These changes are the raw update to qemu-2.6.
[kvmfornfv.git] / qemu / hw / ssi / xilinx_spips.c
1 /*
2  * QEMU model of the Xilinx Zynq SPI controller
3  *
4  * Copyright (c) 2012 Peter A. G. Crosthwaite
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/ptimer.h"
29 #include "qemu/log.h"
30 #include "qemu/fifo8.h"
31 #include "hw/ssi/ssi.h"
32 #include "qemu/bitops.h"
33 #include "hw/ssi/xilinx_spips.h"
34
35 #ifndef XILINX_SPIPS_ERR_DEBUG
36 #define XILINX_SPIPS_ERR_DEBUG 0
37 #endif
38
39 #define DB_PRINT_L(level, ...) do { \
40     if (XILINX_SPIPS_ERR_DEBUG > (level)) { \
41         fprintf(stderr,  ": %s: ", __func__); \
42         fprintf(stderr, ## __VA_ARGS__); \
43     } \
44 } while (0);
45
46 /* config register */
47 #define R_CONFIG            (0x00 / 4)
48 #define IFMODE              (1U << 31)
49 #define ENDIAN              (1 << 26)
50 #define MODEFAIL_GEN_EN     (1 << 17)
51 #define MAN_START_COM       (1 << 16)
52 #define MAN_START_EN        (1 << 15)
53 #define MANUAL_CS           (1 << 14)
54 #define CS                  (0xF << 10)
55 #define CS_SHIFT            (10)
56 #define PERI_SEL            (1 << 9)
57 #define REF_CLK             (1 << 8)
58 #define FIFO_WIDTH          (3 << 6)
59 #define BAUD_RATE_DIV       (7 << 3)
60 #define CLK_PH              (1 << 2)
61 #define CLK_POL             (1 << 1)
62 #define MODE_SEL            (1 << 0)
63 #define R_CONFIG_RSVD       (0x7bf40000)
64
65 /* interrupt mechanism */
66 #define R_INTR_STATUS       (0x04 / 4)
67 #define R_INTR_EN           (0x08 / 4)
68 #define R_INTR_DIS          (0x0C / 4)
69 #define R_INTR_MASK         (0x10 / 4)
70 #define IXR_TX_FIFO_UNDERFLOW   (1 << 6)
71 #define IXR_RX_FIFO_FULL        (1 << 5)
72 #define IXR_RX_FIFO_NOT_EMPTY   (1 << 4)
73 #define IXR_TX_FIFO_FULL        (1 << 3)
74 #define IXR_TX_FIFO_NOT_FULL    (1 << 2)
75 #define IXR_TX_FIFO_MODE_FAIL   (1 << 1)
76 #define IXR_RX_FIFO_OVERFLOW    (1 << 0)
77 #define IXR_ALL                 ((IXR_TX_FIFO_UNDERFLOW<<1)-1)
78
79 #define R_EN                (0x14 / 4)
80 #define R_DELAY             (0x18 / 4)
81 #define R_TX_DATA           (0x1C / 4)
82 #define R_RX_DATA           (0x20 / 4)
83 #define R_SLAVE_IDLE_COUNT  (0x24 / 4)
84 #define R_TX_THRES          (0x28 / 4)
85 #define R_RX_THRES          (0x2C / 4)
86 #define R_TXD1              (0x80 / 4)
87 #define R_TXD2              (0x84 / 4)
88 #define R_TXD3              (0x88 / 4)
89
90 #define R_LQSPI_CFG         (0xa0 / 4)
91 #define R_LQSPI_CFG_RESET       0x03A002EB
92 #define LQSPI_CFG_LQ_MODE       (1U << 31)
93 #define LQSPI_CFG_TWO_MEM       (1 << 30)
94 #define LQSPI_CFG_SEP_BUS       (1 << 30)
95 #define LQSPI_CFG_U_PAGE        (1 << 28)
96 #define LQSPI_CFG_MODE_EN       (1 << 25)
97 #define LQSPI_CFG_MODE_WIDTH    8
98 #define LQSPI_CFG_MODE_SHIFT    16
99 #define LQSPI_CFG_DUMMY_WIDTH   3
100 #define LQSPI_CFG_DUMMY_SHIFT   8
101 #define LQSPI_CFG_INST_CODE     0xFF
102
103 #define R_LQSPI_STS         (0xA4 / 4)
104 #define LQSPI_STS_WR_RECVD      (1 << 1)
105
106 #define R_MOD_ID            (0xFC / 4)
107
108 /* size of TXRX FIFOs */
109 #define RXFF_A          32
110 #define TXFF_A          32
111
112 #define RXFF_A_Q          (64 * 4)
113 #define TXFF_A_Q          (64 * 4)
114
115 /* 16MB per linear region */
116 #define LQSPI_ADDRESS_BITS 24
117 /* Bite off 4k chunks at a time */
118 #define LQSPI_CACHE_SIZE 1024
119
120 #define SNOOP_CHECKING 0xFF
121 #define SNOOP_NONE 0xFE
122 #define SNOOP_STRIPING 0
123
124 typedef enum {
125     READ = 0x3,
126     FAST_READ = 0xb,
127     DOR = 0x3b,
128     QOR = 0x6b,
129     DIOR = 0xbb,
130     QIOR = 0xeb,
131
132     PP = 0x2,
133     DPP = 0xa2,
134     QPP = 0x32,
135 } FlashCMD;
136
137 typedef struct {
138     XilinxSPIPS parent_obj;
139
140     uint8_t lqspi_buf[LQSPI_CACHE_SIZE];
141     hwaddr lqspi_cached_addr;
142 } XilinxQSPIPS;
143
144 typedef struct XilinxSPIPSClass {
145     SysBusDeviceClass parent_class;
146
147     const MemoryRegionOps *reg_ops;
148
149     uint32_t rx_fifo_size;
150     uint32_t tx_fifo_size;
151 } XilinxSPIPSClass;
152
153 static inline int num_effective_busses(XilinxSPIPS *s)
