Add qemu 2.4.0
[kvmfornfv.git] / qemu / include / exec / memory.h
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "exec/cpu-common.h"
27 #ifndef CONFIG_USER_ONLY
28 #include "exec/hwaddr.h"
29 #endif
30 #include "exec/memattrs.h"
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36 #include "qemu/rcu.h"
37
38 #define MAX_PHYS_ADDR_SPACE_BITS 62
39 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
40
41 #define TYPE_MEMORY_REGION "qemu:memory-region"
42 #define MEMORY_REGION(obj) \
43         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
44
45 typedef struct MemoryRegionOps MemoryRegionOps;
46 typedef struct MemoryRegionMmio MemoryRegionMmio;
47
48 struct MemoryRegionMmio {
49     CPUReadMemoryFunc *read[3];
50     CPUWriteMemoryFunc *write[3];
51 };
52
53 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
54
55 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
56 typedef enum {
57     IOMMU_NONE = 0,
58     IOMMU_RO   = 1,
59     IOMMU_WO   = 2,
60     IOMMU_RW   = 3,
61 } IOMMUAccessFlags;
62
63 struct IOMMUTLBEntry {
64     AddressSpace    *target_as;
65     hwaddr           iova;
66     hwaddr           translated_addr;
67     hwaddr           addr_mask;  /* 0xfff = 4k translation */
68     IOMMUAccessFlags perm;
69 };
70
71 /* New-style MMIO accessors can indicate that the transaction failed.
72  * A zero (MEMTX_OK) response means success; anything else is a failure
73  * of some kind. The memory subsystem will bitwise-OR together results
74  * if it is synthesizing an operation from multiple smaller accesses.
75  */
76 #define MEMTX_OK 0
77 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
78 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
79 typedef uint32_t MemTxResult;
80
81 /*
82  * Memory region callbacks
83  */
84 struct MemoryRegionOps {
85     /* Read from the memory region. @addr is relative to @mr; @size is
86      * in bytes. */
87     uint64_t (*read)(void *opaque,
88                      hwaddr addr,
89                      unsigned size);
90     /* Write to the memory region. @addr is relative to @mr; @size is
91      * in bytes. */
92     void (*write)(void *opaque,
93                   hwaddr addr,
94                   uint64_t data,
95                   unsigned size);
96
97     MemTxResult (*read_with_attrs)(void *opaque,
98                                    hwaddr addr,
99                                    uint64_t *data,
100                                    unsigned size,
101                                    MemTxAttrs attrs);
102     MemTxResult (*write_with_attrs)(void *opaque,
103                                     hwaddr addr,
104                                     uint64_t data,
105                                     unsigned size,
106                                     MemTxAttrs attrs);
107
108     enum device_endian endianness;
109     /* Guest-visible constraints: */
110     struct {
111         /* If nonzero, specify bounds on access sizes beyond which a machine
112          * check is thrown.
113          */
114         unsigned min_access_size;
115         unsigned max_access_size;
116         /* If true, unaligned accesses are supported.  Otherwise unaligned
117          * accesses throw machine checks.
118          */
119          bool unaligned;
120         /*
121          * If present, and returns #false, the transaction is not accepted
122          * by the device (and results in machine dependent behaviour such
123          * as a machine check exception).
124          */
125         bool (*accepts)(void *opaque, hwaddr addr,
126                         unsigned size, bool is_write);
127     } valid;
128     /* Internal implementation constraints: */
129     struct {
130         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
131          * will be rounded upwards and a partial result will be returned.
132          */
133         unsigned min_access_size;
134         /* If nonzero, specifies the maximum size implemented.  Larger sizes
135          * will be done as a series of accesses with smaller sizes.
136          */
137         unsigned max_access_size;
138         /* If true, unaligned accesses are supported.  Otherwise all accesses
139          * are converted to (possibly multiple) naturally aligned accesses.
140          */
141         bool unaligned;
142     } impl;
143
144     /* If .read and .write are not present, old_mmio may be used for
145      * backwards compatibility with old mmio registration
146      */
147     const MemoryRegionMmio old_mmio;
148 };
149
150 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
151
152 struct MemoryRegionIOMMUOps {
153     /* Return a TLB entry that contains a given address. */
154     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
155 };
156
157 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
158 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
159
160 struct MemoryRegion {
161     Object parent_obj;
162     /* All fields are private - violators will be prosecuted */
163     const MemoryRegionOps *ops;
164     const MemoryRegionIOMMUOps *iommu_ops;
165     void *opaque;
166     MemoryRegion *container;
167     Int128 size;
168     hwaddr addr;
169     void (*destructor)(MemoryRegion *mr);
170     ram_addr_t ram_addr;
171     uint64_t align;
172     bool subpage;
173     bool terminates;
174     bool romd_mode;
175     bool ram;
176     bool skip_dump;
177     bool readonly; /* For RAM regions */
178     bool enabled;
179     bool rom_device;
180     bool warning_printed; /* For reservations */
181     bool flush_coalesced_mmio;
182     bool global_locking;
183     uint8_t vga_logging_count;
184     MemoryRegion *alias;
185     hwaddr alias_offset;
186     int32_t priority;
187     bool may_overlap;
188     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
189     QTAILQ_ENTRY(MemoryRegion) subregions_link;
190     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
191     const char *name;
192     uint8_t dirty_log_mask;
193     unsigned ioeventfd_nb;
194     MemoryRegionIoeventfd *ioeventfds;
195     NotifierList iommu_notify;
196 };
197
198 /**
199  * MemoryListener: callbacks structure for updates to the physical memory map
200  *
201  * Allows a component to adjust to changes in the guest-visible memory map.
