Add qemu 2.4.0
[kvmfornfv.git] / qemu / hw / scsi / lsi53c895a.c
1 /*
2  * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the LGPL.
8  */
9
10 /* Note:
11  * LSI53C810 emulation is incorrect, in the sense that it supports
12  * features added in later evolutions. This should not be a problem,
13  * as well-behaved operating systems will not try to use them.
14  */
15
16 #include <assert.h>
17
18 #include "hw/hw.h"
19 #include "hw/pci/pci.h"
20 #include "hw/scsi/scsi.h"
21 #include "sysemu/dma.h"
22
23 //#define DEBUG_LSI
24 //#define DEBUG_LSI_REG
25
26 #ifdef DEBUG_LSI
27 #define DPRINTF(fmt, ...) \
28 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
29 #define BADF(fmt, ...) \
30 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
31 #else
32 #define DPRINTF(fmt, ...) do {} while(0)
33 #define BADF(fmt, ...) \
34 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
35 #endif
36
37 #define LSI_MAX_DEVS 7
38
39 #define LSI_SCNTL0_TRG    0x01
40 #define LSI_SCNTL0_AAP    0x02
41 #define LSI_SCNTL0_EPC    0x08
42 #define LSI_SCNTL0_WATN   0x10
43 #define LSI_SCNTL0_START  0x20
44
45 #define LSI_SCNTL1_SST    0x01
46 #define LSI_SCNTL1_IARB   0x02
47 #define LSI_SCNTL1_AESP   0x04
48 #define LSI_SCNTL1_RST    0x08
49 #define LSI_SCNTL1_CON    0x10
50 #define LSI_SCNTL1_DHP    0x20
51 #define LSI_SCNTL1_ADB    0x40
52 #define LSI_SCNTL1_EXC    0x80
53
54 #define LSI_SCNTL2_WSR    0x01
55 #define LSI_SCNTL2_VUE0   0x02
56 #define LSI_SCNTL2_VUE1   0x04
57 #define LSI_SCNTL2_WSS    0x08
58 #define LSI_SCNTL2_SLPHBEN 0x10
59 #define LSI_SCNTL2_SLPMD  0x20
60 #define LSI_SCNTL2_CHM    0x40
61 #define LSI_SCNTL2_SDU    0x80
62
63 #define LSI_ISTAT0_DIP    0x01
64 #define LSI_ISTAT0_SIP    0x02
65 #define LSI_ISTAT0_INTF   0x04
66 #define LSI_ISTAT0_CON    0x08
67 #define LSI_ISTAT0_SEM    0x10
68 #define LSI_ISTAT0_SIGP   0x20
69 #define LSI_ISTAT0_SRST   0x40
70 #define LSI_ISTAT0_ABRT   0x80
71
72 #define LSI_ISTAT1_SI     0x01
73 #define LSI_ISTAT1_SRUN   0x02
74 #define LSI_ISTAT1_FLSH   0x04
75
76 #define LSI_SSTAT0_SDP0   0x01
77 #define LSI_SSTAT0_RST    0x02
78 #define LSI_SSTAT0_WOA    0x04
79 #define LSI_SSTAT0_LOA    0x08
80 #define LSI_SSTAT0_AIP    0x10
81 #define LSI_SSTAT0_OLF    0x20
82 #define LSI_SSTAT0_ORF    0x40
83 #define LSI_SSTAT0_ILF    0x80
84
85 #define LSI_SIST0_PAR     0x01
86 #define LSI_SIST0_RST     0x02
87 #define LSI_SIST0_UDC     0x04
88 #define LSI_SIST0_SGE     0x08
89 #define LSI_SIST0_RSL     0x10
90 #define LSI_SIST0_SEL     0x20
91 #define LSI_SIST0_CMP     0x40
92 #define LSI_SIST0_MA      0x80
93
94 #define LSI_SIST1_HTH     0x01
95 #define LSI_SIST1_GEN     0x02
96 #define LSI_SIST1_STO     0x04
97 #define LSI_SIST1_SBMC    0x10
98
99 #define LSI_SOCL_IO       0x01
100 #define LSI_SOCL_CD       0x02
101 #define LSI_SOCL_MSG      0x04
102 #define LSI_SOCL_ATN      0x08
103 #define LSI_SOCL_SEL      0x10
104 #define LSI_SOCL_BSY      0x20
105 #define LSI_SOCL_ACK      0x40
106 #define LSI_SOCL_REQ      0x80
107
108 #define LSI_DSTAT_IID     0x01
109 #define LSI_DSTAT_SIR     0x04
110 #define LSI_DSTAT_SSI     0x08
111 #define LSI_DSTAT_ABRT    0x10
112 #define LSI_DSTAT_BF      0x20
113 #define LSI_DSTAT_MDPE    0x40
114 #define LSI_DSTAT_DFE     0x80
115
116 #define LSI_DCNTL_COM     0x01
117 #define LSI_DCNTL_IRQD    0x02
118 #define LSI_DCNTL_STD     0x04
119 #define LSI_DCNTL_IRQM    0x08
120 #define LSI_DCNTL_SSM     0x10
121 #define LSI_DCNTL_PFEN    0x20
122 #define LSI_DCNTL_PFF     0x40
123 #define LSI_DCNTL_CLSE    0x80
124
125 #define LSI_DMODE_MAN     0x01
126 #define LSI_DMODE_BOF     0x02
127 #define LSI_DMODE_ERMP    0x04
128 #define LSI_DMODE_ERL     0x08
129 #define LSI_DMODE_DIOM    0x10
130 #define LSI_DMODE_SIOM    0x20
131
132 #define LSI_CTEST2_DACK   0x01
133 #define LSI_CTEST2_DREQ   0x02
134 #define LSI_CTEST2_TEOP   0x04
135 #define LSI_CTEST2_PCICIE 0x08
136 #define LSI_CTEST2_CM     0x10
137 #define LSI_CTEST2_CIO    0x20
138 #define LSI_CTEST2_SIGP   0x40
139 #define LSI_CTEST2_DDIR   0x80
140
141 #define LSI_CTEST5_BL2    0x04
142 #define LSI_CTEST5_DDIR   0x08
143 #define LSI_CTEST5_MASR   0x10
144 #define LSI_CTEST5_DFSN   0x20
145 #define LSI_CTEST5_BBCK   0x40
146 #define LSI_CTEST5_ADCK   0x80
147
148 #define LSI_CCNTL0_DILS   0x01
149 #define LSI_CCNTL0_DISFC  0x10
150 #define LSI_CCNTL0_ENNDJ  0x20
151 #define LSI_CCNTL0_PMJCTL 0x40
152 #define LSI_CCNTL0_ENPMJ  0x80
153
154 #define LSI_CCNTL1_EN64DBMV  0x01
155 #define LSI_CCNTL1_EN64TIBMV 0x02
156 #define LSI_CCNTL1_64TIMOD   0x04
157 #define LSI_CCNTL1_DDAC      0x08
158 #define LSI_CCNTL1_ZMOD      0x80
159
160 /* Enable Response to Reselection */
161 #define LSI_SCID_RRE      0x60
162
163 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
164
165 #define PHASE_DO          0
166 #define PHASE_DI          1
167 #define PHASE_CMD         2
168 #define PHASE_ST          3
169 #define PHASE_MO          6
170 #define PHASE_MI          7
171 #define PHASE_MASK        7
172
173 /* Maximum length of MSG IN data.  */
174 #define LSI_MAX_MSGIN_LEN 8
175
176 /* Flag set if this is a tagged command.  */
177 #define LSI_TAG_VALID     (1 << 16)
178
179 typedef struct lsi_request {
180     SCSIRequest *req;
181     uint32_t tag;
182     uint32_t dma_len;
183     uint8_t *dma_buf;
184     uint32_t pending;
185     int out;
186     QTAILQ_ENTRY(lsi_request) next;
187 } lsi_request;
188
189 typedef struct {
190     /*< private >*/
191     PCIDevice parent_obj;
192     /*< public >*/
193
194     MemoryRegion mmio_io;
195     MemoryRegion ram_io;
196     MemoryRegion io_io;
197
198     int carry; /* ??? Should this be an a visible register somewhere?  */
199     int status;
200     /* Action to take at the end of a MSG IN phase.
201        0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN.  */
202     int msg_action;
203     int msg_len;
204     uint8_t msg[LSI_MAX_MSGIN_LEN];
205     /* 0 if SCRIPTS are running or stopped.
206      * 1 if a Wait Reselect instruction has been issued.
207      * 2 if processing DMA from lsi_execute_script.
