Add qemu 2.4.0
[kvmfornfv.git] / qemu / hw / timer / arm_mptimer.c
1 /*
2  * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Copyright (c) 2011 Linaro Limited
6  * Written by Paul Brook, Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21
22 #include "hw/timer/arm_mptimer.h"
23 #include "qemu/timer.h"
24 #include "qom/cpu.h"
25
26 /* This device implements the per-cpu private timer and watchdog block
27  * which is used in both the ARM11MPCore and Cortex-A9MP.
28  */
29
30 static inline int get_current_cpu(ARMMPTimerState *s)
31 {
32     if (current_cpu->cpu_index >= s->num_cpu) {
33         hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
34                  s->num_cpu, current_cpu->cpu_index);
35     }
36     return current_cpu->cpu_index;
37 }
38
39 static inline void timerblock_update_irq(TimerBlock *tb)
40 {
41     qemu_set_irq(tb->irq, tb->status && (tb->control & 4));
42 }
43
44 /* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
45 static inline uint32_t timerblock_scale(TimerBlock *tb)
46 {
47     return (((tb->control >> 8) & 0xff) + 1) * 10;
48 }
49
50 static void timerblock_reload(TimerBlock *tb, int restart)
51 {
52     if (tb->count == 0) {
53         return;
54     }
55     if (restart) {
56         tb->tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
57     }
58     tb->tick += (int64_t)tb->count * timerblock_scale(tb);
59     timer_mod(tb->timer, tb->tick);
60 }
61
62 static void timerblock_tick(void *opaque)
63 {
64     TimerBlock *tb = (TimerBlock *)opaque;
65     tb->status = 1;
66     if (tb->control & 2) {
67         tb->count = tb->load;
68         timerblock_reload(tb, 0);
69     } else {
70         tb->count = 0;
71     }
72     timerblock_update_irq(tb);
73 }
74
75 static uint64_t timerblock_read(void *opaque, hwaddr addr,
76                                 unsigned size)
77 {
78     TimerBlock *tb = (TimerBlock *)opaque;
79     int64_t val;
80     switch (addr) {
81     case 0: /* Load */
82         return tb->load;
83     case 4: /* Counter.  */
84         if (((tb->control & 1) == 0) || (tb->count == 0)) {
85             return 0;
86         }
87         /* Slow and ugly, but hopefully won't happen too often.  */
88         val = tb->tick - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
89         val /= timerblock_scale(tb);
90         if (val < 0) {
91             val = 0;
92         }
93         return val;
94     case 8: /* Control.  */
95         return tb->control;
96     case 12: /* Interrupt status.  */
97         return tb->status;
98     default:
99         return 0;
100     }
101 }
102
103 static void timerblock_write(void *opaque, hwaddr addr,
104                              uint64_t value, unsigned size)
105 {
106     TimerBlock *tb = (TimerBlock *)opaque;
107     int64_t old;
108     switch (addr) {
109     case 0: /* Load */
110         tb->load = value;
111         /* Fall through.  */
112     case 4: /* Counter.  */
113         if ((tb->control & 1) && tb->count) {
114             /* Cancel the previous timer.  */
115             timer_del(tb->timer);
116         }
117         tb->count = value;
118         if (tb->control & 1) {
119             timerblock_reload(tb, 1);
120         }
121         break;
122     case 8: /* Control.  */
123         old = tb->control;
124         tb->control = value;
125         if (value & 1) {
126             if ((old & 1) && (tb->count != 0)) {
127                 /* Do nothing if timer is ticking right now.  */
128                 break;
129             }
130             if (tb->control & 2) {
131                 tb->count = tb->load;
132             }
133             timerblock_reload(tb, 1);
134         } else if (old & 1) {
135             /* Shutdown the timer.  */
136             timer_del(tb->timer);
137         }
138         break;
139     case 12: /* Interrupt status.  */
140         tb->status &= ~value;
141         timerblock_update_irq(tb);
142         break;
143     }
144 }
145
146 /* Wrapper functions to implement the "read timer/watchdog for
147  * the current CPU" memory regions.