202  * Use with memory_listener_register() and memory_listener_unregister().
203  */
204 struct MemoryListener {
205     void (*begin)(MemoryListener *listener);
206     void (*commit)(MemoryListener *listener);
207     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
208     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
209     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
210     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
211                       int old, int new);
212     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
213                      int old, int new);
214     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
215     void (*log_global_start)(MemoryListener *listener);
216     void (*log_global_stop)(MemoryListener *listener);
217     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
218                         bool match_data, uint64_t data, EventNotifier *e);
219     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
220                         bool match_data, uint64_t data, EventNotifier *e);
221     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
222                                hwaddr addr, hwaddr len);
223     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
224                                hwaddr addr, hwaddr len);
225     /* Lower = earlier (during add), later (during del) */
226     unsigned priority;
227     AddressSpace *address_space_filter;
228     QTAILQ_ENTRY(MemoryListener) link;
229 };
230
231 /**
232  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
233  */
234 struct AddressSpace {
235     /* All fields are private. */
236     struct rcu_head rcu;
237     char *name;
238     MemoryRegion *root;
239
240     /* Accessed via RCU.  */
241     struct FlatView *current_map;
242
243     int ioeventfd_nb;
244     struct MemoryRegionIoeventfd *ioeventfds;
245     struct AddressSpaceDispatch *dispatch;
246     struct AddressSpaceDispatch *next_dispatch;
247     MemoryListener dispatch_listener;
248
249     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
250 };
251
252 /**
253  * MemoryRegionSection: describes a fragment of a #MemoryRegion
254  *
255  * @mr: the region, or %NULL if empty
256  * @address_space: the address space the region is mapped in
257  * @offset_within_region: the beginning of the section, relative to @mr's start
258  * @size: the size of the section; will not exceed @mr's boundaries
259  * @offset_within_address_space: the address of the first byte of the section
260  *     relative to the region's address space
261  * @readonly: writes to this section are ignored
262  */
263 struct MemoryRegionSection {
264     MemoryRegion *mr;
265     AddressSpace *address_space;
266     hwaddr offset_within_region;
267     Int128 size;
268     hwaddr offset_within_address_space;
269     bool readonly;
270 };
271
272 /**
273  * memory_region_init: Initialize a memory region
274  *
275  * The region typically acts as a container for other memory regions.  Use
276  * memory_region_add_subregion() to add subregions.
277  *
278  * @mr: the #MemoryRegion to be initialized
279  * @owner: the object that tracks the region's reference count
280  * @name: used for debugging; not visible to the user or ABI
281  * @size: size of the region; any subregions beyond this size will be clipped
282  */
283 void memory_region_init(MemoryRegion *mr,
284                         struct Object *owner,
285                         const char *name,
286                         uint64_t size);
287
288 /**
289  * memory_region_ref: Add 1 to a memory region's reference count
290  *
291  * Whenever memory regions are accessed outside the BQL, they need to be
292  * preserved against hot-unplug.  MemoryRegions actually do not have their
293  * own reference count; they piggyback on a QOM object, their "owner".
294  * This function adds a reference to the owner.
295  *
296  * All MemoryRegions must have an owner if they can disappear, even if the
297  * device they belong to operates exclusively under the BQL.  This is because
298  * the region could be returned at any time by memory_region_find, and this
299  * is usually under guest control.
300  *
301  * @mr: the #MemoryRegion
302  */
303 void memory_region_ref(MemoryRegion *mr);
304
305 /**
306  * memory_region_unref: Remove 1 to a memory region's reference count
307  *
308  * Whenever memory regions are accessed outside the BQL, they need to be
309  * preserved against hot-unplug.  MemoryRegions actually do not have their
310  * own reference count; they piggyback on a QOM object, their "owner".
311  * This function removes a reference to the owner and possibly destroys it.
312  *
313  * @mr: the #MemoryRegion
314  */
315 void memory_region_unref(MemoryRegion *mr);
316
317 /**
318  * memory_region_init_io: Initialize an I/O memory region.
319  *
320  * Accesses into the region will cause the callbacks in @ops to be called.
321  * if @size is nonzero, subregions will be clipped to @size.
322  *
323  * @mr: the #MemoryRegion to be initialized.
324  * @owner: the object that tracks the region's reference count
325  * @ops: a structure containing read and write callbacks to be used when
326  *       I/O is performed on the region.
327  * @opaque: passed to to the read and write callbacks of the @ops structure.
328  * @name: used for debugging; not visible to the user or ABI
329  * @size: size of the region.
330  */
331 void memory_region_init_io(MemoryRegion *mr,
332                            struct Object *owner,
333                            const MemoryRegionOps *ops,
334                            void *opaque,
335                            const char *name,
336                            uint64_t size);
337
338 /**
339  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
340  *                          region will modify memory directly.
341  *
342  * @mr: the #MemoryRegion to be initialized.
343  * @owner: the object that tracks the region's reference count
344  * @name: the name of the region.
345  * @size: size of the region.
346  * @errp: pointer to Error*, to store an error if it happens.