208      * 3 if a DMA operation is in progress.  */
209     int waiting;
210     SCSIBus bus;
211     int current_lun;
212     /* The tag is a combination of the device ID and the SCSI tag.  */
213     uint32_t select_tag;
214     int command_complete;
215     QTAILQ_HEAD(, lsi_request) queue;
216     lsi_request *current;
217
218     uint32_t dsa;
219     uint32_t temp;
220     uint32_t dnad;
221     uint32_t dbc;
222     uint8_t istat0;
223     uint8_t istat1;
224     uint8_t dcmd;
225     uint8_t dstat;
226     uint8_t dien;
227     uint8_t sist0;
228     uint8_t sist1;
229     uint8_t sien0;
230     uint8_t sien1;
231     uint8_t mbox0;
232     uint8_t mbox1;
233     uint8_t dfifo;
234     uint8_t ctest2;
235     uint8_t ctest3;
236     uint8_t ctest4;
237     uint8_t ctest5;
238     uint8_t ccntl0;
239     uint8_t ccntl1;
240     uint32_t dsp;
241     uint32_t dsps;
242     uint8_t dmode;
243     uint8_t dcntl;
244     uint8_t scntl0;
245     uint8_t scntl1;
246     uint8_t scntl2;
247     uint8_t scntl3;
248     uint8_t sstat0;
249     uint8_t sstat1;
250     uint8_t scid;
251     uint8_t sxfer;
252     uint8_t socl;
253     uint8_t sdid;
254     uint8_t ssid;
255     uint8_t sfbr;
256     uint8_t stest1;
257     uint8_t stest2;
258     uint8_t stest3;
259     uint8_t sidl;
260     uint8_t stime0;
261     uint8_t respid0;
262     uint8_t respid1;
263     uint32_t mmrs;
264     uint32_t mmws;
265     uint32_t sfs;
266     uint32_t drs;
267     uint32_t sbms;
268     uint32_t dbms;
269     uint32_t dnad64;
270     uint32_t pmjad1;
271     uint32_t pmjad2;
272     uint32_t rbc;
273     uint32_t ua;
274     uint32_t ia;
275     uint32_t sbc;
276     uint32_t csbc;
277     uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
278     uint8_t sbr;
279     uint32_t adder;
280
281     /* Script ram is stored as 32-bit words in host byteorder.  */
282     uint32_t script_ram[2048];
283 } LSIState;
284
285 #define TYPE_LSI53C810  "lsi53c810"
286 #define TYPE_LSI53C895A "lsi53c895a"
287
288 #define LSI53C895A(obj) \
289     OBJECT_CHECK(LSIState, (obj), TYPE_LSI53C895A)
290
291 static inline int lsi_irq_on_rsl(LSIState *s)
292 {
293     return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
294 }
295
296 static void lsi_soft_reset(LSIState *s)
297 {
298     DPRINTF("Reset\n");
299     s->carry = 0;
300
301     s->msg_action = 0;
302     s->msg_len = 0;
303     s->waiting = 0;
304     s->dsa = 0;
305     s->dnad = 0;
306     s->dbc = 0;
307     s->temp = 0;
308     memset(s->scratch, 0, sizeof(s->scratch));
309     s->istat0 = 0;
310     s->istat1 = 0;
311     s->dcmd = 0x40;
312     s->dstat = LSI_DSTAT_DFE;
313     s->dien = 0;
314     s->sist0 = 0;
315     s->sist1 = 0;
316     s->sien0 = 0;
317     s->sien1 = 0;
318     s->mbox0 = 0;
319     s->mbox1 = 0;
320     s->dfifo = 0;
321     s->ctest2 = LSI_CTEST2_DACK;
322     s->ctest3 = 0;
323     s->ctest4 = 0;
324     s->ctest5 = 0;
325     s->ccntl0 = 0;
326     s->ccntl1 = 0;
327     s->dsp = 0;
328     s->dsps = 0;
329     s->dmode = 0;
330     s->dcntl = 0;
331     s->scntl0 = 0xc0;
332     s->scntl1 = 0;
333     s->scntl2 = 0;
334     s->scntl3 = 0;
335     s->sstat0 = 0;
336     s->sstat1 = 0;
337     s->scid = 7;
338     s->sxfer = 0;
339     s->socl = 0;
340     s->sdid = 0;
341     s->ssid = 0;
342     s->stest1 = 0;
343     s->stest2 = 0;
344     s->stest3 = 0;
345     s->sidl = 0;
346     s->stime0 = 0;
347     s->respid0 = 0x80;
348     s->respid1 = 0;
349     s->mmrs = 0;
350     s->mmws = 0;
351     s->sfs = 0;
352     s->drs = 0;
353     s->sbms = 0;
354     s->dbms = 0;
355     s->dnad64 = 0;
356     s->pmjad1 = 0;
357     s->pmjad2 = 0;
358     s->rbc = 0;
359     s->ua = 0;
360     s->ia = 0;
361     s->sbc = 0;
362     s->csbc = 0;
363     s->sbr = 0;
364     assert(QTAILQ_EMPTY(&s->queue));
365     assert(!s->current);
366 }
367
368 static int lsi_dma_40bit(LSIState *s)
369 {
370     if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
371         return 1;
372     return 0;
373 }
374
375 static int lsi_dma_ti64bit(LSIState *s)
376 {
377     if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
378         return 1;
379     return 0;
380 }
381
382 static int lsi_dma_64bit(LSIState *s)
383 {
384     if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
385         return 1;
386     return 0;
387 }
388
389 static uint8_t lsi_reg_readb(LSIState *s, int offset);
390 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
391 static void lsi_execute_script(LSIState *s);
392 static void lsi_reselect(LSIState *s, lsi_request *p);
393
394 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
395 {
396     uint32_t buf;
397
398     pci_dma_read(PCI_DEVICE(s), addr, &buf, 4);
399     return cpu_to_le32(buf);
400 }
401
402 static void lsi_stop_script(LSIState *s)
403 {
404     s->istat1 &= ~LSI_ISTAT1_SRUN;
405 }
406
407 static void lsi_update_irq(LSIState *s)
408 {
409     PCIDevice *d = PCI_DEVICE(s);
410     int level;
411     static int last_level;
412     lsi_request *p;
413
414     /* It's unclear whether the DIP/SIP bits should be cleared when the
415        Interrupt Status Registers are cleared or when istat0 is read.
416        We currently do the formwer, which seems to work.  */
417     level = 0;
418     if (s->dstat) {
419         if (s->dstat & s->dien)
420             level = 1;
421         s->istat0 |= LSI_ISTAT0_DIP;
422     } else {
423         s->istat0 &= ~LSI_ISTAT0_DIP;
424     }
425
426     if (s->sist0 || s->sist1) {
427         if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
428             level = 1;
429         s->istat0 |= LSI_ISTAT0_SIP;
430     } else {
431         s->istat0 &= ~LSI_ISTAT0_SIP;
432     }
433     if (s->istat0 & LSI_ISTAT0_INTF)
434         level = 1;
435
436     if (level != last_level) {
437         DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
438                 level, s->dstat, s->sist1, s->sist0);
439         last_level = level;
440     }
441     pci_set_irq(d, level);
442
443     if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
444         DPRINTF("Handled IRQs & disconnected, looking for pending "
445                 "processes\n");
446         QTAILQ_FOREACH(p, &s->queue, next) {
447             if (p->pending) {
448                 lsi_reselect(s, p);
449                 break;
450             }
451         }
452     }
453 }
454
455 /* Stop SCRIPTS execution and raise a SCSI interrupt.  */
456 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
457 {
458     uint32_t mask0;
459     uint32_t mask1;
460
461     DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
462             stat1, stat0, s->sist1, s->sist0);
463     s->sist0 |= stat0;
464     s->sist1 |= stat1;
465     /* Stop processor on fatal or unmasked interrupt.  As a special hack
466        we don't stop processing when raising STO.  Instead continue
467        execution and stop at the next insn that accesses the SCSI bus.  */
468     mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
469     mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
470     mask1 &= ~LSI_SIST1_STO;
471     if (s->sist0 & mask0 || s->sist1 & mask1) {
472         lsi_stop_script(s);
473     }
474     lsi_update_irq(s);
475 }
476
477 /* Stop SCRIPTS execution and raise a DMA interrupt.  */
478 static void lsi_script_dma_interrupt(LSIState *s, int stat)
479 {
480     DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
481     s->dstat |= stat;
482     lsi_update_irq(s);
483     lsi_stop_script(s);
484 }
485
486 static inline void lsi_set_phase(LSIState *s, int phase)
487 {
488     s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
489 }
490
491 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
492 {
493     /* Trigger a phase mismatch.  */
494     if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
495         if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
496             s->dsp = out ? s->pmjad1 : s->pmjad2;
497         } else {
498             s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
499         }
500         DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
501     } else {
502         DPRINTF("Phase mismatch interrupt\n");
503         lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
504         lsi_stop_script(s);
505     }
506     lsi_set_phase(s, new_phase);
507 }
508
509
510 /* Resume SCRIPTS execution after a DMA operation.  */
511 static void lsi_resume_script(LSIState *s)
512 {
513     if (s->waiting != 2) {
514         s->waiting = 0;
515         lsi_execute_script(s);
516     } else {
517         s->waiting = 0;
518     }
519 }
520
521 static void lsi_disconnect(LSIState *s)
522 {
523     s->scntl1 &= ~LSI_SCNTL1_CON;
524     s->sstat1 &= ~PHASE_MASK;
525 }
526
527 static void lsi_bad_selection(LSIState *s, uint32_t id)
528 {
529     DPRINTF("Selected absent target %d\n", id);
530     lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
531     lsi_disconnect(s);
532 }
533
534 /* Initiate a SCSI layer data transfer.  */
535 static void lsi_do_dma(LSIState *s, int out)
536 {
537     PCIDevice *pci_dev;
538     uint32_t count;
539     dma_addr_t addr;
540     SCSIDevice *dev;
541
542     assert(s->current);
543     if (!s->current->dma_len) {
544         /* Wait until data is available.  */
545         DPRINTF("DMA no data available\n");
546         return;
547     }
548
549     pci_dev = PCI_DEVICE(s);
550     dev = s->current->req->dev;
551     assert(dev);
552
553     count = s->dbc;
554     if (count > s->current->dma_len)
555         count = s->current->dma_len;
556
557     addr = s->dnad;
558     /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
559     if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
560         addr |= ((uint64_t)s->dnad64 << 32);
561     else if (s->dbms)
562         addr |= ((uint64_t)s->dbms << 32);
563     else if (s->sbms)
564         addr |= ((uint64_t)s->sbms << 32);
565
566     DPRINTF("DMA addr=0x" DMA_ADDR_FMT " len=%d\n", addr, count);
567     s->csbc += count;
568     s->dnad += count;
569     s->dbc -= count;
570      if (s->current->dma_buf == NULL) {
571         s->current->dma_buf = scsi_req_get_buf(s->current->req);
572     }
573     /* ??? Set SFBR to first data byte.  */
574     if (out) {
575         pci_dma_read(pci_dev, addr, s->current->dma_buf, count);
576     } else {
577         pci_dma_write(pci_dev, addr, s->current->dma_buf, count);
578     }
579     s->current->dma_len -= count;
580     if (s->current->dma_len == 0) {
581         s->current->dma_buf = NULL;
582         scsi_req_continue(s->current->req);
583     } else {
584         s->current->dma_buf += count;
585         lsi_resume_script(s);
586     }
587 }
588
589
