Add qemu 2.4.0
[kvmfornfv.git] / qemu / hw / i386 / kvmvapic.c
1 /*
2  * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3  *
4  * Copyright (C) 2007-2008 Qumranet Technologies
5  * Copyright (C) 2012      Jan Kiszka, Siemens AG
6  *
7  * This work is licensed under the terms of the GNU GPL version 2, or
8  * (at your option) any later version. See the COPYING file in the
9  * top-level directory.
10  */
11 #include "sysemu/sysemu.h"
12 #include "sysemu/cpus.h"
13 #include "sysemu/kvm.h"
14 #include "hw/i386/apic_internal.h"
15 #include "hw/sysbus.h"
16
17 #define VAPIC_IO_PORT           0x7e
18
19 #define VAPIC_CPU_SHIFT         7
20
21 #define ROM_BLOCK_SIZE          512
22 #define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
23
24 typedef enum VAPICMode {
25     VAPIC_INACTIVE = 0,
26     VAPIC_ACTIVE   = 1,
27     VAPIC_STANDBY  = 2,
28 } VAPICMode;
29
30 typedef struct VAPICHandlers {
31     uint32_t set_tpr;
32     uint32_t set_tpr_eax;
33     uint32_t get_tpr[8];
34     uint32_t get_tpr_stack;
35 } QEMU_PACKED VAPICHandlers;
36
37 typedef struct GuestROMState {
38     char signature[8];
39     uint32_t vaddr;
40     uint32_t fixup_start;
41     uint32_t fixup_end;
42     uint32_t vapic_vaddr;
43     uint32_t vapic_size;
44     uint32_t vcpu_shift;
45     uint32_t real_tpr_addr;
46     VAPICHandlers up;
47     VAPICHandlers mp;
48 } QEMU_PACKED GuestROMState;
49
50 typedef struct VAPICROMState {
51     SysBusDevice busdev;
52     MemoryRegion io;
53     MemoryRegion rom;
54     uint32_t state;
55     uint32_t rom_state_paddr;
56     uint32_t rom_state_vaddr;
57     uint32_t vapic_paddr;
58     uint32_t real_tpr_addr;
59     GuestROMState rom_state;
60     size_t rom_size;
61     bool rom_mapped_writable;
62     VMChangeStateEntry *vmsentry;
63 } VAPICROMState;
64
65 #define TYPE_VAPIC "kvmvapic"
66 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
67
68 #define TPR_INSTR_ABS_MODRM             0x1
69 #define TPR_INSTR_MATCH_MODRM_REG       0x2
70
71 typedef struct TPRInstruction {
72     uint8_t opcode;
73     uint8_t modrm_reg;
74     unsigned int flags;
75     TPRAccess access;
76     size_t length;
77     off_t addr_offset;
78 } TPRInstruction;
79
80 /* must be sorted by length, shortest first */
81 static const TPRInstruction tpr_instr[] = {
82     { /* mov abs to eax */
83         .opcode = 0xa1,
84         .access = TPR_ACCESS_READ,
85         .length = 5,
86         .addr_offset = 1,
87     },
88     { /* mov eax to abs */
89         .opcode = 0xa3,
90         .access = TPR_ACCESS_WRITE,
91         .length = 5,
92         .addr_offset = 1,
93     },
94     { /* mov r32 to r/m32 */
95         .opcode = 0x89,
96         .flags = TPR_INSTR_ABS_MODRM,
97         .access = TPR_ACCESS_WRITE,
98         .length = 6,
99         .addr_offset = 2,
100     },
101     { /* mov r/m32 to r32 */
102         .opcode = 0x8b,
103         .flags = TPR_INSTR_ABS_MODRM,
104         .access = TPR_ACCESS_READ,
105         .length = 6,
106         .addr_offset = 2,
107     },
108     { /* push r/m32 */
109         .opcode = 0xff,
110         .modrm_reg = 6,
111         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
112         .access = TPR_ACCESS_READ,
113         .length = 6,
114         .addr_offset = 2,
115     },
116     { /* mov imm32, r/m32 (c7/0) */
117         .opcode = 0xc7,
118         .modrm_reg = 0,
119         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
120         .access = TPR_ACCESS_WRITE,
121         .length = 10,
122         .addr_offset = 2,
123     },
124 };
125
126 static void read_guest_rom_state(VAPICROMState *s)
127 {
128     cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
129                              sizeof(GuestROMState));
130 }
131
132 static void write_guest_rom_state(VAPICROMState *s)
133 {
134     cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
135                               sizeof(GuestROMState));
136 }
137
138 static void update_guest_rom_state(VAPICROMState *s)
139 {
140     read_guest_rom_state(s);
141
142     s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
143     s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
144
145     write_guest_rom_state(s);
146 }
147
148 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
149 {
150     CPUState *cs = CPU(x86_env_get_cpu(env));
151     hwaddr paddr;
152     target_ulong addr;
153
154     if (s->state == VAPIC_ACTIVE) {
155         return 0;
156     }
157     /*
158      * If there is no prior TPR access instruction we could analyze (which is
159      * the case after resume from hibernation), we need to scan the possible
160      * virtual address space for the APIC mapping.