347  */
348 void memory_region_init_ram(MemoryRegion *mr,
349                             struct Object *owner,
350                             const char *name,
351                             uint64_t size,
352                             Error **errp);
353
354 /**
355  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
356  *                                     RAM.  Accesses into the region will
357  *                                     modify memory directly.  Only an initial
358  *                                     portion of this RAM is actually used.
359  *                                     The used size can change across reboots.
360  *
361  * @mr: the #MemoryRegion to be initialized.
362  * @owner: the object that tracks the region's reference count
363  * @name: the name of the region.
364  * @size: used size of the region.
365  * @max_size: max size of the region.
366  * @resized: callback to notify owner about used size change.
367  * @errp: pointer to Error*, to store an error if it happens.
368  */
369 void memory_region_init_resizeable_ram(MemoryRegion *mr,
370                                        struct Object *owner,
371                                        const char *name,
372                                        uint64_t size,
373                                        uint64_t max_size,
374                                        void (*resized)(const char*,
375                                                        uint64_t length,
376                                                        void *host),
377                                        Error **errp);
378 #ifdef __linux__
379 /**
380  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
381  *                                    mmap-ed backend.
382  *
383  * @mr: the #MemoryRegion to be initialized.
384  * @owner: the object that tracks the region's reference count
385  * @name: the name of the region.
386  * @size: size of the region.
387  * @share: %true if memory must be mmaped with the MAP_SHARED flag
388  * @path: the path in which to allocate the RAM.
389  * @errp: pointer to Error*, to store an error if it happens.
390  */
391 void memory_region_init_ram_from_file(MemoryRegion *mr,
392                                       struct Object *owner,
393                                       const char *name,
394                                       uint64_t size,
395                                       bool share,
396                                       const char *path,
397                                       Error **errp);
398 #endif
399
400 /**
401  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
402  *                              user-provided pointer.  Accesses into the
403  *                              region will modify memory directly.
404  *
405  * @mr: the #MemoryRegion to be initialized.
406  * @owner: the object that tracks the region's reference count
407  * @name: the name of the region.
408  * @size: size of the region.
409  * @ptr: memory to be mapped; must contain at least @size bytes.
410  */
411 void memory_region_init_ram_ptr(MemoryRegion *mr,
412                                 struct Object *owner,
413                                 const char *name,
414                                 uint64_t size,
415                                 void *ptr);
416
417 /**
418  * memory_region_init_alias: Initialize a memory region that aliases all or a
419  *                           part of another memory region.
420  *
421  * @mr: the #MemoryRegion to be initialized.
422  * @owner: the object that tracks the region's reference count
423  * @name: used for debugging; not visible to the user or ABI
424  * @orig: the region to be referenced; @mr will be equivalent to
425  *        @orig between @offset and @offset + @size - 1.
426  * @offset: start of the section in @orig to be referenced.
427  * @size: size of the region.
428  */
429 void memory_region_init_alias(MemoryRegion *mr,
430                               struct Object *owner,
431                               const char *name,
432                               MemoryRegion *orig,
433                               hwaddr offset,
434                               uint64_t size);
435
436 /**
437  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
438  *                                 handled via callbacks.
439  *
440  * @mr: the #MemoryRegion to be initialized.
441  * @owner: the object that tracks the region's reference count
442  * @ops: callbacks for write access handling.
443  * @name: the name of the region.
444  * @size: size of the region.
445  * @errp: pointer to Error*, to store an error if it happens.
446  */
447 void memory_region_init_rom_device(MemoryRegion *mr,
448                                    struct Object *owner,
449                                    const MemoryRegionOps *ops,
450                                    void *opaque,
451                                    const char *name,
452                                    uint64_t size,
453                                    Error **errp);
454
455 /**
456  * memory_region_init_reservation: Initialize a memory region that reserves
457  *                                 I/O space.
458  *
459  * A reservation region primariy serves debugging purposes.  It claims I/O
460  * space that is not supposed to be handled by QEMU itself.  Any access via
461  * the memory API will cause an abort().
462  *
463  * @mr: the #MemoryRegion to be initialized
464  * @owner: the object that tracks the region's reference count
465  * @name: used for debugging; not visible to the user or ABI
466  * @size: size of the region.
467  */
468 void memory_region_init_reservation(MemoryRegion *mr,
469                                     struct Object *owner,
470                                     const char *name,
471                                     uint64_t size);
472
473 /**
474  * memory_region_init_iommu: Initialize a memory region that translates
475  * addresses
476  *
477  * An IOMMU region translates addresses and forwards accesses to a target
478  * memory region.
479  *
480  * @mr: the #MemoryRegion to be initialized
481  * @owner: the object that tracks the region's reference count
482  * @ops: a function that translates addresses into the @target region
483  * @name: used for debugging; not visible to the user or ABI
484  * @size: size of the region.
485  */
486 void memory_region_init_iommu(MemoryRegion *mr,
487                               struct Object *owner,
488                               const MemoryRegionIOMMUOps *ops,
489                               const char *name,
490                               uint64_t size);
491
492 /**
493  * memory_region_owner: get a memory region's owner.
494  *
495  * @mr: the memory region being queried.
496  */
497 struct Object *memory_region_owner(MemoryRegion *mr);
498
499 /**
500  * memory_region_size: get a memory region's size.
501  *
502  * @mr: the memory region being queried.
503  */
504 uint64_t memory_region_size(MemoryRegion *mr);
505
506 /**
507  * memory_region_is_ram: check whether a memory region is random access
508  *
509  * Returns %true is a memory region is random access.