590 /* Add a command to the queue.  */
591 static void lsi_queue_command(LSIState *s)
592 {
593     lsi_request *p = s->current;
594
595     DPRINTF("Queueing tag=0x%x\n", p->tag);
596     assert(s->current != NULL);
597     assert(s->current->dma_len == 0);
598     QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
599     s->current = NULL;
600
601     p->pending = 0;
602     p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
603 }
604
605 /* Queue a byte for a MSG IN phase.  */
606 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
607 {
608     if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
609         BADF("MSG IN data too long\n");
610     } else {
611         DPRINTF("MSG IN 0x%02x\n", data);
612         s->msg[s->msg_len++] = data;
613     }
614 }
615
616 /* Perform reselection to continue a command.  */
617 static void lsi_reselect(LSIState *s, lsi_request *p)
618 {
619     int id;
620
621     assert(s->current == NULL);
622     QTAILQ_REMOVE(&s->queue, p, next);
623     s->current = p;
624
625     id = (p->tag >> 8) & 0xf;
626     s->ssid = id | 0x80;
627     /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
628     if (!(s->dcntl & LSI_DCNTL_COM)) {
629         s->sfbr = 1 << (id & 0x7);
630     }
631     DPRINTF("Reselected target %d\n", id);
632     s->scntl1 |= LSI_SCNTL1_CON;
633     lsi_set_phase(s, PHASE_MI);
634     s->msg_action = p->out ? 2 : 3;
635     s->current->dma_len = p->pending;
636     lsi_add_msg_byte(s, 0x80);
637     if (s->current->tag & LSI_TAG_VALID) {
638         lsi_add_msg_byte(s, 0x20);
639         lsi_add_msg_byte(s, p->tag & 0xff);
640     }
641
642     if (lsi_irq_on_rsl(s)) {
643         lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
644     }
645 }
646
647 static lsi_request *lsi_find_by_tag(LSIState *s, uint32_t tag)
648 {
649     lsi_request *p;
650
651     QTAILQ_FOREACH(p, &s->queue, next) {
652         if (p->tag == tag) {
653             return p;
654         }
655     }
656
657     return NULL;
658 }
659
660 static void lsi_request_free(LSIState *s, lsi_request *p)
661 {
662     if (p == s->current) {
663         s->current = NULL;
664     } else {
665         QTAILQ_REMOVE(&s->queue, p, next);
666     }
667     g_free(p);
668 }
669
670 static void lsi_request_cancelled(SCSIRequest *req)
671 {
672     LSIState *s = LSI53C895A(req->bus->qbus.parent);
673     lsi_request *p = req->hba_private;
674
675     req->hba_private = NULL;
676     lsi_request_free(s, p);
677     scsi_req_unref(req);
678 }
679
680 /* Record that data is available for a queued command.  Returns zero if
681    the device was reselected, nonzero if the IO is deferred.  */
682 static int lsi_queue_req(LSIState *s, SCSIRequest *req, uint32_t len)
683 {
684     lsi_request *p = req->hba_private;
685
686     if (p->pending) {
687         BADF("Multiple IO pending for request %p\n", p);
688     }
689     p->pending = len;
690     /* Reselect if waiting for it, or if reselection triggers an IRQ
691        and the bus is free.
692        Since no interrupt stacking is implemented in the emulation, it
693        is also required that there are no pending interrupts waiting
694        for service from the device driver. */
695     if (s->waiting == 1 ||
696         (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
697          !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
698         /* Reselect device.  */
699         lsi_reselect(s, p);
700         return 0;
701     } else {
702         DPRINTF("Queueing IO tag=0x%x\n", p->tag);
703         p->pending = len;
704         return 1;
705     }
706 }
707
708  /* Callback to indicate that the SCSI layer has completed a command.  */
709 static void lsi_command_complete(SCSIRequest *req, uint32_t status, size_t resid)
710 {
711     LSIState *s = LSI53C895A(req->bus->qbus.parent);
712     int out;
713
714     out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
715     DPRINTF("Command complete status=%d\n", (int)status);
716     s->status = status;
717     s->command_complete = 2;
718     if (s->waiting && s->dbc != 0) {
719         /* Raise phase mismatch for short transfers.  */
720         lsi_bad_phase(s, out, PHASE_ST);
721     } else {
722         lsi_set_phase(s, PHASE_ST);
723     }
724
725     if (req->hba_private == s->current) {
726         req->hba_private = NULL;
727         lsi_request_free(s, s->current);
728         scsi_req_unref(req);
729     }
730     lsi_resume_script(s);
731 }
732
733  /* Callback to indicate that the SCSI layer has completed a transfer.  */
734 static void lsi_transfer_data(SCSIRequest *req, uint32_t len)
735 {
736     LSIState *s = LSI53C895A(req->bus->qbus.parent);
737     int out;
738
739     assert(req->hba_private);
740     if (s->waiting == 1 || req->hba_private != s->current ||
741         (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
742         if (lsi_queue_req(s, req, len)) {
743             return;
744         }
745     }
746
747     out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
748
749     /* host adapter (re)connected */
750     DPRINTF("Data ready tag=0x%x len=%d\n", req->tag, len);
751     s->current->dma_len = len;
752     s->command_complete = 1;
753     if (s->waiting) {
754         if (s->waiting == 1 || s->dbc == 0) {
755             lsi_resume_script(s);
756         } else {
757             lsi_do_dma(s, out);
758         }
759     }
760 }
761
762 static void lsi_do_command(LSIState *s)
763 {
764     SCSIDevice *dev;
765     uint8_t buf[16];
766     uint32_t id;
767     int n;
768
769     DPRINTF("Send command len=%d\n", s->dbc);
770     if (s->dbc > 16)
771         s->dbc = 16;
772     pci_dma_read(PCI_DEVICE(s), s->dnad, buf, s->dbc);
773     s->sfbr = buf[0];
774     s->command_complete = 0;
775
776     id = (s->select_tag >> 8) & 0xf;
777     dev = scsi_device_find(&s->bus, 0, id, s->current_lun);
778     if (!dev) {
779         lsi_bad_selection(s, id);
780         return;
781     }
782
783     assert(s->current == NULL);
784     s->current = g_new0(lsi_request, 1);
785     s->current->tag = s->select_tag;
786     s->current->req = scsi_req_new(dev, s->current->tag, s->current_lun, buf,
787                                    s->current);
788
789     n = scsi_req_enqueue(s->current->req);
790     if (n) {
791         if (n > 0) {
792             lsi_set_phase(s, PHASE_DI);
793         } else if (n < 0) {
794             lsi_set_phase(s, PHASE_DO);
795         }
796         scsi_req_continue(s->current->req);
797     }
798     if (!s->command_complete) {
799         if (n) {
800             /* Command did not complete immediately so disconnect.  */
801             lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
802             lsi_add_msg_byte(s, 4); /* DISCONNECT */
803             /* wait data */
804             lsi_set_phase(s, PHASE_MI);
805             s->msg_action = 1;
806             lsi_queue_command(s);
807         } else {
808             /* wait command complete */
809             lsi_set_phase(s, PHASE_DI);
810         }
811     }
812 }
813
814 static void lsi_do_status(LSIState *s)
815 {
816     uint8_t status;
817     DPRINTF("Get status len=%d status=%d\n", s->dbc, s->status);
818     if (s->dbc != 1)
819         BADF("Bad Status move\n");
820     s->dbc = 1;
821     status = s->status;
822     s->sfbr = status;
823     pci_dma_write(PCI_DEVICE(s), s->dnad, &status, 1);
824     lsi_set_phase(s, PHASE_MI);
825     s->msg_action = 1;
826     lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
827 }
828
829 static void lsi_do_msgin(LSIState *s)
830 {
831     int len;
832     DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
833     s->sfbr = s->msg[0];
834     len = s->msg_len;
835     if (len > s->dbc)
836         len = s->dbc;
837     pci_dma_write(PCI_DEVICE(s), s->dnad, s->msg, len);
838     /* Linux drivers rely on the last byte being in the SIDL.  */
839     s->sidl = s->msg[len - 1];
840     s->msg_len -= len;
841     if (s->msg_len) {
842         memmove(s->msg, s->msg + len, s->msg_len);
843     } else {
844         /* ??? Check if ATN (not yet implemented) is asserted and maybe
845            switch to PHASE_MO.  */
846         switch (s->msg_action) {
847         case 0:
848             lsi_set_phase(s, PHASE_CMD);
849             break;
850         case 1:
851             lsi_disconnect(s);
852             break;
853         case 2:
854             lsi_set_phase(s, PHASE_DO);
855             break;
856         case 3:
857             lsi_set_phase(s, PHASE_DI);
858             break;
859         default:
860             abort();
861         }
862     }
863 }
864
865 /* Read the next byte during a MSGOUT phase.  */
866 static uint8_t lsi_get_msgbyte(LSIState *s)
867 {
868     uint8_t data;
869     pci_dma_read(PCI_DEVICE(s), s->dnad, &data, 1);
870     s->dnad++;
871     s->dbc--;
872     return data;
873 }
874
875 /* Skip the next n bytes during a MSGOUT phase. */
876 static void lsi_skip_msgbytes(LSIState *s, unsigned int n)
877 {
878     s->dnad += n;
879     s->dbc  -= n;
880 }
881
882 static void lsi_do_msgout(LSIState *s)
883 {
884     uint8_t msg;
885     int len;
886     uint32_t current_tag;
887     lsi_request *current_req, *p, *p_next;
888
889     if (s->current) {
890         current_tag = s->current->tag;
891         current_req = s->current;
892     } else {
893         current_tag = s->select_tag;
894         current_req = lsi_find_by_tag(s, current_tag);
895     }
896
897     DPRINTF("MSG out len=%d\n", s->dbc);
898     while (s->dbc) {
899         msg = lsi_get_msgbyte(s);
900         s->sfbr = msg;
901
902         switch (msg) {
903         case 0x04:
904             DPRINTF("MSG: Disconnect\n");
905             lsi_disconnect(s);
906             break;
907         case 0x08:
908             DPRINTF("MSG: No Operation\n");
909             lsi_set_phase(s, PHASE_CMD);
910             break;
911         case 0x01:
912             len = lsi_get_msgbyte(s);
913             msg = lsi_get_msgbyte(s);
914             (void)len; /* avoid a warning about unused variable*/
915             DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
916             switch (msg) {
917             case 1:
918                 DPRINTF("SDTR (ignored)\n");
919                 lsi_skip_msgbytes(s, 2);
920                 break;
921             case 3:
922                 DPRINTF("WDTR (ignored)\n");
923                 lsi_skip_msgbytes(s, 1);
924                 break;
925             default:
926                 goto bad;
927             }
928             break;
929         case 0x20: /* SIMPLE queue */
930             s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
931             DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff);