154 {
155     return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
156             s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
157 }
158
159 static inline bool xilinx_spips_cs_is_set(XilinxSPIPS *s, int i, int field)
160 {
161     return ~field & (1 << i) && (s->regs[R_CONFIG] & MANUAL_CS
162                     || !fifo8_is_empty(&s->tx_fifo));
163 }
164
165 static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
166 {
167     int i, j;
168     bool found = false;
169     int field = s->regs[R_CONFIG] >> CS_SHIFT;
170
171     for (i = 0; i < s->num_cs; i++) {
172         for (j = 0; j < num_effective_busses(s); j++) {
173             int upage = !!(s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE);
174             int cs_to_set = (j * s->num_cs + i + upage) %
175                                 (s->num_cs * s->num_busses);
176
177             if (xilinx_spips_cs_is_set(s, i, field) && !found) {
178                 DB_PRINT_L(0, "selecting slave %d\n", i);
179                 qemu_set_irq(s->cs_lines[cs_to_set], 0);
180             } else {
181                 DB_PRINT_L(0, "deselecting slave %d\n", i);
182                 qemu_set_irq(s->cs_lines[cs_to_set], 1);
183             }
184         }
185         if (xilinx_spips_cs_is_set(s, i, field)) {
186             found = true;
187         }
188     }
189     if (!found) {
190         s->snoop_state = SNOOP_CHECKING;
191         DB_PRINT_L(1, "moving to snoop check state\n");
192     }
193 }
194
195 static void xilinx_spips_update_ixr(XilinxSPIPS *s)
196 {
197     if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE) {
198         return;
199     }
200     /* These are set/cleared as they occur */
201     s->regs[R_INTR_STATUS] &= (IXR_TX_FIFO_UNDERFLOW | IXR_RX_FIFO_OVERFLOW |
202                                 IXR_TX_FIFO_MODE_FAIL);
203     /* these are pure functions of fifo state, set them here */
204     s->regs[R_INTR_STATUS] |=
205         (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
206         (s->rx_fifo.num >= s->regs[R_RX_THRES] ? IXR_RX_FIFO_NOT_EMPTY : 0) |
207         (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
208         (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
209     /* drive external interrupt pin */
210     int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
211                                                                 IXR_ALL);
212     if (new_irqline != s->irqline) {
213         s->irqline = new_irqline;
214         qemu_set_irq(s->irq, s->irqline);
215     }
216 }
217
218 static void xilinx_spips_reset(DeviceState *d)
219 {
220     XilinxSPIPS *s = XILINX_SPIPS(d);
221
222     int i;
223     for (i = 0; i < XLNX_SPIPS_R_MAX; i++) {
224         s->regs[i] = 0;
225     }
226
227     fifo8_reset(&s->rx_fifo);
228     fifo8_reset(&s->rx_fifo);
229     /* non zero resets */
230     s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
231     s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
232     s->regs[R_TX_THRES] = 1;
233     s->regs[R_RX_THRES] = 1;
234     /* FIXME: move magic number definition somewhere sensible */
235     s->regs[R_MOD_ID] = 0x01090106;
236     s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
237     s->snoop_state = SNOOP_CHECKING;
238     xilinx_spips_update_ixr(s);
239     xilinx_spips_update_cs_lines(s);
240 }
241
242 /* N way (num) in place bit striper. Lay out row wise bits (LSB to MSB)
243  * column wise (from element 0 to N-1). num is the length of x, and dir
244  * reverses the direction of the transform. Best illustrated by example:
245  * Each digit in the below array is a single bit (num == 3):
246  *
247  * {{ 76543210, }  ----- stripe (dir == false) -----> {{ FCheb630, }
248  *  { hgfedcba, }                                      { GDAfc741, }
249  *  { HGFEDCBA, }} <---- upstripe (dir == true) -----  { HEBgda52, }}
250  */
251
252 static inline void stripe8(uint8_t *x, int num, bool dir)
253 {
254     uint8_t r[num];
255     memset(r, 0, sizeof(uint8_t) * num);
256     int idx[2] = {0, 0};
257     int bit[2] = {0, 0};
258     int d = dir;
259
260     for (idx[0] = 0; idx[0] < num; ++idx[0]) {
