If this is NULL, then
924  *   the property cannot be read.
925  * @set: the setter to be called to write a property.  If this is NULL,
926  *   then the property cannot be written.
927  * @release: called when the property is removed from the object.  This is
928  *   meant to allow a property to free its opaque upon object
929  *   destruction.  This may be NULL.
930  * @opaque: an opaque pointer to pass to the callbacks for the property
931  * @errp: returns an error if this function fails
932  *
933  * Returns: The #ObjectProperty; this can be used to set the @resolve
934  * callback for child and link properties.
935  */
936 ObjectProperty *object_property_add(Object *obj, const char *name,
937                                     const char *type,
938                                     ObjectPropertyAccessor *get,
939                                     ObjectPropertyAccessor *set,
940                                     ObjectPropertyRelease *release,
941                                     void *opaque, Error **errp);
942
943 void object_property_del(Object *obj, const char *name, Error **errp);
944
945 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
946                                           const char *type,
947                                           ObjectPropertyAccessor *get,
948                                           ObjectPropertyAccessor *set,
949                                           ObjectPropertyRelease *release,
950                                           void *opaque, Error **errp);
951
952 /**
953  * object_property_find:
954  * @obj: the object
955  * @name: the name of the property
956  * @errp: returns an error if this function fails
957  *
958  * Look up a property for an object and return its #ObjectProperty if found.
959  */
960 ObjectProperty *object_property_find(Object *obj, const char *name,
961                                      Error **errp);
962 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name,
963                                            Error **errp);
964
965 typedef struct ObjectPropertyIterator {
966     ObjectClass *nextclass;
967     GHashTableIter iter;
968 } ObjectPropertyIterator;
969
970 /**
971  * object_property_iter_init:
972  * @obj: the object
973  *
974  * Initializes an iterator for traversing all properties
975  * registered against an object instance, its class and all parent classes.
976  *
977  * It is forbidden to modify the property list while iterating,
978  * whether removing or adding properties.
979  *
980  * Typical usage pattern would be
981  *
982  * <example>
983  *   <title>Using object property iterators</title>
984  *   <programlisting>
985  *   ObjectProperty *prop;
986  *   ObjectPropertyIterator iter;
987  *
988  *   object_property_iter_init(&iter, obj);
989  *   while ((prop = object_property_iter_next(&iter))) {
990  *     ... do something with prop ...
991  *   }
992  *   </programlisting>
993  * </example>
994  */
995 void object_property_iter_init(ObjectPropertyIterator *iter,
996                                Object *obj);
997
998 /**
999  * object_property_iter_next:
1000  * @iter: the iterator instance
1001  *
1002  * Return the next available property. If no further properties
1003  * are available, a %NULL value will be returned and the @iter
1004  * pointer should not be used again after this point without
1005  * re-initializing it.
1006  *
1007  * Returns: the next property, or %NULL when all properties
1008  * have been traversed.
1009  */
1010 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1011
1012 void object_unparent(Object *obj);
1013
1014 /**
1015  * object_property_get:
1016  * @obj: the object
1017  * @v: the visitor that will receive the property value.  This should be an
1018  *   Output visitor and the data will be written with @name as the name.
1019  * @name: the name of the property
1020  * @errp: returns an error if this function fails
1021  *
1022  * Reads a property from a object.
1023  */
1024 void object_property_get(Object *obj, Visitor *v, const char *name,
1025                          Error **errp);
1026
1027 /**
1028  * object_property_set_str:
1029  * @value: the value to be written to the property
1030  * @name: the name of the property
1031  * @errp: returns an error if this function fails
1032  *
1033  * Writes a string value to a property.
1034  */
1035 void object_property_set_str(Object *obj, const char *value,
1036                              const char *name, Error **errp);
1037
1038 /**
1039  * object_property_get_str:
1040  * @obj: the object
1041  * @name: the name of the property
1042  * @errp: returns an error if this function fails
1043  *
1044  * Returns: the value of the property, converted to a C string, or NULL if
1045  * an error occurs (including when the property value is not a string).
1046  * The caller should free the string.