932             break;
933         case 0x21: /* HEAD of queue */
934             BADF("HEAD queue not implemented\n");
935             s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
936             break;
937         case 0x22: /* ORDERED queue */
938             BADF("ORDERED queue not implemented\n");
939             s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
940             break;
941         case 0x0d:
942             /* The ABORT TAG message clears the current I/O process only. */
943             DPRINTF("MSG: ABORT TAG tag=0x%x\n", current_tag);
944             if (current_req) {
945                 scsi_req_cancel(current_req->req);
946             }
947             lsi_disconnect(s);
948             break;
949         case 0x06:
950         case 0x0e:
951         case 0x0c:
952             /* The ABORT message clears all I/O processes for the selecting
953                initiator on the specified logical unit of the target. */
954             if (msg == 0x06) {
955                 DPRINTF("MSG: ABORT tag=0x%x\n", current_tag);
956             }
957             /* The CLEAR QUEUE message clears all I/O processes for all
958                initiators on the specified logical unit of the target. */
959             if (msg == 0x0e) {
960                 DPRINTF("MSG: CLEAR QUEUE tag=0x%x\n", current_tag);
961             }
962             /* The BUS DEVICE RESET message clears all I/O processes for all
963                initiators on all logical units of the target. */
964             if (msg == 0x0c) {
965                 DPRINTF("MSG: BUS DEVICE RESET tag=0x%x\n", current_tag);
966             }
967
968             /* clear the current I/O process */
969             if (s->current) {
970                 scsi_req_cancel(s->current->req);
971             }
972
973             /* As the current implemented devices scsi_disk and scsi_generic
974                only support one LUN, we don't need to keep track of LUNs.
975                Clearing I/O processes for other initiators could be possible
976                for scsi_generic by sending a SG_SCSI_RESET to the /dev/sgX
977                device, but this is currently not implemented (and seems not
978                to be really necessary). So let's simply clear all queued
979                commands for the current device: */
980             QTAILQ_FOREACH_SAFE(p, &s->queue, next, p_next) {
981                 if ((p->tag & 0x0000ff00) == (current_tag & 0x0000ff00)) {
982                     scsi_req_cancel(p->req);
983                 }
984             }
985
986             lsi_disconnect(s);
987             break;
988         default:
989             if ((msg & 0x80) == 0) {
990                 goto bad;
991             }
992             s->current_lun = msg & 7;
993             DPRINTF("Select LUN %d\n", s->current_lun);
994             lsi_set_phase(s, PHASE_CMD);
995             break;
996         }
997     }
998     return;
999 bad:
1000     BADF("Unimplemented message 0x%02x\n", msg);
1001     lsi_set_phase(s, PHASE_MI);
1002     lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
1003     s->msg_action = 0;
1004 }
1005
1006 #define LSI_BUF_SIZE 4096
1007 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
1008 {
1009     PCIDevice *d = PCI_DEVICE(s);
1010     int n;
1011     uint8_t buf[LSI_BUF_SIZE];
1012
1013     DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
1014     while (count) {
1015         n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
1016         pci_dma_read(d, src, buf, n);
1017         pci_dma_write(d, dest, buf, n);
1018         src += n;
1019         dest += n;
1020         count -= n;
1021     }
1022 }
1023
1024 static void lsi_wait_reselect(LSIState *s)
1025 {
1026     lsi_request *p;
1027
1028     DPRINTF("Wait Reselect\n");
1029
1030     QTAILQ_FOREACH(p, &s->queue, next) {
1031         if (p->pending) {
1032             lsi_reselect(s, p);
1033             break;
1034         }
1035     }
1036     if (s->current == NULL) {
1037         s->waiting = 1;
1038     }
1039 }
1040
1041 static void lsi_execute_script(LSIState *s)
1042 {
1043     PCIDevice *pci_dev = PCI_DEVICE(s);
1044     uint32_t insn;
1045     uint32_t addr, addr_high;
1046     int opcode;
1047     int insn_processed = 0;
1048
1049     s->istat1 |= LSI_ISTAT1_SRUN;
1050 again:
1051     insn_processed++;
1052     insn = read_dword(s, s->dsp);
1053     if (!insn) {
1054         /* If we receive an empty opcode increment the DSP by 4 bytes
1055            instead of 8 and execute the next opcode at that location */
1056         s->dsp += 4;
1057         goto again;
1058     }
1059     addr = read_dword(s, s->dsp + 4);
1060     addr_high = 0;
1061     DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
1062     s->dsps = addr;
1063     s->dcmd = insn >> 24;
1064     s->dsp += 8;
1065     switch (insn >> 30) {
1066     case 0: /* Block move.  */
1067         if (s->sist1 & LSI_SIST1_STO) {
1068             DPRINTF("Delayed select timeout\n");
1069             lsi_stop_script(s);
1070             break;
1071         }
1072         s->dbc = insn & 0xffffff;
1073         s->rbc = s->dbc;
1074         /* ??? Set ESA.  */
1075         s->ia = s->dsp - 8;
1076         if (insn & (1 << 29)) {
1077             /* Indirect addressing.  */
1078             addr = read_dword(s, addr);
1079         } else if (insn & (1 << 28)) {
1080             uint32_t buf[2];
1081             int32_t offset;
1082             /* Table indirect addressing.  */
1083
1084             /* 32-bit Table indirect */
1085             offset = sextract32(addr, 0, 24);
1086             pci_dma_read(pci_dev, s->dsa + offset, buf, 8);
1087             /* byte count is stored in bits 0:23 only */
1088             s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
1089             s->rbc = s->dbc;
1090             addr = cpu_to_le32(buf[1]);
1091
1092             /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
1093              * table, bits [31:24] */
1094             if (lsi_dma_40bit(s))
1095                 addr_high = cpu_to_le32(buf[0]) >> 24;
1096             else if (lsi_dma_ti64bit(s)) {
1097                 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
1098                 switch (selector) {
1099                 case 0 ... 0x0f:
1100                     /* offset index into scratch registers since
1101                      * TI64 mode can use registers C to R */
1102                     addr_high = s->scratch[2 + selector];
1103                     break;
1104                 case 0x10:
1105                     addr_high = s->mmrs;
1106                     break;
1107                 case 0x11:
1108                     addr_high = s->mmws;
1109                     break;
1110                 case 0x12:
1111                     addr_high = s->sfs;
1112                     break;
1113                 case 0x13:
1114                     addr_high = s->drs;
1115                     break;
1116                 case 0x14:
1117                     addr_high = s->sbms;
1118                     break;
1119                 case 0x15:
1120                     addr_high = s->dbms;
1121                     break;
1122                 default:
1123                     BADF("Illegal selector specified (0x%x > 0x15)"
1124                          " for 64-bit DMA block move", selector);
1125                     break;
1126                 }
1127             }
1128         } else if (lsi_dma_64bit(s)) {
1129             /* fetch a 3rd dword if 64-bit direct move is enabled and
1130                only if we're not doing table indirect or indirect addressing */
1131             s->dbms = read_dword(s, s->dsp);
1132             s->dsp += 4;
1133             s->ia = s->dsp - 12;
1134         }
1135         if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1136             DPRINTF("Wrong phase got %d expected %d\n",
1137                     s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1138             lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1139             break;
1140         }
1141         s->dnad = addr;
1142         s->dnad64 = addr_high;
1143         switch (s->sstat1 & 0x7) {
1144         case PHASE_DO:
1145             s->waiting = 2;
1146             lsi_do_dma(s, 1);
1147             if (s->waiting)
1148                 s->waiting = 3;
1149             break;
1150         case PHASE_DI:
1151             s->waiting = 2;
1152             lsi_do_dma(s, 0);
1153             if (s->waiting)
1154                 s->waiting = 3;
1155             break;
1156         case PHASE_CMD:
1157             lsi_do_command(s);
1158             break;
1159         case PHASE_ST:
1160             lsi_do_status(s);
1161             break;
1162         case PHASE_MO:
1163             lsi_do_msgout(s);
1164             break;
1165         case PHASE_MI:
1166             lsi_do_msgin(s);
1167             break;
1168         default:
1169             BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1170             exit(1);
1171         }
1172         s->dfifo = s->dbc & 0xff;
1173         s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1174         s->sbc = s->dbc;
1175         s->rbc -= s->dbc;
1176         s->ua = addr + s->dbc;
1177         break;
1178
1179     case 1: /* IO or Read/Write instruction.  */
1180         opcode = (insn >> 27) & 7;
1181         if (opcode < 5) {
1182             uint32_t id;
1183
1184             if (insn & (1 << 25)) {
1185                 id = read_dword(s, s->dsa + sextract32(insn, 0, 24));
1186             } else {
1187                 id = insn;
1188             }
1189             id = (id >> 16) & 0xf;
1190             if (insn & (1 << 26)) {
1191                 addr = s->dsp + sextract32(addr, 0, 24);
1192             }
1193             s->dnad = addr;
1194             switch (opcode) {
1195             case 0: /* Select */
1196                 s->sdid = id;
1197                 if (s->scntl1 & LSI_SCNTL1_CON) {
1198                     DPRINTF("Already reselected, jumping to alternative address\n");
1199                     s->dsp = s->dnad;
1200                     break;
1201                 }
1202                 s->sstat0 |= LSI_SSTAT0_WOA;
1203                 s->scntl1 &= ~LSI_SCNTL1_IARB;
1204                 if (!scsi_device_find(&s->bus, 0, id, 0)) {
1205                     lsi_bad_selection(s, id);
1206                     break;
1207                 }
1208                 DPRINTF("Selected target %d%s\n",
1209                         id, insn & (1 << 3) ? " ATN" : "");
1210                 /* ??? Linux drivers compain when this is set.  Maybe
1211                    it only applies in low-level mode (unimplemented).