161      */
162     for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
163         paddr = cpu_get_phys_page_debug(cs, addr);
164         if (paddr != APIC_DEFAULT_ADDRESS) {
165             continue;
166         }
167         s->real_tpr_addr = addr + 0x80;
168         update_guest_rom_state(s);
169         return 0;
170     }
171     return -1;
172 }
173
174 static uint8_t modrm_reg(uint8_t modrm)
175 {
176     return (modrm >> 3) & 7;
177 }
178
179 static bool is_abs_modrm(uint8_t modrm)
180 {
181     return (modrm & 0xc7) == 0x05;
182 }
183
184 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
185 {
186     return opcode[0] == instr->opcode &&
187         (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
188         (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
189          modrm_reg(opcode[1]) == instr->modrm_reg);
190 }
191
192 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
193                                     target_ulong *pip, TPRAccess access)
194 {
195     CPUState *cs = CPU(cpu);
196     const TPRInstruction *instr;
197     target_ulong ip = *pip;
198     uint8_t opcode[2];
199     uint32_t real_tpr_addr;
200     int i;
201
202     if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
203         (ip & 0xf0000000ULL) != 0xe0000000ULL) {
204         return -1;
205     }
206
207     /*
208      * Early Windows 2003 SMP initialization contains a
209      *
210      *   mov imm32, r/m32
211      *
212      * instruction that is patched by TPR optimization. The problem is that
213      * RSP, used by the patched instruction, is zero, so the guest gets a
214      * double fault and dies.
215      */
216     if (cpu->env.regs[R_ESP] == 0) {
217         return -1;
218     }
219
220     if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
221         /*
222          * KVM without kernel-based TPR access reporting will pass an IP that
223          * points after the accessing instruction. So we need to look backward
224          * to find the reason.
225          */
226         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
227             instr = &tpr_instr[i];
228             if (instr->access != access) {
229                 continue;
230             }
231             if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
232                                     sizeof(opcode), 0) < 0) {
233                 return -1;
234             }
235             if (opcode_matches(opcode, instr)) {
236                 ip -= instr->length;
237                 goto instruction_ok;
238             }
239         }
240         return -1;
241     } else {
242         if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
243             return -1;
244         }
245         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
246             instr = &tpr_instr[i];
247             if (opcode_matches(opcode, instr)) {
248                 goto instruction_ok;
249             }
250         }
251         return -1;
252     }
253
254 instruction_ok:
255     /*
256      * Grab the virtual TPR address from the instruction
257      * and update the cached values.
258      */
259     if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
260                             (void *)&real_tpr_addr,
261                             sizeof(real_tpr_addr), 0) < 0) {
262         return -1;
263     }
264     real_tpr_addr = le32_to_cpu(real_tpr_addr);
265     if ((real_tpr_addr & 0xfff) != 0x80) {
266         return -1;
267     }
268     s->real_tpr_addr = real_tpr_addr;
269     update_guest_rom_state(s);
270
271     *pip = ip;
272     return 0;
273 }
274
275 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
276 {
277     CPUState *cs = CPU(x86_env_get_cpu(env));
278     hwaddr paddr;
279     uint32_t rom_state_vaddr;
280     uint32_t pos, patch, offset;
281
282     /* nothing to do if already activated */
283     if (s->state == VAPIC_ACTIVE) {
284         return 0;
285     }
286
287     /* bail out if ROM init code was not executed (missing ROM?) */
288     if (s->state == VAPIC_INACTIVE) {
289         return -1;
290     }
291
292     /* find out virtual address of the ROM */
293     rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
294     paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
295     if (paddr == -1) {
296         return -1;
297     }
298     paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
299     if (paddr != s->rom_state_paddr) {
300         return -1;
301     }
302     read_guest_rom_state(s);
303     if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
304         return -1;
305     }
306     s->rom_state_vaddr = rom_state_vaddr;
307
308     /* fixup addresses in ROM if needed */
309     if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
310         return 0;
311     }
312     for (pos = le32_to_cpu(s->rom_state.fixup_start);
313          pos < le32_to_cpu(s->rom_state.fixup_end);
314          pos += 4) {
315         cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
316                                  &offset, sizeof(offset));
317         offset = le32_to_cpu(offset);
318         cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
319         patch = le32_to_cpu(patch);
320         patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
321         patch = cpu_to_le32(patch);
322         cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
323     }
324     read_guest_rom_state(s);
325     s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
326         le32_to_cpu(s->rom_state.vaddr);
327
328     return 0;
329 }
330
331 /*
332  * Tries to read the unique processor number from the Kernel Processor Control
333  * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
334  * cannot be accessed or is considered invalid. This also ensures that we are
335  * not patching the wrong guest.