510  *
511  * @mr: the memory region being queried
512  */
513 bool memory_region_is_ram(MemoryRegion *mr);
514
515 /**
516  * memory_region_is_skip_dump: check whether a memory region should not be
517  *                             dumped
518  *
519  * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
520  *
521  * @mr: the memory region being queried
522  */
523 bool memory_region_is_skip_dump(MemoryRegion *mr);
524
525 /**
526  * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
527  *                              region
528  *
529  * @mr: the memory region being queried
530  */
531 void memory_region_set_skip_dump(MemoryRegion *mr);
532
533 /**
534  * memory_region_is_romd: check whether a memory region is in ROMD mode
535  *
536  * Returns %true if a memory region is a ROM device and currently set to allow
537  * direct reads.
538  *
539  * @mr: the memory region being queried
540  */
541 static inline bool memory_region_is_romd(MemoryRegion *mr)
542 {
543     return mr->rom_device && mr->romd_mode;
544 }
545
546 /**
547  * memory_region_is_iommu: check whether a memory region is an iommu
548  *
549  * Returns %true is a memory region is an iommu.
550  *
551  * @mr: the memory region being queried
552  */
553 bool memory_region_is_iommu(MemoryRegion *mr);
554
555 /**
556  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
557  *
558  * @mr: the memory region that was changed
559  * @entry: the new entry in the IOMMU translation table.  The entry
560  *         replaces all old entries for the same virtual I/O address range.
561  *         Deleted entries have .@perm == 0.
562  */
563 void memory_region_notify_iommu(MemoryRegion *mr,
564                                 IOMMUTLBEntry entry);
565
566 /**
567  * memory_region_register_iommu_notifier: register a notifier for changes to
568  * IOMMU translation entries.
569  *
570  * @mr: the memory region to observe
571  * @n: the notifier to be added; the notifier receives a pointer to an
572  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
573  *     valid on exit from the notifier.
574  */
575 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
576
577 /**
578  * memory_region_unregister_iommu_notifier: unregister a notifier for
579  * changes to IOMMU translation entries.
580  *
581  * @n: the notifier to be removed.
582  */
583 void memory_region_unregister_iommu_notifier(Notifier *n);
584
585 /**
586  * memory_region_name: get a memory region's name
587  *
588  * Returns the string that was used to initialize the memory region.
589  *
590  * @mr: the memory region being queried
591  */
592 const char *memory_region_name(const MemoryRegion *mr);
593
594 /**
595  * memory_region_is_logging: return whether a memory region is logging writes
596  *
597  * Returns %true if the memory region is logging writes for the given client
598  *
599  * @mr: the memory region being queried
600  * @client: the client being queried
601  */
602 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
603
604 /**
605  * memory_region_get_dirty_log_mask: return the clients for which a
606  * memory region is logging writes.
607  *
608  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
609  * are the bit indices.
610  *
611  * @mr: the memory region being queried
612  */
613 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
614
615 /**
616  * memory_region_is_rom: check whether a memory region is ROM
617  *
618  * Returns %true is a memory region is read-only memory.
619  *
620  * @mr: the memory region being queried
621  */
622 bool memory_region_is_rom(MemoryRegion *mr);
623
624 /**
625  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
626  *
627  * Returns a file descriptor backing a file-based RAM memory region,
628  * or -1 if the region is not a file-based RAM memory region.
629  *
630  * @mr: the RAM or alias memory region being queried.
631  */
632 int memory_region_get_fd(MemoryRegion *mr);
633
634 /**
635  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
636  *
637  * Returns a host pointer to a RAM memory region (created with
638  * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
639  * care.
640  *
641  * @mr: the memory region being queried.
642  */
643 void *memory_region_get_ram_ptr(MemoryRegion *mr);
644
645 /* memory_region_ram_resize: Resize a RAM region.
646  *
647  * Only legal before guest might have detected the memory size: e.g. on
648  * incoming migration, or right after reset.
649  *
650  * @mr: a memory region created with @memory_region_init_resizeable_ram.
651  * @newsize: the new size the region
652  * @errp: pointer to Error*, to store an error if it happens.
653  */
654 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
655                               Error **errp);
656
657 /**
658  * memory_region_set_log: Turn dirty logging on or off for a region.
659  *
660  * Turns dirty logging on or off for a specified client (display, migration).
661  * Only meaningful for RAM regions.
662  *
663  * @mr: the memory region being updated.
664  * @log: whether dirty logging is to be enabled or disabled.
665  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
666  */
667 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
668
669 /**
670  * memory_region_get_dirty: Check whether a range of bytes is dirty
671  *                          for a specified client.
672  *
673  * Checks whether a range of bytes has been written to since the last
674  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
675  * must be enabled.
676  *
677  * @mr: the memory region being queried.
678  * @addr: the address (relative to the start of the region) being queried.
679  * @size: the size of the range being queried.
680  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
681  *          %DIRTY_MEMORY_VGA.
682  */
683 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
684                              hwaddr size, unsigned client);
685
686 /**
687  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
688  *
689  * Marks a range of bytes as dirty, after it has been dirtied outside
690  * guest code.
691  *
692  * @mr: the memory region being dirtied.
693  * @addr: the address (relative to the start of the region) being dirtied.
694  * @size: size of the range being dirtied.