1212                 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1213                 s->select_tag = id << 8;
1214                 s->scntl1 |= LSI_SCNTL1_CON;
1215                 if (insn & (1 << 3)) {
1216                     s->socl |= LSI_SOCL_ATN;
1217                 }
1218                 lsi_set_phase(s, PHASE_MO);
1219                 break;
1220             case 1: /* Disconnect */
1221                 DPRINTF("Wait Disconnect\n");
1222                 s->scntl1 &= ~LSI_SCNTL1_CON;
1223                 break;
1224             case 2: /* Wait Reselect */
1225                 if (!lsi_irq_on_rsl(s)) {
1226                     lsi_wait_reselect(s);
1227                 }
1228                 break;
1229             case 3: /* Set */
1230                 DPRINTF("Set%s%s%s%s\n",
1231                         insn & (1 << 3) ? " ATN" : "",
1232                         insn & (1 << 6) ? " ACK" : "",
1233                         insn & (1 << 9) ? " TM" : "",
1234                         insn & (1 << 10) ? " CC" : "");
1235                 if (insn & (1 << 3)) {
1236                     s->socl |= LSI_SOCL_ATN;
1237                     lsi_set_phase(s, PHASE_MO);
1238                 }
1239                 if (insn & (1 << 9)) {
1240                     BADF("Target mode not implemented\n");
1241                     exit(1);
1242                 }
1243                 if (insn & (1 << 10))
1244                     s->carry = 1;
1245                 break;
1246             case 4: /* Clear */
1247                 DPRINTF("Clear%s%s%s%s\n",
1248                         insn & (1 << 3) ? " ATN" : "",
1249                         insn & (1 << 6) ? " ACK" : "",
1250                         insn & (1 << 9) ? " TM" : "",
1251                         insn & (1 << 10) ? " CC" : "");
1252                 if (insn & (1 << 3)) {
1253                     s->socl &= ~LSI_SOCL_ATN;
1254                 }
1255                 if (insn & (1 << 10))
1256                     s->carry = 0;
1257                 break;
1258             }
1259         } else {
1260             uint8_t op0;
1261             uint8_t op1;
1262             uint8_t data8;
1263             int reg;
1264             int operator;
1265 #ifdef DEBUG_LSI
1266             static const char *opcode_names[3] =
1267                 {"Write", "Read", "Read-Modify-Write"};
1268             static const char *operator_names[8] =
1269                 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1270 #endif
1271
1272             reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1273             data8 = (insn >> 8) & 0xff;
1274             opcode = (insn >> 27) & 7;
1275             operator = (insn >> 24) & 7;
1276             DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1277                     opcode_names[opcode - 5], reg,
1278                     operator_names[operator], data8, s->sfbr,
1279                     (insn & (1 << 23)) ? " SFBR" : "");
1280             op0 = op1 = 0;
1281             switch (opcode) {
1282             case 5: /* From SFBR */
1283                 op0 = s->sfbr;
1284                 op1 = data8;
1285                 break;
1286             case 6: /* To SFBR */
1287                 if (operator)
1288                     op0 = lsi_reg_readb(s, reg);
1289                 op1 = data8;
1290                 break;
1291             case 7: /* Read-modify-write */
1292                 if (operator)
1293                     op0 = lsi_reg_readb(s, reg);
1294                 if (insn & (1 << 23)) {
1295                     op1 = s->sfbr;
1296                 } else {
1297                     op1 = data8;
1298                 }
1299                 break;
1300             }
1301
1302             switch (operator) {
1303             case 0: /* move */
1304                 op0 = op1;
1305                 break;
1306             case 1: /* Shift left */
1307                 op1 = op0 >> 7;
1308                 op0 = (op0 << 1) | s->carry;
1309                 s->carry = op1;
1310                 break;
1311             case 2: /* OR */
1312                 op0 |= op1;
1313                 break;
1314             case 3: /* XOR */
1315                 op0 ^= op1;
1316                 break;
1317             case 4: /* AND */
1318                 op0 &= op1;
1319                 break;
1320             case 5: /* SHR */
1321                 op1 = op0 & 1;
1322                 op0 = (op0 >> 1) | (s->carry << 7);
1323                 s->carry = op1;
1324                 break;
1325             case 6: /* ADD */
1326                 op0 += op1;
1327                 s->carry = op0 < op1;
1328                 break;
1329             case 7: /* ADC */
1330                 op0 += op1 + s->carry;
1331                 if (s->carry)
1332                     s->carry = op0 <= op1;
1333                 else
1334                     s->carry = op0 < op1;
1335                 break;
1336             }
1337
1338             switch (opcode) {
1339             case 5: /* From SFBR */
1340             case 7: /* Read-modify-write */
1341                 lsi_reg_writeb(s, reg, op0);
1342                 break;
1343             case 6: /* To SFBR */
1344                 s->sfbr = op0;
1345                 break;
1346             }
1347         }
1348         break;
1349
1350     case 2: /* Transfer Control.  */
1351         {
1352             int cond;
1353             int jmp;
1354
1355             if ((insn & 0x002e0000) == 0) {
1356                 DPRINTF("NOP\n");
1357                 break;
1358             }
1359             if (s->sist1 & LSI_SIST1_STO) {
1360                 DPRINTF("Delayed select timeout\n");
1361                 lsi_stop_script(s);
1362                 break;
1363             }
1364             cond = jmp = (insn & (1 << 19)) != 0;
1365             if (cond == jmp && (insn & (1 << 21))) {
1366                 DPRINTF("Compare carry %d\n", s->carry == jmp);
1367                 cond = s->carry != 0;
1368             }
1369             if (cond == jmp && (insn & (1 << 17))) {
1370                 DPRINTF("Compare phase %d %c= %d\n",
1371                         (s->sstat1 & PHASE_MASK),
1372                         jmp ? '=' : '!',
1373                         ((insn >> 24) & 7));
1374                 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1375             }
1376             if (cond == jmp && (insn & (1 << 18))) {
1377                 uint8_t mask;
1378
1379                 mask = (~insn >> 8) & 0xff;
1380                 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1381                         s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1382                 cond = (s->sfbr & mask) == (insn & mask);
1383             }
1384             if (cond == jmp) {
1385                 if (insn & (1 << 23)) {
1386                     /* Relative address.  */
1387                     addr = s->dsp + sextract32(addr, 0, 24);
1388                 }
1389                 switch ((insn >> 27) & 7) {
1390                 case 0: /* Jump */
1391                     DPRINTF("Jump to 0x%08x\n", addr);
1392                     s->adder = addr;
1393                     s->dsp = addr;
1394                     break;
1395                 case 1: /* Call */
1396                     DPRINTF("Call 0x%08x\n", addr);
1397                     s->temp = s->dsp;
1398                     s->dsp = addr;
1399                     break;
1400                 case 2: /* Return */
1401                     DPRINTF("Return to 0x%08x\n", s->temp);
1402                     s->dsp = s->temp;
1403                     break;
1404                 case 3: /* Interrupt */
1405                     DPRINTF("Interrupt 0x%08x\n", s->dsps);
1406                     if ((insn & (1 << 20)) != 0) {
1407                         s->istat0 |= LSI_ISTAT0_INTF;
1408                         lsi_update_irq(s);
1409                     } else {
1410                         lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1411                     }
1412                     break;
1413                 default:
1414                     DPRINTF("Illegal transfer control\n");
1415                     lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1416                     break;
1417                 }
1418             } else {
1419                 DPRINTF("Control condition failed\n");
1420             }
1421         }
1422         break;
1423
1424     case 3:
1425         if ((insn & (1 << 29)) == 0) {
1426             /* Memory move.  */
1427             uint32_t dest;
1428             /* ??? The docs imply the destination address is loaded into
1429                the TEMP register.  However the Linux drivers rely on
1430                the value being presrved.  */
1431             dest = read_dword(s, s->dsp);
1432             s->dsp += 4;
1433             lsi_memcpy(s, dest, addr, insn & 0xffffff);
1434         } else {
1435             uint8_t data[7];
1436             int reg;
1437             int n;
1438             int i;
1439
1440             if (insn & (1 << 28)) {
1441                 addr = s->dsa + sextract32(addr, 0, 24);
1442             }
1443             n = (insn & 7);
1444             reg = (insn >> 16) & 0xff;
1445             if (insn & (1 << 24)) {
1446                 pci_dma_read(pci_dev, addr, data, n);
1447                 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1448                         addr, *(int *)data);
1449                 for (i = 0; i < n; i++) {
1450                     lsi_reg_writeb(s, reg + i, data[i]);
1451                 }
1452             } else {
1453                 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1454                 for (i = 0; i < n; i++) {
1455                     data[i] = lsi_reg_readb(s, reg + i);
1456                 }
1457                 pci_dma_write(pci_dev, addr, data, n);
1458             }
1459         }
1460     }
1461     if (insn_processed > 10000 && !s->waiting) {
1462         /* Some windows drivers make the device spin waiting for a memory
1463            location to change.  If we have been executed a lot of code then
1464            assume this is the case and force an unexpected device disconnect.