261         for (bit[0] = 0; bit[0] < 8; ++bit[0]) {
262             r[idx[d]] |= x[idx[!d]] & 1 << bit[!d] ? 1 << bit[d] : 0;
263             idx[1] = (idx[1] + 1) % num;
264             if (!idx[1]) {
265                 bit[1]++;
266             }
267         }
268     }
269     memcpy(x, r, sizeof(uint8_t) * num);
270 }
271
272 static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
273 {
274     int debug_level = 0;
275
276     for (;;) {
277         int i;
278         uint8_t tx = 0;
279         uint8_t tx_rx[num_effective_busses(s)];
280
281         if (fifo8_is_empty(&s->tx_fifo)) {
282             if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
283                 s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
284             }
285             xilinx_spips_update_ixr(s);
286             return;
287         } else if (s->snoop_state == SNOOP_STRIPING) {
288             for (i = 0; i < num_effective_busses(s); ++i) {
289                 tx_rx[i] = fifo8_pop(&s->tx_fifo);
290             }
291             stripe8(tx_rx, num_effective_busses(s), false);
292         } else {
293             tx = fifo8_pop(&s->tx_fifo);
294             for (i = 0; i < num_effective_busses(s); ++i) {
295                 tx_rx[i] = tx;
296             }
297         }
298
299         for (i = 0; i < num_effective_busses(s); ++i) {
300             DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]);
301             tx_rx[i] = ssi_transfer(s->spi[i], (uint32_t)tx_rx[i]);
302             DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]);
303         }
304
305         if (fifo8_is_full(&s->rx_fifo)) {
306             s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
307             DB_PRINT_L(0, "rx FIFO overflow");
308         } else if (s->snoop_state == SNOOP_STRIPING) {
309             stripe8(tx_rx, num_effective_busses(s), true);
310             for (i = 0; i < num_effective_busses(s); ++i) {
311                 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]);
312             }
313         } else {
314            fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]);
315         }
316
317         DB_PRINT_L(debug_level, "initial snoop state: %x\n",
318                    (unsigned)s->snoop_state);
319         switch (s->snoop_state) {
320         case (SNOOP_CHECKING):
321             switch (tx) { /* new instruction code */
322             case READ: /* 3 address bytes, no dummy bytes/cycles */
323             case PP:
324             case DPP:
325             case QPP:
326                 s->snoop_state = 3;
327                 break;
328             case FAST_READ: /* 3 address bytes, 1 dummy byte */
329             case DOR:
330             case QOR:
331             case DIOR: /* FIXME: these vary between vendor - set to spansion */
332                 s->snoop_state = 4;
333                 break;
334             case QIOR: /* 3 address bytes, 2 dummy bytes */
335                 s->snoop_state = 6;
336                 break;
337             default:
338                 s->snoop_state = SNOOP_NONE;
339             }
340             break;
341         case (SNOOP_STRIPING):
342         case (SNOOP_NONE):
343             /* Once we hit the boring stuff - squelch debug noise */
344             if (!debug_level) {
345                 DB_PRINT_L(0, "squelching debug info ....\n");
346                 debug_level = 1;
347             }
348             break;
349         default:
350             s->snoop_state--;
351         }
352         DB_PRINT_L(debug_level, "final snoop state: %x\n",
353                    (unsigned)s->snoop_state);
354     }
355 }
356
357 static inline void rx_data_bytes(XilinxSPIPS *s, uint8_t *value, int max)
358 {
359     int i;
360
361     for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) {
362         value[i] = fifo8_pop(&s->rx_fifo);
363     }
364 }
365
366 static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
367                                                         unsigned size)
368 {
369     XilinxSPIPS *s = opaque;
370     uint32_t mask = ~0;
371     uint32_t ret;