1047  */
1048 char *object_property_get_str(Object *obj, const char *name,
1049                               Error **errp);
1050
1051 /**
1052  * object_property_set_link:
1053  * @value: the value to be written to the property
1054  * @name: the name of the property
1055  * @errp: returns an error if this function fails
1056  *
1057  * Writes an object's canonical path to a property.
1058  */
1059 void object_property_set_link(Object *obj, Object *value,
1060                               const char *name, Error **errp);
1061
1062 /**
1063  * object_property_get_link:
1064  * @obj: the object
1065  * @name: the name of the property
1066  * @errp: returns an error if this function fails
1067  *
1068  * Returns: the value of the property, resolved from a path to an Object,
1069  * or NULL if an error occurs (including when the property value is not a
1070  * string or not a valid object path).
1071  */
1072 Object *object_property_get_link(Object *obj, const char *name,
1073                                  Error **errp);
1074
1075 /**
1076  * object_property_set_bool:
1077  * @value: the value to be written to the property
1078  * @name: the name of the property
1079  * @errp: returns an error if this function fails
1080  *
1081  * Writes a bool value to a property.
1082  */
1083 void object_property_set_bool(Object *obj, bool value,
1084                               const char *name, Error **errp);
1085
1086 /**
1087  * object_property_get_bool:
1088  * @obj: the object
1089  * @name: the name of the property
1090  * @errp: returns an error if this function fails
1091  *
1092  * Returns: the value of the property, converted to a boolean, or NULL if
1093  * an error occurs (including when the property value is not a bool).
1094  */
1095 bool object_property_get_bool(Object *obj, const char *name,
1096                               Error **errp);
1097
1098 /**
1099  * object_property_set_int:
1100  * @value: the value to be written to the property
1101  * @name: the name of the property
1102  * @errp: returns an error if this function fails
1103  *
1104  * Writes an integer value to a property.
1105  */
1106 void object_property_set_int(Object *obj, int64_t value,
1107                              const char *name, Error **errp);
1108
1109 /**
1110  * object_property_get_int:
1111  * @obj: the object
1112  * @name: the name of the property
1113  * @errp: returns an error if this function fails
1114  *
1115  * Returns: the value of the property, converted to an integer, or negative if
1116  * an error occurs (including when the property value is not an integer).
1117  */
1118 int64_t object_property_get_int(Object *obj, const char *name,
1119                                 Error **errp);
1120
1121 /**
1122  * object_property_get_enum:
1123  * @obj: the object
1124  * @name: the name of the property
1125  * @typename: the name of the enum data type
1126  * @errp: returns an error if this function fails
1127  *
1128  * Returns: the value of the property, converted to an integer, or
1129  * undefined if an error occurs (including when the property value is not
1130  * an enum).
1131  */
1132 int object_property_get_enum(Object *obj, const char *name,
1133                              const char *typename, Error **errp);
1134
1135 /**
1136  * object_property_get_uint16List:
1137  * @obj: the object
1138  * @name: the name of the property
1139  * @list: the returned int list
1140  * @errp: returns an error if this function fails
1141  *
1142  * Returns: the value of the property, converted to integers, or
1143  * undefined if an error occurs (including when the property value is not
1144  * an list of integers).
1145  */
1146 void object_property_get_uint16List(Object *obj, const char *name,
1147                                     uint16List **list, Error **errp);
1148
1149 /**
1150  * object_property_set:
1151  * @obj: the object
1152  * @v: the visitor that will be used to write the property value.  This should
1153  *   be an Input visitor and the data will be first read with @name as the
1154  *   name and then written as the property value.
1155  * @name: the name of the property
1156  * @errp: returns an error if this function fails
1157  *
1158  * Writes a property to a object.
1159  */
1160 void object_property_set(Object *obj, Visitor *v, const char *name,
1161                          Error **errp);
1162
1163 /**
1164  * object_property_parse:
1165  * @obj: the object
1166  * @string: the string that will be used to parse the property value.
1167  * @name: the name of the property
1168  * @errp: returns an error if this function fails
1169  *
1170  * Parses a string and writes the result into a property of an object.