1465            This is apparently sufficient to beat the drivers into submission.
1466          */
1467         if (!(s->sien0 & LSI_SIST0_UDC))
1468             fprintf(stderr, "inf. loop with UDC masked\n");
1469         lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1470         lsi_disconnect(s);
1471     } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1472         if (s->dcntl & LSI_DCNTL_SSM) {
1473             lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1474         } else {
1475             goto again;
1476         }
1477     }
1478     DPRINTF("SCRIPTS execution stopped\n");
1479 }
1480
1481 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1482 {
1483     uint8_t tmp;
1484 #define CASE_GET_REG24(name, addr) \
1485     case addr: return s->name & 0xff; \
1486     case addr + 1: return (s->name >> 8) & 0xff; \
1487     case addr + 2: return (s->name >> 16) & 0xff;
1488
1489 #define CASE_GET_REG32(name, addr) \
1490     case addr: return s->name & 0xff; \
1491     case addr + 1: return (s->name >> 8) & 0xff; \
1492     case addr + 2: return (s->name >> 16) & 0xff; \
1493     case addr + 3: return (s->name >> 24) & 0xff;
1494
1495 #ifdef DEBUG_LSI_REG
1496     DPRINTF("Read reg %x\n", offset);
1497 #endif
1498     switch (offset) {
1499     case 0x00: /* SCNTL0 */
1500         return s->scntl0;
1501     case 0x01: /* SCNTL1 */
1502         return s->scntl1;
1503     case 0x02: /* SCNTL2 */
1504         return s->scntl2;
1505     case 0x03: /* SCNTL3 */
1506         return s->scntl3;
1507     case 0x04: /* SCID */
1508         return s->scid;
1509     case 0x05: /* SXFER */
1510         return s->sxfer;
1511     case 0x06: /* SDID */
1512         return s->sdid;
1513     case 0x07: /* GPREG0 */
1514         return 0x7f;
1515     case 0x08: /* Revision ID */
1516         return 0x00;
1517     case 0x09: /* SOCL */
1518         return s->socl;
1519     case 0xa: /* SSID */
1520         return s->ssid;
1521     case 0xb: /* SBCL */
1522         /* ??? This is not correct. However it's (hopefully) only
1523            used for diagnostics, so should be ok.  */
1524         return 0;
1525     case 0xc: /* DSTAT */
1526         tmp = s->dstat | LSI_DSTAT_DFE;
1527         if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1528             s->dstat = 0;
1529         lsi_update_irq(s);
1530         return tmp;
1531     case 0x0d: /* SSTAT0 */
1532         return s->sstat0;
1533     case 0x0e: /* SSTAT1 */
1534         return s->sstat1;
1535     case 0x0f: /* SSTAT2 */
1536         return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1537     CASE_GET_REG32(dsa, 0x10)
1538     case 0x14: /* ISTAT0 */
1539         return s->istat0;
1540     case 0x15: /* ISTAT1 */
1541         return s->istat1;
1542     case 0x16: /* MBOX0 */
1543         return s->mbox0;
1544     case 0x17: /* MBOX1 */
1545         return s->mbox1;
1546     case 0x18: /* CTEST0 */
1547         return 0xff;
1548     case 0x19: /* CTEST1 */
1549         return 0;
1550     case 0x1a: /* CTEST2 */
1551         tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1552         if (s->istat0 & LSI_ISTAT0_SIGP) {
1553             s->istat0 &= ~LSI_ISTAT0_SIGP;
1554             tmp |= LSI_CTEST2_SIGP;
1555         }
1556         return tmp;
1557     case 0x1b: /* CTEST3 */
1558         return s->ctest3;
1559     CASE_GET_REG32(temp, 0x1c)
1560     case 0x20: /* DFIFO */
1561         return 0;
1562     case 0x21: /* CTEST4 */
1563         return s->ctest4;
1564     case 0x22: /* CTEST5 */
1565         return s->ctest5;
1566     case 0x23: /* CTEST6 */
1567          return 0;
1568     CASE_GET_REG24(dbc, 0x24)
1569     case 0x27: /* DCMD */
1570         return s->dcmd;
1571     CASE_GET_REG32(dnad, 0x28)
1572     CASE_GET_REG32(dsp, 0x2c)
1573     CASE_GET_REG32(dsps, 0x30)
1574     CASE_GET_REG32(scratch[0], 0x34)
1575     case 0x38: /* DMODE */
1576         return s->dmode;
1577     case 0x39: /* DIEN */
1578         return s->dien;
1579     case 0x3a: /* SBR */
1580         return s->sbr;
1581     case 0x3b: /* DCNTL */
1582         return s->dcntl;
1583     /* ADDER Output (Debug of relative jump address) */
1584     CASE_GET_REG32(adder, 0x3c)
1585     case 0x40: /* SIEN0 */
1586         return s->sien0;
1587     case 0x41: /* SIEN1 */
1588         return s->sien1;
1589     case 0x42: /* SIST0 */
1590         tmp = s->sist0;
1591         s->sist0 = 0;
1592         lsi_update_irq(s);
1593         return tmp;
1594     case 0x43: /* SIST1 */
1595         tmp = s->sist1;
1596         s->sist1 = 0;
1597         lsi_update_irq(s);
1598         return tmp;
1599     case 0x46: /* MACNTL */
1600         return 0x0f;
1601     case 0x47: /* GPCNTL0 */
1602         return 0x0f;
1603     case 0x48: /* STIME0 */
1604         return s->stime0;
1605     case 0x4a: /* RESPID0 */
1606         return s->respid0;
1607     case 0x4b: /* RESPID1 */
1608         return s->respid1;
1609     case 0x4d: /* STEST1 */
1610         return s->stest1;
1611     case 0x4e: /* STEST2 */
1612         return s->stest2;
1613     case 0x4f: /* STEST3 */
1614         return s->stest3;
1615     case 0x50: /* SIDL */
1616         /* This is needed by the linux drivers.  We currently only update it
1617            during the MSG IN phase.  */
1618         return s->sidl;
1619     case 0x52: /* STEST4 */
1620         return 0xe0;
1621     case 0x56: /* CCNTL0 */
1622         return s->ccntl0;
1623     case 0x57: /* CCNTL1 */
1624         return s->ccntl1;
1625     case 0x58: /* SBDL */
1626         /* Some drivers peek at the data bus during the MSG IN phase.  */
1627         if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1628             return s->msg[0];
1629         return 0;
1630     case 0x59: /* SBDL high */
1631         return 0;
1632     CASE_GET_REG32(mmrs, 0xa0)
1633     CASE_GET_REG32(mmws, 0xa4)
1634     CASE_GET_REG32(sfs, 0xa8)
1635     CASE_GET_REG32(drs, 0xac)
1636     CASE_GET_REG32(sbms, 0xb0)
1637     CASE_GET_REG32(dbms, 0xb4)
1638     CASE_GET_REG32(dnad64, 0xb8)
1639     CASE_GET_REG32(pmjad1, 0xc0)
1640     CASE_GET_REG32(pmjad2, 0xc4)
1641     CASE_GET_REG32(rbc, 0xc8)
1642     CASE_GET_REG32(ua, 0xcc)
1643     CASE_GET_REG32(ia, 0xd4)
1644     CASE_GET_REG32(sbc, 0xd8)
1645     CASE_GET_REG32(csbc, 0xdc)
1646     }
1647     if (offset >= 0x5c && offset < 0xa0) {
1648         int n;
1649         int shift;
1650         n = (offset - 0x58) >> 2;
1651         shift = (offset & 3) * 8;
1652         return (s->scratch[n] >> shift) & 0xff;
1653     }
1654     BADF("readb 0x%x\n", offset);
1655     exit(1);
1656 #undef CASE_GET_REG24
1657 #undef CASE_GET_REG32
1658 }
1659
1660 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1661 {
1662 #define CASE_SET_REG24(name, addr) \
1663     case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1664     case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1665     case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1666
1667 #define CASE_SET_REG32(name, addr) \
1668     case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1669     case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1670     case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1671     case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1672
1673 #ifdef DEBUG_LSI_REG
1674     DPRINTF("Write reg %x = %02x\n", offset, val);
1675 #endif
1676     switch (offset) {
1677     case 0x00: /* SCNTL0 */
1678         s->scntl0 = val;
1679         if (val & LSI_SCNTL0_START) {
1680             BADF("Start sequence not implemented\n");
1681         }
1682         break;
1683     case 0x01: /* SCNTL1 */
1684         s->scntl1 = val & ~LSI_SCNTL1_SST;
1685         if (val & LSI_SCNTL1_IARB) {
1686             BADF("Immediate Arbritration not implemented\n");
1687         }
1688         if (val & LSI_SCNTL1_RST) {
1689             if (!(s->sstat0 & LSI_SSTAT0_RST)) {
1690                 qbus_reset_all(&s->bus.qbus);
1691                 s->sstat0 |= LSI_SSTAT0_RST;
1692                 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1693             }