372     uint8_t rx_buf[4];
373
374     addr >>= 2;
375     switch (addr) {
376     case R_CONFIG:
377         mask = ~(R_CONFIG_RSVD | MAN_START_COM);
378         break;
379     case R_INTR_STATUS:
380         ret = s->regs[addr] & IXR_ALL;
381         s->regs[addr] = 0;
382         DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
383         return ret;
384     case R_INTR_MASK:
385         mask = IXR_ALL;
386         break;
387     case  R_EN:
388         mask = 0x1;
389         break;
390     case R_SLAVE_IDLE_COUNT:
391         mask = 0xFF;
392         break;
393     case R_MOD_ID:
394         mask = 0x01FFFFFF;
395         break;
396     case R_INTR_EN:
397     case R_INTR_DIS:
398     case R_TX_DATA:
399         mask = 0;
400         break;
401     case R_RX_DATA:
402         memset(rx_buf, 0, sizeof(rx_buf));
403         rx_data_bytes(s, rx_buf, s->num_txrx_bytes);
404         ret = s->regs[R_CONFIG] & ENDIAN ? cpu_to_be32(*(uint32_t *)rx_buf)
405                         : cpu_to_le32(*(uint32_t *)rx_buf);
406         DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
407         xilinx_spips_update_ixr(s);
408         return ret;
409     }
410     DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4,
411                s->regs[addr] & mask);
412     return s->regs[addr] & mask;
413
414 }
415
416 static inline void tx_data_bytes(XilinxSPIPS *s, uint32_t value, int num)
417 {
418     int i;
419     for (i = 0; i < num && !fifo8_is_full(&s->tx_fifo); ++i) {
420         if (s->regs[R_CONFIG] & ENDIAN) {
421             fifo8_push(&s->tx_fifo, (uint8_t)(value >> 24));
422             value <<= 8;
423         } else {
424             fifo8_push(&s->tx_fifo, (uint8_t)value);
425             value >>= 8;
426         }
427     }
428 }
429
430 static void xilinx_spips_write(void *opaque, hwaddr addr,
431                                         uint64_t value, unsigned size)
432 {
433     int mask = ~0;
434     int man_start_com = 0;
435     XilinxSPIPS *s = opaque;
436
437     DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
438     addr >>= 2;
439     switch (addr) {
440     case R_CONFIG:
441         mask = ~(R_CONFIG_RSVD | MAN_START_COM);
442         if (value & MAN_START_COM) {
443             man_start_com = 1;
444         }
445         break;
446     case R_INTR_STATUS:
447         mask = IXR_ALL;
448         s->regs[R_INTR_STATUS] &= ~(mask & value);
449         goto no_reg_update;
450     case R_INTR_DIS:
451         mask = IXR_ALL;
452         s->regs[R_INTR_MASK] &= ~(mask & value);
453         goto no_reg_update;
454     case R_INTR_EN:
455         mask = IXR_ALL;
456         s->regs[R_INTR_MASK] |= mask & value;
457         goto no_reg_update;
458     case R_EN:
459         mask = 0x1;
460         break;
461     case R_SLAVE_IDLE_COUNT:
462         mask = 0xFF;
463         break;
464     case R_RX_DATA:
465     case R_INTR_MASK:
466     case R_MOD_ID:
467         mask = 0;
468         break;
469     case R_TX_DATA:
470         tx_data_bytes(s, (uint32_t)value, s->num_txrx_bytes);
471         goto no_reg_update;
472     case R_TXD1:
473         tx_data_bytes(s, (uint32_t)value, 1);
474         goto no_reg_update;
475     case R_TXD2:
476         tx_data_bytes(s, (uint32_t)value, 2);
477         goto no_reg_update;
478     case R_TXD3:
479         tx_data_bytes(s, (uint32_t)value, 3);
480         goto no_reg_update;
481     }
482     s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
483 no_reg_update:
484     xilinx_spips_update_cs_lines(s);
485     if ((man_start_com && s->regs[R_CONFIG] & MAN_START_EN) ||
486             (fifo8_is_empty(&s->tx_fifo) && s->regs[R_CONFIG] & MAN_START_EN)) {
487         xilinx_spips_flush_txfifo(s);
488     }
489     xilinx_spips_update_cs_lines(s);
490     xilinx_spips_update_ixr(s);
491 }
492
493 static const MemoryRegionOps spips_ops = {
494     .read = xilinx_spips_read,
495     .write = xilinx_spips_write,
496     .endianness = DEVICE_LITTLE_ENDIAN,
497 };
498
499 static void xilinx_qspips_write(void *opaque, hwaddr addr,
500                                 uint64_t value, unsigned size)
501 {