336  */
337 static int get_kpcr_number(X86CPU *cpu)
338 {
339     CPUX86State *env = &cpu->env;
340     struct kpcr {
341         uint8_t  fill1[0x1c];
342         uint32_t self;
343         uint8_t  fill2[0x31];
344         uint8_t  number;
345     } QEMU_PACKED kpcr;
346
347     if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
348                             (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
349         kpcr.self != env->segs[R_FS].base) {
350         return -1;
351     }
352     return kpcr.number;
353 }
354
355 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
356 {
357     int cpu_number = get_kpcr_number(cpu);
358     hwaddr vapic_paddr;
359     static const uint8_t enabled = 1;
360
361     if (cpu_number < 0) {
362         return -1;
363     }
364     vapic_paddr = s->vapic_paddr +
365         (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
366     cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
367                               &enabled, sizeof(enabled));
368     apic_enable_vapic(cpu->apic_state, vapic_paddr);
369
370     s->state = VAPIC_ACTIVE;
371
372     return 0;
373 }
374
375 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
376 {
377     cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
378 }
379
380 static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
381                        uint32_t target)
382 {
383     uint32_t offset;
384
385     offset = cpu_to_le32(target - ip - 5);
386     patch_byte(cpu, ip, 0xe8); /* call near */
387     cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
388 }
389
390 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
391 {
392     CPUState *cs = CPU(cpu);
393     CPUX86State *env = &cpu->env;
394     VAPICHandlers *handlers;
395     uint8_t opcode[2];
396     uint32_t imm32;
397     target_ulong current_pc = 0;
398     target_ulong current_cs_base = 0;
399     int current_flags = 0;
400
401     if (smp_cpus == 1) {
402         handlers = &s->rom_state.up;
403     } else {
404         handlers = &s->rom_state.mp;
405     }
406
407     if (!kvm_enabled()) {
408         cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
409                              &current_flags);
410     }
411
412     pause_all_vcpus();
413
414     cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
415
416     switch (opcode[0]) {
417     case 0x89: /* mov r32 to r/m32 */
418         patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
419         patch_call(s, cpu, ip + 1, handlers->set_tpr);
420         break;
421     case 0x8b: /* mov r/m32 to r32 */
422         patch_byte(cpu, ip, 0x90);
423         patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
424         break;
425     case 0xa1: /* mov abs to eax */
426         patch_call(s, cpu, ip, handlers->get_tpr[0]);
427         break;
428     case 0xa3: /* mov eax to abs */
429         patch_call(s, cpu, ip, handlers->set_tpr_eax);
430         break;
431     case 0xc7: /* mov imm32, r/m32 (c7/0) */
432         patch_byte(cpu, ip, 0x68);  /* push imm32 */
433         cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
434         cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
435         patch_call(s, cpu, ip + 5, handlers->set_tpr);
436         break;
437     case 0xff: /* push r/m32 */
438         patch_byte(cpu, ip, 0x50); /* push eax */
439         patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
440         break;
441     default:
442         abort();
443     }
444
445     resume_all_vcpus();
446
447     if (!kvm_enabled()) {
448         cs->current_tb = NULL;
449         tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
450         cpu_resume_from_signal(cs, NULL);
451     }
452 }
453