148  */
149 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
150                                    unsigned size)
151 {
152     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
153     int id = get_current_cpu(s);
154     return timerblock_read(&s->timerblock[id], addr, size);
155 }
156
157 static void arm_thistimer_write(void *opaque, hwaddr addr,
158                                 uint64_t value, unsigned size)
159 {
160     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
161     int id = get_current_cpu(s);
162     timerblock_write(&s->timerblock[id], addr, value, size);
163 }
164
165 static const MemoryRegionOps arm_thistimer_ops = {
166     .read = arm_thistimer_read,
167     .write = arm_thistimer_write,
168     .valid = {
169         .min_access_size = 4,
170         .max_access_size = 4,
171     },
172     .endianness = DEVICE_NATIVE_ENDIAN,
173 };
174
175 static const MemoryRegionOps timerblock_ops = {
176     .read = timerblock_read,
177     .write = timerblock_write,
178     .valid = {
179         .min_access_size = 4,
180         .max_access_size = 4,
181     },
182     .endianness = DEVICE_NATIVE_ENDIAN,
183 };
184
185 static void timerblock_reset(TimerBlock *tb)
186 {
187     tb->count = 0;
188     tb->load = 0;
189     tb->control = 0;
190     tb->status = 0;
191     tb->tick = 0;
192     if (tb->timer) {
193         timer_del(tb->timer);
194     }
195 }
196
197 static void arm_mptimer_reset(DeviceState *dev)
198 {
199     ARMMPTimerState *s = ARM_MPTIMER(dev);
200     int i;
201
202     for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
203         timerblock_reset(&s->timerblock[i]);
204     }
205 }
206
207 static void arm_mptimer_init(Object *obj)
208 {
209     ARMMPTimerState *s = ARM_MPTIMER(obj);
210
211     memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s,
212                           "arm_mptimer_timer", 0x20);
213     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
214 }
215
216 static void arm_mptimer_realize(DeviceState *dev, Error **errp)
217 {
218     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
219     ARMMPTimerState *s = ARM_MPTIMER(dev);
220     int i;
221
222     if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) {
223         hw_error("%s: num-cpu must be between 1 and %d\n",
224                  __func__, ARM_MPTIMER_MAX_CPUS);
225     }
226     /* We implement one timer block per CPU, and expose multiple MMIO regions:
227      *  * region 0 is "timer for this core"
228      *  * region 1 is "timer for core 0"
229      *  * region 2 is "timer for core 1"
230      * and so on.
231      * The outgoing interrupt lines are
232      *  * timer for core 0
233      *  * timer for core 1
234      * and so on.
235      */
236     for (i = 0; i < s->num_cpu; i++) {
237         TimerBlock *tb = &s->timerblock[i];
238         tb->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, timerblock_tick, tb);
239         sysbus_init_irq(sbd, &tb->irq);
240         memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
241                               "arm_mptimer_timerblock", 0x20);
242         sysbus_init_mmio(sbd, &tb->iomem);
243     }
244 }
245
246 static const VMStateDescription vmstate_timerblock = {
247     .name = "arm_mptimer_timerblock",
248     .version_id = 2,
249     .minimum_version_id = 2,
250     .fields = (VMStateField[]) {
251         VMSTATE_UINT32(count, TimerBlock),
252         VMSTATE_UINT32(load, TimerBlock),
253         VMSTATE_UINT32(control, TimerBlock),
254         VMSTATE_UINT32(status, TimerBlock),
255         VMSTATE_INT64(tick, TimerBlock),
256         VMSTATE_TIMER_PTR(timer, TimerBlock),
257         VMSTATE_END_OF_LIST()
258     }
259 };
260
261 static const VMStateDescription vmstate_arm_mptimer = {
262     .name = "arm_mptimer",
263     .version_id = 2,
264     .minimum_version_id = 2,
265     .fields = (VMStateField[]) {
266         VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
267                                      2, vmstate_timerblock, TimerBlock),
268         VMSTATE_END_OF_LIST()
269     }
270 };
271
272 static Property arm_mptimer_properties[] = {
273     DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
274     DEFINE_PROP_END_OF_LIST()
275 };
276
277 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
278 {
279     DeviceClass *dc = DEVICE_CLASS(klass);
280
281     dc->realize = arm_mptimer_realize;
282     dc->vmsd = &vmstate_arm_mptimer;
283     dc->reset = arm_mptimer_reset;
284     dc->props = arm_mptimer_properties;
285 }
286
287 static const TypeInfo arm_mptimer_info = {
288     .name          = TYPE_ARM_MPTIMER,
289     .parent        = TYPE_SYS_BUS_DEVICE,
290     .instance_size = sizeof(ARMMPTimerState),
291     .instance_init = arm_mptimer_init,
292     .class_init    = arm_mptimer_class_init,
293 };
294
295 static void arm_mptimer_register_types(void)
296 {
297     type_register_static(&arm_mptimer_info);
298 }
299
300 type_init(arm_mptimer_register_types)