1171  */
1172 void object_property_parse(Object *obj, const char *string,
1173                            const char *name, Error **errp);
1174
1175 /**
1176  * object_property_print:
1177  * @obj: the object
1178  * @name: the name of the property
1179  * @human: if true, print for human consumption
1180  * @errp: returns an error if this function fails
1181  *
1182  * Returns a string representation of the value of the property.  The
1183  * caller shall free the string.
1184  */
1185 char *object_property_print(Object *obj, const char *name, bool human,
1186                             Error **errp);
1187
1188 /**
1189  * object_property_get_type:
1190  * @obj: the object
1191  * @name: the name of the property
1192  * @errp: returns an error if this function fails
1193  *
1194  * Returns:  The type name of the property.
1195  */
1196 const char *object_property_get_type(Object *obj, const char *name,
1197                                      Error **errp);
1198
1199 /**
1200  * object_get_root:
1201  *
1202  * Returns: the root object of the composition tree
1203  */
1204 Object *object_get_root(void);
1205
1206
1207 /**
1208  * object_get_objects_root:
1209  *
1210  * Get the container object that holds user created
1211  * object instances. This is the object at path
1212  * "/objects"
1213  *
1214  * Returns: the user object container
1215  */
1216 Object *object_get_objects_root(void);
1217
1218 /**
1219  * object_get_canonical_path_component:
1220  *
1221  * Returns: The final component in the object's canonical path.  The canonical
1222  * path is the path within the composition tree starting from the root.
1223  */
1224 gchar *object_get_canonical_path_component(Object *obj);
1225
1226 /**
1227  * object_get_canonical_path:
1228  *
1229  * Returns: The canonical path for a object.  This is the path within the
1230  * composition tree starting from the root.
1231  */
1232 gchar *object_get_canonical_path(Object *obj);
1233
1234 /**
1235  * object_resolve_path:
1236  * @path: the path to resolve
1237  * @ambiguous: returns true if the path resolution failed because of an
1238  *   ambiguous match
1239  *
1240  * There are two types of supported paths--absolute paths and partial paths.
1241  * 
1242  * Absolute paths are derived from the root object and can follow child<> or
1243  * link<> properties.  Since they can follow link<> properties, they can be
1244  * arbitrarily long.  Absolute paths look like absolute filenames and are
1245  * prefixed with a leading slash.
1246  * 
1247  * Partial paths look like relative filenames.  They do not begin with a
1248  * prefix.  The matching rules for partial paths are subtle but designed to make
1249  * specifying objects easy.  At each level of the composition tree, the partial
1250  * path is matched as an absolute path.  The first match is not returned.  At
1251  * least two matches are searched for.  A successful result is only returned if
1252  * only one match is found.  If more than one match is found, a flag is
1253  * returned to indicate that the match was ambiguous.
1254  *
1255  * Returns: The matched object or NULL on path lookup failure.
1256  */
1257 Object *object_resolve_path(const char *path, bool *ambiguous);
1258
1259 /**
1260  * object_resolve_path_type:
1261  * @path: the path to resolve
1262  * @typename: the type to look for.
1263  * @ambiguous: returns true if the path resolution failed because of an
1264  *   ambiguous match
1265  *
1266  * This is similar to object_resolve_path.  However, when looking for a
1267  * partial path only matches that implement the given type are considered.
1268  * This restricts the search and avoids spuriously flagging matches as
1269  * ambiguous.
1270  *
1271  * For both partial and absolute paths, the return value goes through
1272  * a dynamic cast to @typename.  This is important if either the link,
1273  * or the typename itself are of interface types.
1274  *
1275  * Returns: The matched object or NULL on path lookup failure.
1276  */
1277 Object *object_resolve_path_type(const char *path, const char *typename,
1278                                  bool *ambiguous);
1279
1280 /**
1281  * object_resolve_path_component:
1282  * @parent: the object in which to resolve the path
1283  * @part: the component to resolve.
1284  *
1285  * This is similar to object_resolve_path with an absolute path, but it
1286  * only resolves one element (@part) and takes the others from @parent.
1287  *
1288  * Returns: The resolved object or NULL on path lookup failure.