695  */
696 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
697                              hwaddr size);
698
699 /**
700  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
701  *                                     for a specified client. It clears them.
702  *
703  * Checks whether a range of bytes has been written to since the last
704  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
705  * must be enabled.
706  *
707  * @mr: the memory region being queried.
708  * @addr: the address (relative to the start of the region) being queried.
709  * @size: the size of the range being queried.
710  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
711  *          %DIRTY_MEMORY_VGA.
712  */
713 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
714                                         hwaddr size, unsigned client);
715 /**
716  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
717  *                                  any external TLBs (e.g. kvm)
718  *
719  * Flushes dirty information from accelerators such as kvm and vhost-net
720  * and makes it available to users of the memory API.
721  *
722  * @mr: the region being flushed.
723  */
724 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
725
726 /**
727  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
728  *                            client.
729  *
730  * Marks a range of pages as no longer dirty.
731  *
732  * @mr: the region being updated.
733  * @addr: the start of the subrange being cleaned.
734  * @size: the size of the subrange being cleaned.
735  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
736  *          %DIRTY_MEMORY_VGA.
737  */
738 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
739                                hwaddr size, unsigned client);
740
741 /**
742  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
743  *
744  * Allows a memory region to be marked as read-only (turning it into a ROM).
745  * only useful on RAM regions.
746  *
747  * @mr: the region being updated.
748  * @readonly: whether rhe region is to be ROM or RAM.
749  */
750 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
751
752 /**
753  * memory_region_rom_device_set_romd: enable/disable ROMD mode
754  *
755  * Allows a ROM device (initialized with memory_region_init_rom_device() to
756  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
757  * device is mapped to guest memory and satisfies read access directly.
758  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
759  * Writes are always handled by the #MemoryRegion.write function.
760  *
761  * @mr: the memory region to be updated
762  * @romd_mode: %true to put the region into ROMD mode
763  */
764 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
765
766 /**
767  * memory_region_set_coalescing: Enable memory coalescing for the region.
768  *
769  * Enabled writes to a region to be queued for later processing. MMIO ->write
770  * callbacks may be delayed until a non-coalesced MMIO is issued.
771  * Only useful for IO regions.  Roughly similar to write-combining hardware.
772  *
773  * @mr: the memory region to be write coalesced
774  */
775 void memory_region_set_coalescing(MemoryRegion *mr);
776
777 /**
778  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
779  *                               a region.
780  *
781  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
782  * Multiple calls can be issued coalesced disjoint ranges.
783  *
784  * @mr: the memory region to be updated.
785  * @offset: the start of the range within the region to be coalesced.
786  * @size: the size of the subrange to be coalesced.
787  */
788 void memory_region_add_coalescing(MemoryRegion *mr,
789                                   hwaddr offset,
790                                   uint64_t size);
791
792 /**
793  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
794  *
795  * Disables any coalescing caused by memory_region_set_coalescing() or
796  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
797  * hardware.
798  *
799  * @mr: the memory region to be updated.
800  */
801 void memory_region_clear_coalescing(MemoryRegion *mr);
802
803 /**
804  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
805  *                                    accesses.
806  *
807  * Ensure that pending coalesced MMIO request are flushed before the memory
808  * region is accessed. This property is automatically enabled for all regions
809  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
810  *
811  * @mr: the memory region to be updated.
812  */
813 void memory_region_set_flush_coalesced(MemoryRegion *mr);
814
815 /**
816  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
817  *                                      accesses.
818  *
819  * Clear the automatic coalesced MMIO flushing enabled via
820  * memory_region_set_flush_coalesced. Note that this service has no effect on
821  * memory regions that have MMIO coalescing enabled for themselves. For them,
822  * automatic flushing will stop once coalescing is disabled.
823  *
824  * @mr: the memory region to be updated.
825  */
826 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
827
828 /**
829  * memory_region_set_global_locking: Declares the access processing requires
830  *                                   QEMU's global lock.
831  *
832  * When this is invoked, accesses to the memory region will be processed while
833  * holding the global lock of QEMU. This is the default behavior of memory
834  * regions.
835  *
836  * @mr: the memory region to be updated.
837  */
838 void memory_region_set_global_locking(MemoryRegion *mr);
839
840 /**
841  * memory_region_clear_global_locking: Declares that access processing does
842  *                                     not depend on the QEMU global lock.
843  *
844  * By clearing this property, accesses to the memory region will be processed
845  * outside of QEMU's global lock (unless the lock is held on when issuing the
846  * access request). In this case, the device model implementing the access
847  * handlers is responsible for synchronization of concurrency.
848  *
849  * @mr: the memory region to be updated.
850  */
851 void memory_region_clear_global_locking(MemoryRegion *mr);
852
853 /**
854  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
855  *                            is written to a location.
856  *
857  * Marks a word in an IO region (initialized with memory_region_init_io())
858  * as a trigger for an eventfd event.  The I/O callback will not be called.
859  * The caller must be prepared to handle failure (that is, take the required
860  * action if the callback _is_ called).
861  *
862  * @mr: the memory region being updated.
863  * @addr: the address within @mr that is to be monitored
864  * @size: the size of the access to trigger the eventfd
865  * @match_data: whether to match against @data, instead of just @addr
866  * @data: the data to match against the guest write
867  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
868  **/
869 void memory_region_add_eventfd(MemoryRegion *mr,
870                                hwaddr addr,
871                                unsigned size,
872                                bool match_data,
873                                uint64_t data,
874                                EventNotifier *e);
875
876 /**
877  * memory_region_del_eventfd: Cancel an eventfd.