1694         } else {
1695             s->sstat0 &= ~LSI_SSTAT0_RST;
1696         }
1697         break;
1698     case 0x02: /* SCNTL2 */
1699         val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1700         s->scntl2 = val;
1701         break;
1702     case 0x03: /* SCNTL3 */
1703         s->scntl3 = val;
1704         break;
1705     case 0x04: /* SCID */
1706         s->scid = val;
1707         break;
1708     case 0x05: /* SXFER */
1709         s->sxfer = val;
1710         break;
1711     case 0x06: /* SDID */
1712         if ((s->ssid & 0x80) && (val & 0xf) != (s->ssid & 0xf)) {
1713             BADF("Destination ID does not match SSID\n");
1714         }
1715         s->sdid = val & 0xf;
1716         break;
1717     case 0x07: /* GPREG0 */
1718         break;
1719     case 0x08: /* SFBR */
1720         /* The CPU is not allowed to write to this register.  However the
1721            SCRIPTS register move instructions are.  */
1722         s->sfbr = val;
1723         break;
1724     case 0x0a: case 0x0b:
1725         /* Openserver writes to these readonly registers on startup */
1726         return;
1727     case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1728         /* Linux writes to these readonly registers on startup.  */
1729         return;
1730     CASE_SET_REG32(dsa, 0x10)
1731     case 0x14: /* ISTAT0 */
1732         s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1733         if (val & LSI_ISTAT0_ABRT) {
1734             lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1735         }
1736         if (val & LSI_ISTAT0_INTF) {
1737             s->istat0 &= ~LSI_ISTAT0_INTF;
1738             lsi_update_irq(s);
1739         }
1740         if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1741             DPRINTF("Woken by SIGP\n");
1742             s->waiting = 0;
1743             s->dsp = s->dnad;
1744             lsi_execute_script(s);
1745         }
1746         if (val & LSI_ISTAT0_SRST) {
1747             qdev_reset_all(DEVICE(s));
1748         }
1749         break;
1750     case 0x16: /* MBOX0 */
1751         s->mbox0 = val;
1752         break;
1753     case 0x17: /* MBOX1 */
1754         s->mbox1 = val;
1755         break;
1756     case 0x18: /* CTEST0 */
1757         /* nothing to do */
1758         break;
1759     case 0x1a: /* CTEST2 */
1760         s->ctest2 = val & LSI_CTEST2_PCICIE;
1761         break;
1762     case 0x1b: /* CTEST3 */
1763         s->ctest3 = val & 0x0f;
1764         break;
1765     CASE_SET_REG32(temp, 0x1c)
1766     case 0x21: /* CTEST4 */
1767         if (val & 7) {
1768            BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1769         }
1770         s->ctest4 = val;
1771         break;
1772     case 0x22: /* CTEST5 */
1773         if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1774             BADF("CTEST5 DMA increment not implemented\n");
1775         }
1776         s->ctest5 = val;
1777         break;
1778     CASE_SET_REG24(dbc, 0x24)
1779     CASE_SET_REG32(dnad, 0x28)
1780     case 0x2c: /* DSP[0:7] */
1781         s->dsp &= 0xffffff00;
1782         s->dsp |= val;
1783         break;
1784     case 0x2d: /* DSP[8:15] */
1785         s->dsp &= 0xffff00ff;
1786         s->dsp |= val << 8;
1787         break;
1788     case 0x2e: /* DSP[16:23] */
1789         s->dsp &= 0xff00ffff;
1790         s->dsp |= val << 16;
1791         break;
1792     case 0x2f: /* DSP[24:31] */
1793         s->dsp &= 0x00ffffff;
1794         s->dsp |= val << 24;
1795         if ((s->dmode & LSI_DMODE_MAN) == 0
1796             && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1797             lsi_execute_script(s);
1798         break;
1799     CASE_SET_REG32(dsps, 0x30)
1800     CASE_SET_REG32(scratch[0], 0x34)
1801     case 0x38: /* DMODE */
1802         if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1803             BADF("IO mappings not implemented\n");
1804         }
1805         s->dmode = val;
1806         break;
1807     case 0x39: /* DIEN */
1808         s->dien = val;
1809         lsi_update_irq(s);
1810         break;
1811     case 0x3a: /* SBR */
1812         s->sbr = val;
1813         break;
1814     case 0x3b: /* DCNTL */
1815         s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1816         if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1817             lsi_execute_script(s);
1818         break;
1819     case 0x40: /* SIEN0 */
1820         s->sien0 = val;
1821         lsi_update_irq(s);
1822         break;
1823     case 0x41: /* SIEN1 */
1824         s->sien1 = val;
1825         lsi_update_irq(s);
1826         break;
1827     case 0x47: /* GPCNTL0 */
1828         break;
1829     case 0x48: /* STIME0 */
1830         s->stime0 = val;
1831         break;
1832     case 0x49: /* STIME1 */
1833         if (val & 0xf) {
1834             DPRINTF("General purpose timer not implemented\n");
1835             /* ??? Raising the interrupt immediately seems to be sufficient
1836                to keep the FreeBSD driver happy.  */
1837             lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1838         }
1839         break;
1840     case 0x4a: /* RESPID0 */
1841         s->respid0 = val;
1842         break;
1843     case 0x4b: /* RESPID1 */
1844         s->respid1 = val;
1845         break;
1846     case 0x4d: /* STEST1 */
1847         s->stest1 = val;
1848         break;
1849     case 0x4e: /* STEST2 */
1850         if (val & 1) {
1851             BADF("Low level mode not implemented\n");
1852         }
1853         s->stest2 = val;
1854         break;
1855     case 0x4f: /* STEST3 */
1856         if (val & 0x41) {
1857             BADF("SCSI FIFO test mode not implemented\n");
1858         }
1859         s->stest3 = val;
1860         break;
1861     case 0x56: /* CCNTL0 */
1862         s->ccntl0 = val;
1863         break;
1864     case 0x57: /* CCNTL1 */
1865         s->ccntl1 = val;
1866         break;
1867     CASE_SET_REG32(mmrs, 0xa0)
1868     CASE_SET_REG32(mmws, 0xa4)
1869     CASE_SET_REG32(sfs, 0xa8)
1870     CASE_SET_REG32(drs, 0xac)
1871     CASE_SET_REG32(sbms, 0xb0)
1872     CASE_SET_REG32(dbms, 0xb4)
1873     CASE_SET_REG32(dnad64, 0xb8)
1874     CASE_SET_REG32(pmjad1, 0xc0)
1875     CASE_SET_REG32(pmjad2, 0xc4)
1876     CASE_SET_REG32(rbc, 0xc8)
1877     CASE_SET_REG32(ua, 0xcc)
1878     CASE_SET_REG32(ia, 0xd4)
1879     CASE_SET_REG32(sbc, 0xd8)
1880     CASE_SET_REG32(csbc, 0xdc)
1881     default:
1882         if (offset >= 0x5c && offset < 0xa0) {
1883             int n;
1884             int shift;
1885             n = (offset - 0x58) >> 2;
1886             shift = (offset & 3) * 8;
1887             s->scratch[n] = deposit32(s->scratch[n], shift, 8, val);
1888         } else {
1889             BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1890         }
1891     }
1892 #undef CASE_SET_REG24
1893 #undef CASE_SET_REG32
1894 }
1895
1896 static void lsi_mmio_write(void *opaque, hwaddr addr,
1897                            uint64_t val, unsigned size)
1898 {
1899     LSIState *s = opaque;
1900
1901     lsi_reg_writeb(s, addr & 0xff, val);
1902 }
1903
1904 static uint64_t lsi_mmio_read(void *opaque, hwaddr addr,
1905                               unsigned size)
1906 {
1907     LSIState *s = opaque;
1908
1909     return lsi_reg_readb(s, addr & 0xff);
1910 }
1911
1912 static const MemoryRegionOps lsi_mmio_ops = {
1913     .read = lsi_mmio_read,
1914     .write = lsi_mmio_write,
1915     .endianness = DEVICE_NATIVE_ENDIAN,
1916     .impl = {
1917         .min_access_size = 1,
1918         .max_access_size = 1,
1919     },
1920 };
1921
1922 static void lsi_ram_write(void *opaque, hwaddr addr,
1923                           uint64_t val, unsigned size)
1924 {
1925     LSIState *s = opaque;
1926     uint32_t newval;
1927     uint32_t mask;
1928     int shift;
1929
1930     newval = s->script_ram[addr >> 2];
1931     shift = (addr & 3) * 8;
1932     mask = ((uint64_t)1 << (size * 8)) - 1;
1933     newval &= ~(mask << shift);
1934     newval |= val << shift;