1289  */
1290 Object *object_resolve_path_component(Object *parent, const gchar *part);
1291
1292 /**
1293  * object_property_add_child:
1294  * @obj: the object to add a property to
1295  * @name: the name of the property
1296  * @child: the child object
1297  * @errp: if an error occurs, a pointer to an area to store the area
1298  *
1299  * Child properties form the composition tree.  All objects need to be a child
1300  * of another object.  Objects can only be a child of one object.
1301  *
1302  * There is no way for a child to determine what its parent is.  It is not
1303  * a bidirectional relationship.  This is by design.
1304  *
1305  * The value of a child property as a C string will be the child object's
1306  * canonical path. It can be retrieved using object_property_get_str().
1307  * The child object itself can be retrieved using object_property_get_link().
1308  */
1309 void object_property_add_child(Object *obj, const char *name,
1310                                Object *child, Error **errp);
1311
1312 typedef enum {
1313     /* Unref the link pointer when the property is deleted */
1314     OBJ_PROP_LINK_UNREF_ON_RELEASE = 0x1,
1315 } ObjectPropertyLinkFlags;
1316
1317 /**
1318  * object_property_allow_set_link:
1319  *
1320  * The default implementation of the object_property_add_link() check()
1321  * callback function.  It allows the link property to be set and never returns
1322  * an error.
1323  */
1324 void object_property_allow_set_link(Object *, const char *,
1325                                     Object *, Error **);
1326
1327 /**
1328  * object_property_add_link:
1329  * @obj: the object to add a property to
1330  * @name: the name of the property
1331  * @type: the qobj type of the link
1332  * @child: a pointer to where the link object reference is stored
1333  * @check: callback to veto setting or NULL if the property is read-only
1334  * @flags: additional options for the link
1335  * @errp: if an error occurs, a pointer to an area to store the area
1336  *
1337  * Links establish relationships between objects.  Links are unidirectional
1338  * although two links can be combined to form a bidirectional relationship
1339  * between objects.
1340  *
1341  * Links form the graph in the object model.
1342  *
1343  * The <code>@check()</code> callback is invoked when
1344  * object_property_set_link() is called and can raise an error to prevent the
1345  * link being set.  If <code>@check</code> is NULL, the property is read-only
1346  * and cannot be set.
1347  *
1348  * Ownership of the pointer that @child points to is transferred to the
1349  * link property.  The reference count for <code>*@child</code> is
1350  * managed by the property from after the function returns till the
1351  * property is deleted with object_property_del().  If the
1352  * <code>@flags</code> <code>OBJ_PROP_LINK_UNREF_ON_RELEASE</code> bit is set,
1353  * the reference count is decremented when the property is deleted.
1354  */
1355 void object_property_add_link(Object *obj, const char *name,
1356                               const char *type, Object **child,
1357                               void (*check)(Object *obj, const char *name,
1358                                             Object *val, Error **errp),
1359                               ObjectPropertyLinkFlags flags,
1360                               Error **errp);
1361
1362 /**
1363  * object_property_add_str:
1364  * @obj: the object to add a property to
1365  * @name: the name of the property
1366  * @get: the getter or NULL if the property is write-only.  This function must
1367  *   return a string to be freed by g_free().
1368  * @set: the setter or NULL if the property is read-only
1369  * @errp: if an error occurs, a pointer to an area to store the error
1370  *
1371  * Add a string property using getters/setters.  This function will add a
1372  * property of type 'string'.
1373  */
1374 void object_property_add_str(Object *obj, const char *name,
1375                              char *(*get)(Object *, Error **),
1376                              void (*set)(Object *, const char *, Error **),
1377                              Error **errp);
1378
1379 void object_class_property_add_str(ObjectClass *klass, const char *name,
1380                                    char *(*get)(Object *, Error **),
1381                                    void (*set)(Object *, const char *,
1382                                                Error **),
1383                                    Error **errp);
1384
1385 /**
1386  * object_property_add_bool:
1387  * @obj: the object to add a property to
1388  * @name: the name of the property
1389  * @get: the getter or NULL if the property is write-only.
1390  * @set: the setter or NULL if the property is read-only
1391  * @errp: if an error occurs, a pointer to an area to store the error
1392  *
1393  * Add a bool property using getters/setters.  This function will add a
1394  * property of type 'bool'.