878  *
879  * Cancels an eventfd trigger requested by a previous
880  * memory_region_add_eventfd() call.
881  *
882  * @mr: the memory region being updated.
883  * @addr: the address within @mr that is to be monitored
884  * @size: the size of the access to trigger the eventfd
885  * @match_data: whether to match against @data, instead of just @addr
886  * @data: the data to match against the guest write
887  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
888  */
889 void memory_region_del_eventfd(MemoryRegion *mr,
890                                hwaddr addr,
891                                unsigned size,
892                                bool match_data,
893                                uint64_t data,
894                                EventNotifier *e);
895
896 /**
897  * memory_region_add_subregion: Add a subregion to a container.
898  *
899  * Adds a subregion at @offset.  The subregion may not overlap with other
900  * subregions (except for those explicitly marked as overlapping).  A region
901  * may only be added once as a subregion (unless removed with
902  * memory_region_del_subregion()); use memory_region_init_alias() if you
903  * want a region to be a subregion in multiple locations.
904  *
905  * @mr: the region to contain the new subregion; must be a container
906  *      initialized with memory_region_init().
907  * @offset: the offset relative to @mr where @subregion is added.
908  * @subregion: the subregion to be added.
909  */
910 void memory_region_add_subregion(MemoryRegion *mr,
911                                  hwaddr offset,
912                                  MemoryRegion *subregion);
913 /**
914  * memory_region_add_subregion_overlap: Add a subregion to a container
915  *                                      with overlap.
916  *
917  * Adds a subregion at @offset.  The subregion may overlap with other
918  * subregions.  Conflicts are resolved by having a higher @priority hide a
919  * lower @priority. Subregions without priority are taken as @priority 0.
920  * A region may only be added once as a subregion (unless removed with
921  * memory_region_del_subregion()); use memory_region_init_alias() if you
922  * want a region to be a subregion in multiple locations.
923  *
924  * @mr: the region to contain the new subregion; must be a container
925  *      initialized with memory_region_init().
926  * @offset: the offset relative to @mr where @subregion is added.
927  * @subregion: the subregion to be added.
928  * @priority: used for resolving overlaps; highest priority wins.
929  */
930 void memory_region_add_subregion_overlap(MemoryRegion *mr,
931                                          hwaddr offset,
932                                          MemoryRegion *subregion,
933                                          int priority);
934
935 /**
936  * memory_region_get_ram_addr: Get the ram address associated with a memory
937  *                             region
938  *
939  * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
940  * code is being reworked.
941  */
942 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
943
944 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
945 /**
946  * memory_region_del_subregion: Remove a subregion.
947  *
948  * Removes a subregion from its container.
949  *
950  * @mr: the container to be updated.
951  * @subregion: the region being removed; must be a current subregion of @mr.
952  */
953 void memory_region_del_subregion(MemoryRegion *mr,
954                                  MemoryRegion *subregion);
955
956 /*
957  * memory_region_set_enabled: dynamically enable or disable a region
958  *
959  * Enables or disables a memory region.  A disabled memory region
960  * ignores all accesses to itself and its subregions.  It does not
961  * obscure sibling subregions with lower priority - it simply behaves as
962  * if it was removed from the hierarchy.
963  *
964  * Regions default to being enabled.
965  *
966  * @mr: the region to be updated
967  * @enabled: whether to enable or disable the region
968  */
969 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
970
971 /*
972  * memory_region_set_address: dynamically update the address of a region
973  *
974  * Dynamically updates the address of a region, relative to its container.
975  * May be used on regions are currently part of a memory hierarchy.
976  *
977  * @mr: the region to be updated
978  * @addr: new address, relative to container region
979  */
980 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
981
982 /*
983  * memory_region_set_size: dynamically update the size of a region.
984  *
985  * Dynamically updates the size of a region.
986  *
987  * @mr: the region to be updated
988  * @size: used size of the region.
989  */
990 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
991
992 /*
993  * memory_region_set_alias_offset: dynamically update a memory alias's offset
994  *
995  * Dynamically updates the offset into the target region that an alias points
996  * to, as if the fourth argument to memory_region_init_alias() has changed.
997  *
998  * @mr: the #MemoryRegion to be updated; should be an alias.
999  * @offset: the new offset into the target memory region
1000  */
1001 void memory_region_set_alias_offset(MemoryRegion *mr,
1002                                     hwaddr offset);
1003
1004 /**
1005  * memory_region_present: checks if an address relative to a @container
1006  * translates into #MemoryRegion within @container
1007  *
1008  * Answer whether a #MemoryRegion within @container covers the address
1009  * @addr.
1010  *
1011  * @container: a #MemoryRegion within which @addr is a relative address
1012  * @addr: the area within @container to be searched
1013  */
1014 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1015
1016 /**
1017  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1018  * into any address space.
1019  *
1020  * @mr: a #MemoryRegion which should be checked if it's mapped
1021  */
1022 bool memory_region_is_mapped(MemoryRegion *mr);
1023
1024 /**
1025  * memory_region_find: translate an address/size relative to a
1026  * MemoryRegion into a #MemoryRegionSection.
1027  *
1028  * Locates the first #MemoryRegion within @mr that overlaps the range
1029  * given by @addr and @size.