502     XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
503
504     xilinx_spips_write(opaque, addr, value, size);
505     addr >>= 2;
506
507     if (addr == R_LQSPI_CFG) {
508         q->lqspi_cached_addr = ~0ULL;
509     }
510 }
511
512 static const MemoryRegionOps qspips_ops = {
513     .read = xilinx_spips_read,
514     .write = xilinx_qspips_write,
515     .endianness = DEVICE_LITTLE_ENDIAN,
516 };
517
518 #define LQSPI_CACHE_SIZE 1024
519
520 static uint64_t
521 lqspi_read(void *opaque, hwaddr addr, unsigned int size)
522 {
523     int i;
524     XilinxQSPIPS *q = opaque;
525     XilinxSPIPS *s = opaque;
526     uint32_t ret;
527
528     if (addr >= q->lqspi_cached_addr &&
529             addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
530         uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr];
531         ret = cpu_to_le32(*(uint32_t *)retp);
532         DB_PRINT_L(1, "addr: %08x, data: %08x\n", (unsigned)addr,
533                    (unsigned)ret);
534         return ret;
535     } else {
536         int flash_addr = (addr / num_effective_busses(s));
537         int slave = flash_addr >> LQSPI_ADDRESS_BITS;
538         int cache_entry = 0;
539         uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE;
540
541         s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
542         s->regs[R_LQSPI_STS] |= slave ? LQSPI_CFG_U_PAGE : 0;
543
544         DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
545
546         fifo8_reset(&s->tx_fifo);
547         fifo8_reset(&s->rx_fifo);
548
549         /* instruction */
550         DB_PRINT_L(0, "pushing read instruction: %02x\n",
551                    (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] &
552                                        LQSPI_CFG_INST_CODE));
553         fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
554         /* read address */
555         DB_PRINT_L(0, "pushing read address %06x\n", flash_addr);
556         fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
557         fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
558         fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
559         /* mode bits */
560         if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
561             fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
562                                               LQSPI_CFG_MODE_SHIFT,
563                                               LQSPI_CFG_MODE_WIDTH));
564         }
565         /* dummy bytes */
566         for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
567                                    LQSPI_CFG_DUMMY_WIDTH)); ++i) {
568             DB_PRINT_L(0, "pushing dummy byte\n");
569             fifo8_push(&s->tx_fifo, 0);
570         }
571         xilinx_spips_update_cs_lines(s);
572         xilinx_spips_flush_txfifo(s);
573         fifo8_reset(&s->rx_fifo);
574
575         DB_PRINT_L(0, "starting QSPI data read\n");
576
577         while (cache_entry < LQSPI_CACHE_SIZE) {
578             for (i = 0; i < 64; ++i) {
579                 tx_data_bytes(s, 0, 1);
580             }
581             xilinx_spips_flush_txfifo(s);
582             for (i = 0; i < 64; ++i) {
583                 rx_data_bytes(s, &q->lqspi_buf[cache_entry++], 1);
584             }
585         }
586
587         s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
588         s->regs[R_LQSPI_STS] |= u_page_save;
589         xilinx_spips_update_cs_lines(s);
590
591         q->lqspi_cached_addr = flash_addr * num_effective_busses(s);
592         return lqspi_read(opaque, addr, size);
593     }
594 }
595
596 static const MemoryRegionOps lqspi_ops = {
597     .read = lqspi_read,
598     .endianness = DEVICE_NATIVE_ENDIAN,
599     .valid = {
600         .min_access_size = 1,
601         .max_access_size = 4
602     }
603 };
604
605 static void xilinx_spips_realize(DeviceState *dev, Error **errp)
606 {
607     XilinxSPIPS *s = XILINX_SPIPS(dev);
608     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
609     XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
610     int i;
611
612     DB_PRINT_L(0, "realized spips\n");
613