1395  */
1396 void object_property_add_bool(Object *obj, const char *name,
1397                               bool (*get)(Object *, Error **),
1398                               void (*set)(Object *, bool, Error **),
1399                               Error **errp);
1400
1401 void object_class_property_add_bool(ObjectClass *klass, const char *name,
1402                                     bool (*get)(Object *, Error **),
1403                                     void (*set)(Object *, bool, Error **),
1404                                     Error **errp);
1405
1406 /**
1407  * object_property_add_enum:
1408  * @obj: the object to add a property to
1409  * @name: the name of the property
1410  * @typename: the name of the enum data type
1411  * @get: the getter or %NULL if the property is write-only.
1412  * @set: the setter or %NULL if the property is read-only
1413  * @errp: if an error occurs, a pointer to an area to store the error
1414  *
1415  * Add an enum property using getters/setters.  This function will add a
1416  * property of type '@typename'.
1417  */
1418 void object_property_add_enum(Object *obj, const char *name,
1419                               const char *typename,
1420                               const char * const *strings,
1421                               int (*get)(Object *, Error **),
1422                               void (*set)(Object *, int, Error **),
1423                               Error **errp);
1424
1425 void object_class_property_add_enum(ObjectClass *klass, const char *name,
1426                                     const char *typename,
1427                                     const char * const *strings,
1428                                     int (*get)(Object *, Error **),
1429                                     void (*set)(Object *, int, Error **),
1430                                     Error **errp);
1431
1432 /**
1433  * object_property_add_tm:
1434  * @obj: the object to add a property to
1435  * @name: the name of the property
1436  * @get: the getter or NULL if the property is write-only.
1437  * @errp: if an error occurs, a pointer to an area to store the error
1438  *
1439  * Add a read-only struct tm valued property using a getter function.
1440  * This function will add a property of type 'struct tm'.
1441  */
1442 void object_property_add_tm(Object *obj, const char *name,
1443                             void (*get)(Object *, struct tm *, Error **),
1444                             Error **errp);
1445
1446 void object_class_property_add_tm(ObjectClass *klass, const char *name,
1447                                   void (*get)(Object *, struct tm *, Error **),
1448                                   Error **errp);
1449
1450 /**
1451  * object_property_add_uint8_ptr:
1452  * @obj: the object to add a property to
1453  * @name: the name of the property
1454  * @v: pointer to value
1455  * @errp: if an error occurs, a pointer to an area to store the error
1456  *
1457  * Add an integer property in memory.  This function will add a
1458  * property of type 'uint8'.
1459  */
1460 void object_property_add_uint8_ptr(Object *obj, const char *name,
1461                                    const uint8_t *v, Error **errp);
1462 void object_class_property_add_uint8_ptr(ObjectClass *klass, const char *name,
1463                                          const uint8_t *v, Error **errp);
1464
1465 /**
1466  * object_property_add_uint16_ptr:
1467  * @obj: the object to add a property to
1468  * @name: the name of the property
1469  * @v: pointer to value
1470  * @errp: if an error occurs, a pointer to an area to store the error
1471  *
1472  * Add an integer property in memory.  This function will add a
1473  * property of type 'uint16'.
1474  */
1475 void object_property_add_uint16_ptr(Object *obj, const char *name,
1476                                     const uint16_t *v, Error **errp);
1477 void object_class_property_add_uint16_ptr(ObjectClass *klass, const char *name,
1478                                           const uint16_t *v, Error **errp);
1479
1480 /**
1481  * object_property_add_uint32_ptr:
1482  * @obj: the object to add a property to
1483  * @name: the name of the property
1484  * @v: pointer to value
1485  * @errp: if an error occurs, a pointer to an area to store the error
1486  *
1487  * Add an integer property in memory.  This function will add a
1488  * property of type 'uint32'.
1489  */
1490 void object_property_add_uint32_ptr(Object *obj, const char *name,
1491                                     const uint32_t *v, Error **errp);
1492 void object_class_property_add_uint32_ptr(ObjectClass *klass, const char *name,
1493                                           const uint32_t *v, Error **errp);
1494
1495 /**
1496  * object_property_add_uint64_ptr:
1497  * @obj: the object to add a property to
1498  * @name: the name of the property
1499  * @v: pointer to value
1500  * @errp: if an error occurs, a pointer to an area to store the error
1501  *
1502  * Add an integer property in memory.  This function will add a
1503  * property of type 'uint64'.