1030  *
1031  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1032  * It will have the following characteristics:
1033  *    .@size = 0 iff no overlap was found
1034  *    .@mr is non-%NULL iff an overlap was found
1035  *
1036  * Remember that in the return value the @offset_within_region is
1037  * relative to the returned region (in the .@mr field), not to the
1038  * @mr argument.
1039  *
1040  * Similarly, the .@offset_within_address_space is relative to the
1041  * address space that contains both regions, the passed and the
1042  * returned one.  However, in the special case where the @mr argument
1043  * has no container (and thus is the root of the address space), the
1044  * following will hold:
1045  *    .@offset_within_address_space >= @addr
1046  *    .@offset_within_address_space + .@size <= @addr + @size
1047  *
1048  * @mr: a MemoryRegion within which @addr is a relative address
1049  * @addr: start of the area within @as to be searched
1050  * @size: size of the area to be searched
1051  */
1052 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1053                                        hwaddr addr, uint64_t size);
1054
1055 /**
1056  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1057  *
1058  * Synchronizes the dirty page log for an entire address space.
1059  * @as: the address space that contains the memory being synchronized
1060  */
1061 void address_space_sync_dirty_bitmap(AddressSpace *as);
1062
1063 /**
1064  * memory_region_transaction_begin: Start a transaction.
1065  *
1066  * During a transaction, changes will be accumulated and made visible
1067  * only when the transaction ends (is committed).
1068  */
1069 void memory_region_transaction_begin(void);
1070
1071 /**
1072  * memory_region_transaction_commit: Commit a transaction and make changes
1073  *                                   visible to the guest.
1074  */
1075 void memory_region_transaction_commit(void);
1076
1077 /**
1078  * memory_listener_register: register callbacks to be called when memory
1079  *                           sections are mapped or unmapped into an address
1080  *                           space
1081  *
1082  * @listener: an object containing the callbacks to be called
1083  * @filter: if non-%NULL, only regions in this address space will be observed
1084  */
1085 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1086
1087 /**
1088  * memory_listener_unregister: undo the effect of memory_listener_register()
1089  *
1090  * @listener: an object containing the callbacks to be removed
1091  */
1092 void memory_listener_unregister(MemoryListener *listener);
1093
1094 /**
1095  * memory_global_dirty_log_start: begin dirty logging for all regions
1096  */
1097 void memory_global_dirty_log_start(void);
1098
1099 /**
1100  * memory_global_dirty_log_stop: end dirty logging for all regions
1101  */
1102 void memory_global_dirty_log_stop(void);
1103
1104 void mtree_info(fprintf_function mon_printf, void *f);
1105
1106 /**
1107  * memory_region_dispatch_read: perform a read directly to the specified
1108  * MemoryRegion.
1109  *
1110  * @mr: #MemoryRegion to access
1111  * @addr: address within that region
1112  * @pval: pointer to uint64_t which the data is written to
1113  * @size: size of the access in bytes
1114  * @attrs: memory transaction attributes to use for the access
1115  */
1116 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1117                                         hwaddr addr,
1118                                         uint64_t *pval,
1119                                         unsigned size,
1120                                         MemTxAttrs attrs);
1121 /**
1122  * memory_region_dispatch_write: perform a write directly to the specified
1123  * MemoryRegion.
1124  *
1125  * @mr: #MemoryRegion to access
1126  * @addr: address within that region
1127  * @data: data to write
1128  * @size: size of the access in bytes
1129  * @attrs: memory transaction attributes to use for the access
1130  */
1131 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1132                                          hwaddr addr,
1133                                          uint64_t data,
1134                                          unsigned size,
1135                                          MemTxAttrs attrs);
1136
1137 /**
1138  * address_space_init: initializes an address space
1139  *
1140  * @as: an uninitialized #AddressSpace
1141  * @root: a #MemoryRegion that routes addesses for the address space
1142  * @name: an address space name.  The name is only used for debugging
1143  *        output.
1144  */
1145 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1146
1147
1148 /**
1149  * address_space_destroy: destroy an address space
1150  *
1151  * Releases all resources associated with an address space.  After an address space
1152  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1153  * as well.
1154  *
1155  * @as: address space to be destroyed
1156  */
1157 void address_space_destroy(AddressSpace *as);
1158
1159 /**
1160  * address_space_rw: read from or write to an address space.
1161  *
1162  * Return a MemTxResult indicating whether the operation succeeded
1163  * or failed (eg unassigned memory, device rejected the transaction,
1164  * IOMMU fault).
1165  *
1166  * @as: #AddressSpace to be accessed
1167  * @addr: address within that address space
1168  * @attrs: memory transaction attributes
1169  * @buf: buffer with the data transferred
1170  * @is_write: indicates the transfer direction
1171  */
1172 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1173                              MemTxAttrs attrs, uint8_t *buf,
1174                              int len, bool is_write);
1175
1176 /**
1177  * address_space_write: write to address space.
1178  *
1179  * Return a MemTxResult indicating whether the operation succeeded
1180  * or failed (eg unassigned memory, device rejected the transaction,
1181  * IOMMU fault).
1182  *
1183  * @as: #AddressSpace to be accessed
1184  * @addr: address within that address space
1185  * @attrs: memory transaction attributes
1186  * @buf: buffer with the data transferred
1187  */
1188 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1189                                 MemTxAttrs attrs,
1190                                 const uint8_t *buf, int len);
1191
1192 /**
1193  * address_space_read: read from an address space.