614     s->spi = g_new(SSIBus *, s->num_busses);
615     for (i = 0; i < s->num_busses; ++i) {
616         char bus_name[16];
617         snprintf(bus_name, 16, "spi%d", i);
618         s->spi[i] = ssi_create_bus(dev, bus_name);
619     }
620
621     s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
622     ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[0]);
623     ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[1]);
624     sysbus_init_irq(sbd, &s->irq);
625     for (i = 0; i < s->num_cs * s->num_busses; ++i) {
626         sysbus_init_irq(sbd, &s->cs_lines[i]);
627     }
628
629     memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s,
630                           "spi", XLNX_SPIPS_R_MAX * 4);
631     sysbus_init_mmio(sbd, &s->iomem);
632
633     s->irqline = -1;
634
635     fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
636     fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
637 }
638
639 static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
640 {
641     XilinxSPIPS *s = XILINX_SPIPS(dev);
642     XilinxQSPIPS *q = XILINX_QSPIPS(dev);
643     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
644
645     DB_PRINT_L(0, "realized qspips\n");
646
647     s->num_busses = 2;
648     s->num_cs = 2;
649     s->num_txrx_bytes = 4;
650
651     xilinx_spips_realize(dev, errp);
652     memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi",
653                           (1 << LQSPI_ADDRESS_BITS) * 2);
654     sysbus_init_mmio(sbd, &s->mmlqspi);
655
656     q->lqspi_cached_addr = ~0ULL;
657 }
658
659 static int xilinx_spips_post_load(void *opaque, int version_id)
660 {
661     xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
662     xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
663     return 0;
664 }
665
666 static const VMStateDescription vmstate_xilinx_spips = {
667     .name = "xilinx_spips",
668     .version_id = 2,
669     .minimum_version_id = 2,
670     .post_load = xilinx_spips_post_load,
671     .fields = (VMStateField[]) {
672         VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
673         VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
674         VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX),
675         VMSTATE_UINT8(snoop_state, XilinxSPIPS),
676         VMSTATE_END_OF_LIST()
677     }
678 };
679
680 static Property xilinx_spips_properties[] = {
681     DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
682     DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
683     DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
684     DEFINE_PROP_END_OF_LIST(),
685 };
686
687 static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
688 {
689     DeviceClass *dc = DEVICE_CLASS(klass);
690     XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
691
692     dc->realize = xilinx_qspips_realize;
693     xsc->reg_ops = &qspips_ops;
694     xsc->rx_fifo_size = RXFF_A_Q;
695     xsc->tx_fifo_size = TXFF_A_Q;
696 }
697
698 static void xilinx_spips_class_init(ObjectClass *klass, void *data)
699 {
700     DeviceClass *dc = DEVICE_CLASS(klass);
701     XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
702
703     dc->realize = xilinx_spips_realize;
704     dc->reset = xilinx_spips_reset;
705     dc->props = xilinx_spips_properties;
706     dc->vmsd = &vmstate_xilinx_spips;
707
708     xsc->reg_ops = &spips_ops;
709     xsc->rx_fifo_size = RXFF_A;
710     xsc->tx_fifo_size = TXFF_A;
711 }
712
713 static const TypeInfo xilinx_spips_info = {
714     .name  = TYPE_XILINX_SPIPS,
715     .parent = TYPE_SYS_BUS_DEVICE,
716     .instance_size  = sizeof(XilinxSPIPS),
717     .class_init = xilinx_spips_class_init,
718     .class_size = sizeof(XilinxSPIPSClass),
719 };
720
721 static const TypeInfo xilinx_qspips_info = {
722     .name  = TYPE_XILINX_QSPIPS,
723     .parent = TYPE_XILINX_SPIPS,
724     .instance_size  = sizeof(XilinxQSPIPS),
725     .class_init = xilinx_qspips_class_init,
726 };
727
728 static void xilinx_spips_register_types(void)
729 {
730     type_register_static(&xilinx_spips_info);
731     type_register_static(&xilinx_qspips_info);
732 }
733
734 type_init(xilinx_spips_register_types)