454 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
455                              TPRAccess access)
456 {
457     VAPICROMState *s = VAPIC(dev);
458     X86CPU *cpu = X86_CPU(cs);
459     CPUX86State *env = &cpu->env;
460
461     cpu_synchronize_state(cs);
462
463     if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
464         if (s->state == VAPIC_ACTIVE) {
465             vapic_enable(s, cpu);
466         }
467         return;
468     }
469     if (update_rom_mapping(s, env, ip) < 0) {
470         return;
471     }
472     if (vapic_enable(s, cpu) < 0) {
473         return;
474     }
475     patch_instruction(s, cpu, ip);
476 }
477
478 typedef struct VAPICEnableTPRReporting {
479     DeviceState *apic;
480     bool enable;
481 } VAPICEnableTPRReporting;
482
483 static void vapic_do_enable_tpr_reporting(void *data)
484 {
485     VAPICEnableTPRReporting *info = data;
486
487     apic_enable_tpr_access_reporting(info->apic, info->enable);
488 }
489
490 static void vapic_enable_tpr_reporting(bool enable)
491 {
492     VAPICEnableTPRReporting info = {
493         .enable = enable,
494     };
495     CPUState *cs;
496     X86CPU *cpu;
497
498     CPU_FOREACH(cs) {
499         cpu = X86_CPU(cs);
500         info.apic = cpu->apic_state;
501         run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
502     }
503 }
504
505 static void vapic_reset(DeviceState *dev)
506 {
507     VAPICROMState *s = VAPIC(dev);
508
509     s->state = VAPIC_INACTIVE;
510     s->rom_state_paddr = 0;
511     vapic_enable_tpr_reporting(false);
512 }
513
514 /*
515  * Set the IRQ polling hypercalls to the supported variant:
516  *  - vmcall if using KVM in-kernel irqchip
517  *  - 32-bit VAPIC port write otherwise
518  */
519 static int patch_hypercalls(VAPICROMState *s)
520 {
521     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
522     static const uint8_t vmcall_pattern[] = { /* vmcall */
523         0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
524     };
525     static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
526         0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
527     };
528     uint8_t alternates[2];
529     const uint8_t *pattern;
530     const uint8_t *patch;
531     int patches = 0;
532     off_t pos;
533     uint8_t *rom;
534
535     rom = g_malloc(s->rom_size);
536     cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
537
538     for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
539         if (kvm_irqchip_in_kernel()) {
540             pattern = outl_pattern;
541             alternates[0] = outl_pattern[7];
542             alternates[1] = outl_pattern[7];
543             patch = &vmcall_pattern[5];
544         } else {
545             pattern = vmcall_pattern;
546             alternates[0] = vmcall_pattern[7];
547             alternates[1] = 0xd9; /* AMD's VMMCALL */
548             patch = &outl_pattern[5];
549         }
550         if (memcmp(rom + pos, pattern, 7) == 0 &&
551             (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
552             cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
553             /*
554              * Don't flush the tb here. Under ordinary conditions, the patched
555              * calls are miles away from the current IP. Under malicious
556              * conditions, the guest could trick us to crash.
557              */
558         }
559     }
560
561     g_free(rom);
562
563     if (patches != 0 && patches != 2) {
564         return -1;
565     }
566
567     return 0;
568 }
569
570 /*
571  * For TCG mode or the time KVM honors read-only memory regions, we need to
572  * enable write access to the option ROM so that variables can be updated by
573  * the guest.