1194  *
1195  * Return a MemTxResult indicating whether the operation succeeded
1196  * or failed (eg unassigned memory, device rejected the transaction,
1197  * IOMMU fault).
1198  *
1199  * @as: #AddressSpace to be accessed
1200  * @addr: address within that address space
1201  * @attrs: memory transaction attributes
1202  * @buf: buffer with the data transferred
1203  */
1204 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1205                                uint8_t *buf, int len);
1206
1207 /**
1208  * address_space_ld*: load from an address space
1209  * address_space_st*: store to an address space
1210  *
1211  * These functions perform a load or store of the byte, word,
1212  * longword or quad to the specified address within the AddressSpace.
1213  * The _le suffixed functions treat the data as little endian;
1214  * _be indicates big endian; no suffix indicates "same endianness
1215  * as guest CPU".
1216  *
1217  * The "guest CPU endianness" accessors are deprecated for use outside
1218  * target-* code; devices should be CPU-agnostic and use either the LE
1219  * or the BE accessors.
1220  *
1221  * @as #AddressSpace to be accessed
1222  * @addr: address within that address space
1223  * @val: data value, for stores
1224  * @attrs: memory transaction attributes
1225  * @result: location to write the success/failure of the transaction;
1226  *   if NULL, this information is discarded
1227  */
1228 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1229                             MemTxAttrs attrs, MemTxResult *result);
1230 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1231                             MemTxAttrs attrs, MemTxResult *result);
1232 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1233                             MemTxAttrs attrs, MemTxResult *result);
1234 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1235                             MemTxAttrs attrs, MemTxResult *result);
1236 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1237                             MemTxAttrs attrs, MemTxResult *result);
1238 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1239                             MemTxAttrs attrs, MemTxResult *result);
1240 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1241                             MemTxAttrs attrs, MemTxResult *result);
1242 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1243                             MemTxAttrs attrs, MemTxResult *result);
1244 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1245                             MemTxAttrs attrs, MemTxResult *result);
1246 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1247                             MemTxAttrs attrs, MemTxResult *result);
1248 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1249                             MemTxAttrs attrs, MemTxResult *result);
1250 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1251                             MemTxAttrs attrs, MemTxResult *result);
1252 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1253                             MemTxAttrs attrs, MemTxResult *result);
1254 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1255                             MemTxAttrs attrs, MemTxResult *result);
1256
1257 #ifdef NEED_CPU_H
1258 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1259                             MemTxAttrs attrs, MemTxResult *result);
1260 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1261                             MemTxAttrs attrs, MemTxResult *result);
1262 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1263                             MemTxAttrs attrs, MemTxResult *result);
1264 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1265                             MemTxAttrs attrs, MemTxResult *result);
1266 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1267                             MemTxAttrs attrs, MemTxResult *result);
1268 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1269                             MemTxAttrs attrs, MemTxResult *result);
1270 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1271                             MemTxAttrs attrs, MemTxResult *result);
1272 #endif
1273
1274 /* address_space_translate: translate an address range into an address space
1275  * into a MemoryRegion and an address range into that section.  Should be
1276  * called from an RCU critical section, to avoid that the last reference
1277  * to the returned region disappears after address_space_translate returns.
1278  *
1279  * @as: #AddressSpace to be accessed
1280  * @addr: address within that address space
1281  * @xlat: pointer to address within the returned memory region section's
1282  * #MemoryRegion.
1283  * @len: pointer to length
1284  * @is_write: indicates the transfer direction
1285  */
1286 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1287                                       hwaddr *xlat, hwaddr *len,
1288                                       bool is_write);
1289
1290 /* address_space_access_valid: check for validity of accessing an address
1291  * space range
1292  *
1293  * Check whether memory is assigned to the given address space range, and
1294  * access is permitted by any IOMMU regions that are active for the address
1295  * space.
1296  *
1297  * For now, addr and len should be aligned to a page size.  This limitation
1298  * will be lifted in the future.
1299  *
1300  * @as: #AddressSpace to be accessed
1301  * @addr: address within that address space
1302  * @len: length of the area to be checked
1303  * @is_write: indicates the transfer direction
1304  */
1305 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1306
1307 /* address_space_map: map a physical memory region into a host virtual address
1308  *
1309  * May map a subset of the requested range, given by and returned in @plen.
1310  * May return %NULL if resources needed to perform the mapping are exhausted.
1311  * Use only for reads OR writes - not for read-modify-write operations.
1312  * Use cpu_register_map_client() to know when retrying the map operation is
1313  * likely to succeed.
1314  *
1315  * @as: #AddressSpace to be accessed
1316  * @addr: address within that address space
1317  * @plen: pointer to length of buffer; updated on return
1318  * @is_write: indicates the transfer direction
1319  */
1320 void *address_space_map(AddressSpace *as, hwaddr addr,
1321                         hwaddr *plen, bool is_write);
1322
1323 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1324  *
1325  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1326  * the amount of memory that was actually read or written by the caller.
1327  *
1328  * @as: #AddressSpace used
1329  * @addr: address within that address space
1330  * @len: buffer length as returned by address_space_map()
1331  * @access_len: amount of data actually transferred
1332  * @is_write: indicates the transfer direction
1333  */
1334 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1335                          int is_write, hwaddr access_len);
1336
1337
1338 #endif
1339
1340 #endif