1504  */
1505 void object_property_add_uint64_ptr(Object *obj, const char *name,
1506                                     const uint64_t *v, Error **Errp);
1507 void object_class_property_add_uint64_ptr(ObjectClass *klass, const char *name,
1508                                           const uint64_t *v, Error **Errp);
1509
1510 /**
1511  * object_property_add_alias:
1512  * @obj: the object to add a property to
1513  * @name: the name of the property
1514  * @target_obj: the object to forward property access to
1515  * @target_name: the name of the property on the forwarded object
1516  * @errp: if an error occurs, a pointer to an area to store the error
1517  *
1518  * Add an alias for a property on an object.  This function will add a property
1519  * of the same type as the forwarded property.
1520  *
1521  * The caller must ensure that <code>@target_obj</code> stays alive as long as
1522  * this property exists.  In the case of a child object or an alias on the same
1523  * object this will be the case.  For aliases to other objects the caller is
1524  * responsible for taking a reference.
1525  */
1526 void object_property_add_alias(Object *obj, const char *name,
1527                                Object *target_obj, const char *target_name,
1528                                Error **errp);
1529
1530 /**
1531  * object_property_add_const_link:
1532  * @obj: the object to add a property to
1533  * @name: the name of the property
1534  * @target: the object to be referred by the link
1535  * @errp: if an error occurs, a pointer to an area to store the error
1536  *
1537  * Add an unmodifiable link for a property on an object.  This function will
1538  * add a property of type link<TYPE> where TYPE is the type of @target.
1539  *
1540  * The caller must ensure that @target stays alive as long as
1541  * this property exists.  In the case @target is a child of @obj,
1542  * this will be the case.  Otherwise, the caller is responsible for
1543  * taking a reference.
1544  */
1545 void object_property_add_const_link(Object *obj, const char *name,
1546                                     Object *target, Error **errp);
1547
1548 /**
1549  * object_property_set_description:
1550  * @obj: the object owning the property
1551  * @name: the name of the property
1552  * @description: the description of the property on the object
1553  * @errp: if an error occurs, a pointer to an area to store the error
1554  *
1555  * Set an object property's description.
1556  *
1557  */
1558 void object_property_set_description(Object *obj, const char *name,
1559                                      const char *description, Error **errp);
1560 void object_class_property_set_description(ObjectClass *klass, const char *name,
1561                                            const char *description,
1562                                            Error **errp);
1563
1564 /**
1565  * object_child_foreach:
1566  * @obj: the object whose children will be navigated
1567  * @fn: the iterator function to be called
1568  * @opaque: an opaque value that will be passed to the iterator
1569  *
1570  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1571  * non-zero.
1572  *
1573  * It is forbidden to add or remove children from @obj from the @fn
1574  * callback.
1575  *
1576  * Returns: The last value returned by @fn, or 0 if there is no child.
1577  */
1578 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1579                          void *opaque);
1580
1581 /**
1582  * object_child_foreach_recursive:
1583  * @obj: the object whose children will be navigated
1584  * @fn: the iterator function to be called
1585  * @opaque: an opaque value that will be passed to the iterator
1586  *
1587  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1588  * non-zero. Calls recursively, all child nodes of @obj will also be passed
1589  * all the way down to the leaf nodes of the tree. Depth first ordering.
1590  *
1591  * It is forbidden to add or remove children from @obj (or its
1592  * child nodes) from the @fn callback.
1593  *
1594  * Returns: The last value returned by @fn, or 0 if there is no child.
1595  */
1596 int object_child_foreach_recursive(Object *obj,
1597                                    int (*fn)(Object *child, void *opaque),
1598                                    void *opaque);
1599 /**
1600  * container_get:
1601  * @root: root of the #path, e.g., object_get_root()
1602  * @path: path to the container
1603  *
1604  * Return a container object whose path is @path.  Create more containers
1605  * along the path if necessary.
1606  *
1607  * Returns: the container object.
1608  */
1609 Object *container_get(Object *root, const char *path);
1610
1611
1612 #endif