1935     s->script_ram[addr >> 2] = newval;
1936 }
1937
1938 static uint64_t lsi_ram_read(void *opaque, hwaddr addr,
1939                              unsigned size)
1940 {
1941     LSIState *s = opaque;
1942     uint32_t val;
1943     uint32_t mask;
1944
1945     val = s->script_ram[addr >> 2];
1946     mask = ((uint64_t)1 << (size * 8)) - 1;
1947     val >>= (addr & 3) * 8;
1948     return val & mask;
1949 }
1950
1951 static const MemoryRegionOps lsi_ram_ops = {
1952     .read = lsi_ram_read,
1953     .write = lsi_ram_write,
1954     .endianness = DEVICE_NATIVE_ENDIAN,
1955 };
1956
1957 static uint64_t lsi_io_read(void *opaque, hwaddr addr,
1958                             unsigned size)
1959 {
1960     LSIState *s = opaque;
1961     return lsi_reg_readb(s, addr & 0xff);
1962 }
1963
1964 static void lsi_io_write(void *opaque, hwaddr addr,
1965                          uint64_t val, unsigned size)
1966 {
1967     LSIState *s = opaque;
1968     lsi_reg_writeb(s, addr & 0xff, val);
1969 }
1970
1971 static const MemoryRegionOps lsi_io_ops = {
1972     .read = lsi_io_read,
1973     .write = lsi_io_write,
1974     .endianness = DEVICE_NATIVE_ENDIAN,
1975     .impl = {
1976         .min_access_size = 1,
1977         .max_access_size = 1,
1978     },
1979 };
1980
1981 static void lsi_scsi_reset(DeviceState *dev)
1982 {
1983     LSIState *s = LSI53C895A(dev);
1984
1985     lsi_soft_reset(s);
1986 }
1987
1988 static void lsi_pre_save(void *opaque)
1989 {
1990     LSIState *s = opaque;
1991
1992     if (s->current) {
1993         assert(s->current->dma_buf == NULL);
1994         assert(s->current->dma_len == 0);
1995     }
1996     assert(QTAILQ_EMPTY(&s->queue));
1997 }
1998
1999 static const VMStateDescription vmstate_lsi_scsi = {
2000     .name = "lsiscsi",
2001     .version_id = 0,
2002     .minimum_version_id = 0,
2003     .pre_save = lsi_pre_save,
2004     .fields = (VMStateField[]) {
2005         VMSTATE_PCI_DEVICE(parent_obj, LSIState),
2006
2007         VMSTATE_INT32(carry, LSIState),
2008         VMSTATE_INT32(status, LSIState),
2009         VMSTATE_INT32(msg_action, LSIState),
2010         VMSTATE_INT32(msg_len, LSIState),
2011         VMSTATE_BUFFER(msg, LSIState),
2012         VMSTATE_INT32(waiting, LSIState),
2013
2014         VMSTATE_UINT32(dsa, LSIState),
2015         VMSTATE_UINT32(temp, LSIState),
2016         VMSTATE_UINT32(dnad, LSIState),
2017         VMSTATE_UINT32(dbc, LSIState),
2018         VMSTATE_UINT8(istat0, LSIState),
2019         VMSTATE_UINT8(istat1, LSIState),
2020         VMSTATE_UINT8(dcmd, LSIState),
2021         VMSTATE_UINT8(dstat, LSIState),
2022         VMSTATE_UINT8(dien, LSIState),
2023         VMSTATE_UINT8(sist0, LSIState),
2024         VMSTATE_UINT8(sist1, LSIState),
2025         VMSTATE_UINT8(sien0, LSIState),
2026         VMSTATE_UINT8(sien1, LSIState),
2027         VMSTATE_UINT8(mbox0, LSIState),
2028         VMSTATE_UINT8(mbox1, LSIState),
2029         VMSTATE_UINT8(dfifo, LSIState),
2030         VMSTATE_UINT8(ctest2, LSIState),
2031         VMSTATE_UINT8(ctest3, LSIState),
2032         VMSTATE_UINT8(ctest4, LSIState),
2033         VMSTATE_UINT8(ctest5, LSIState),
2034         VMSTATE_UINT8(ccntl0, LSIState),
2035         VMSTATE_UINT8(ccntl1, LSIState),
2036         VMSTATE_UINT32(dsp, LSIState),
2037         VMSTATE_UINT32(dsps, LSIState),
2038         VMSTATE_UINT8(dmode, LSIState),
2039         VMSTATE_UINT8(dcntl, LSIState),
2040         VMSTATE_UINT8(scntl0, LSIState),
2041         VMSTATE_UINT8(scntl1, LSIState),
2042         VMSTATE_UINT8(scntl2, LSIState),
2043         VMSTATE_UINT8(scntl3, LSIState),
2044         VMSTATE_UINT8(sstat0, LSIState),
2045         VMSTATE_UINT8(sstat1, LSIState),
2046         VMSTATE_UINT8(scid, LSIState),
2047         VMSTATE_UINT8(sxfer, LSIState),
2048         VMSTATE_UINT8(socl, LSIState),
2049         VMSTATE_UINT8(sdid, LSIState),
2050         VMSTATE_UINT8(ssid, LSIState),
2051         VMSTATE_UINT8(sfbr, LSIState),
2052         VMSTATE_UINT8(stest1, LSIState),
2053         VMSTATE_UINT8(stest2, LSIState),
2054         VMSTATE_UINT8(stest3, LSIState),
2055         VMSTATE_UINT8(sidl, LSIState),
2056         VMSTATE_UINT8(stime0, LSIState),
2057         VMSTATE_UINT8(respid0, LSIState),
2058         VMSTATE_UINT8(respid1, LSIState),
2059         VMSTATE_UINT32(mmrs, LSIState),
2060         VMSTATE_UINT32(mmws, LSIState),
2061         VMSTATE_UINT32(sfs, LSIState),
2062         VMSTATE_UINT32(drs, LSIState),
2063         VMSTATE_UINT32(sbms, LSIState),
2064         VMSTATE_UINT32(dbms, LSIState),
2065         VMSTATE_UINT32(dnad64, LSIState),
2066         VMSTATE_UINT32(pmjad1, LSIState),
2067         VMSTATE_UINT32(pmjad2, LSIState),
2068         VMSTATE_UINT32(rbc, LSIState),
2069         VMSTATE_UINT32(ua, LSIState),
2070         VMSTATE_UINT32(ia, LSIState),
2071         VMSTATE_UINT32(sbc, LSIState),
2072         VMSTATE_UINT32(csbc, LSIState),
2073         VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2074         VMSTATE_UINT8(sbr, LSIState),
2075
2076         VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2077         VMSTATE_END_OF_LIST()
2078     }
2079 };
2080
2081 static const struct SCSIBusInfo lsi_scsi_info = {
2082     .tcq = true,
2083     .max_target = LSI_MAX_DEVS,
2084     .max_lun = 0,  /* LUN support is buggy */
2085
2086     .transfer_data = lsi_transfer_data,
2087     .complete = lsi_command_complete,
2088     .cancel = lsi_request_cancelled
2089 };
2090
2091 static void lsi_scsi_realize(PCIDevice *dev, Error **errp)
2092 {
2093     LSIState *s = LSI53C895A(dev);
2094     DeviceState *d = DEVICE(dev);
2095     uint8_t *pci_conf;
2096
2097     pci_conf = dev->config;
2098
2099     /* PCI latency timer = 255 */
2100     pci_conf[PCI_LATENCY_TIMER] = 0xff;
2101     /* Interrupt pin A */
2102     pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2103
2104     memory_region_init_io(&s->mmio_io, OBJECT(s), &lsi_mmio_ops, s,
2105                           "lsi-mmio", 0x400);
2106     memory_region_init_io(&s->ram_io, OBJECT(s), &lsi_ram_ops, s,
2107                           "lsi-ram", 0x2000);
2108     memory_region_init_io(&s->io_io, OBJECT(s), &lsi_io_ops, s,
2109                           "lsi-io", 256);
2110
2111     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io_io);
2112     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio_io);
2113     pci_register_bar(dev, 2, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->ram_io);
2114     QTAILQ_INIT(&s->queue);
2115
2116     scsi_bus_new(&s->bus, sizeof(s->bus), d, &lsi_scsi_info, NULL);
2117     if (!d->hotplugged) {
2118         scsi_bus_legacy_handle_cmdline(&s->bus, errp);
2119     }
2120 }
2121
2122 static void lsi_class_init(ObjectClass *klass, void *data)
2123 {
2124     DeviceClass *dc = DEVICE_CLASS(klass);
2125     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2126
2127     k->realize = lsi_scsi_realize;
2128     k->vendor_id = PCI_VENDOR_ID_LSI_LOGIC;
2129     k->device_id = PCI_DEVICE_ID_LSI_53C895A;
2130     k->class_id = PCI_CLASS_STORAGE_SCSI;
2131     k->subsystem_id = 0x1000;
2132     dc->reset = lsi_scsi_reset;
2133     dc->vmsd = &vmstate_lsi_scsi;
2134     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2135 }
2136
2137 static const TypeInfo lsi_info = {
2138     .name          = TYPE_LSI53C895A,
2139     .parent        = TYPE_PCI_DEVICE,
2140     .instance_size = sizeof(LSIState),
2141     .class_init    = lsi_class_init,
2142 };
2143
2144 static void lsi53c810_class_init(ObjectClass *klass, void *data)
2145 {
2146     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2147
2148     k->device_id = PCI_DEVICE_ID_LSI_53C810;
2149 }
2150
2151 static TypeInfo lsi53c810_info = {
2152     .name          = TYPE_LSI53C810,
2153     .parent        = TYPE_LSI53C895A,
2154     .class_init    = lsi53c810_class_init,
2155 };
2156
2157 static void lsi53c895a_register_types(void)
2158 {
2159     type_register_static(&lsi_info);
2160     type_register_static(&lsi53c810_info);
2161 }
2162
2163 type_init(lsi53c895a_register_types)