574  */
575 static int vapic_map_rom_writable(VAPICROMState *s)
576 {
577     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
578     MemoryRegionSection section;
579     MemoryRegion *as;
580     size_t rom_size;
581     uint8_t *ram;
582
583     as = sysbus_address_space(&s->busdev);
584
585     if (s->rom_mapped_writable) {
586         memory_region_del_subregion(as, &s->rom);
587         object_unparent(OBJECT(&s->rom));
588     }
589
590     /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
591     section = memory_region_find(as, 0, 1);
592
593     /* read ROM size from RAM region */
594     if (rom_paddr + 2 >= memory_region_size(section.mr)) {
595         return -1;
596     }
597     ram = memory_region_get_ram_ptr(section.mr);
598     rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
599     if (rom_size == 0) {
600         return -1;
601     }
602     s->rom_size = rom_size;
603
604     /* We need to round to avoid creating subpages
605      * from which we cannot run code. */
606     rom_size += rom_paddr & ~TARGET_PAGE_MASK;
607     rom_paddr &= TARGET_PAGE_MASK;
608     rom_size = TARGET_PAGE_ALIGN(rom_size);
609
610     memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
611                              rom_paddr, rom_size);
612     memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
613     s->rom_mapped_writable = true;
614     memory_region_unref(section.mr);
615
616     return 0;
617 }
618
619 static int vapic_prepare(VAPICROMState *s)
620 {
621     if (vapic_map_rom_writable(s) < 0) {
622         return -1;
623     }
624
625     if (patch_hypercalls(s) < 0) {
626         return -1;
627     }
628
629     vapic_enable_tpr_reporting(true);
630
631     return 0;
632 }
633
634 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
635                         unsigned int size)
636 {
637     CPUState *cs = current_cpu;
638     X86CPU *cpu = X86_CPU(cs);
639     CPUX86State *env = &cpu->env;
640     hwaddr rom_paddr;
641     VAPICROMState *s = opaque;
642
643     cpu_synchronize_state(cs);
644
645     /*
646      * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
647      *  o 16-bit write access:
648      *    Reports the option ROM initialization to the hypervisor. Written
649      *    value is the offset of the state structure in the ROM.
650      *  o 8-bit write access:
651      *    Reactivates the VAPIC after a guest hibernation, i.e. after the
652      *    option ROM content has been re-initialized by a guest power cycle.
653      *  o 32-bit write access:
654      *    Poll for pending IRQs, considering the current VAPIC state.
655      */
656     switch (size) {
657     case 2:
658         if (s->state == VAPIC_INACTIVE) {
659             rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
660             s->rom_state_paddr = rom_paddr + data;
661
662             s->state = VAPIC_STANDBY;
663         }
664         if (vapic_prepare(s) < 0) {
665             s->state = VAPIC_INACTIVE;
666             s->rom_state_paddr = 0;
667             break;
668         }
669         break;
670     case 1:
671         if (kvm_enabled()) {
672             /*
673              * Disable triggering instruction in ROM by writing a NOP.
674              *
675              * We cannot do this in TCG mode as the reported IP is not
676              * accurate.
677              */
678             pause_all_vcpus();
679             patch_byte(cpu, env->eip - 2, 0x66);
680             patch_byte(cpu, env->eip - 1, 0x90);
681             resume_all_vcpus();
682         }
683
684         if (s->state == VAPIC_ACTIVE) {
685             break;
686         }
687         if (update_rom_mapping(s, env, env->eip) < 0) {
688             break;
689         }
690         if (find_real_tpr_addr(s, env) < 0) {
691             break;
692         }
693         vapic_enable(s, cpu);
694         break;
695     default:
696     case 4:
697         if (!kvm_irqchip_in_kernel()) {
698             apic_poll_irq(cpu->apic_state);
699         }
700         break;
701     }
702 }
703
704 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
705 {
706     return 0xffffffff;
707 }
708
709 static const MemoryRegionOps vapic_ops = {
710     .write = vapic_write,
711     .read = vapic_read,
712     .endianness = DEVICE_NATIVE_ENDIAN,
713 };
714
715 static void vapic_realize(DeviceState *dev, Error **errp)
716 {
717     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
718     VAPICROMState *s = VAPIC(dev);
719
720     memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
721     sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
722     sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
723
724     option_rom[nb_option_roms].name = "kvmvapic.bin";
725     option_rom[nb_option_roms].bootindex = -1;
726     nb_option_roms++;
727 }
728
729 static void do_vapic_enable(void *data)
730 {
731     VAPICROMState *s = data;
732     X86CPU *cpu = X86_CPU(first_cpu);
733
734     static const uint8_t enabled = 1;
735     cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
736                               &enabled, sizeof(enabled));
737     apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
738     s->state = VAPIC_ACTIVE;
739 }
740
741 static void kvmvapic_vm_state_change(void *opaque, int running,
742                                      RunState state)
743 {
744     VAPICROMState *s = opaque;
745     uint8_t *zero;
746
747     if (!running) {
748         return;
749     }
750
751     if (s->state == VAPIC_ACTIVE) {
752         if (smp_cpus == 1) {
753             run_on_cpu(first_cpu, do_vapic_enable, s);
754         } else {
755             zero = g_malloc0(s->rom_state.vapic_size);
756             cpu_physical_memory_write(s->vapic_paddr, zero,
757                                       s->rom_state.vapic_size);
758             g_free(zero);
759         }
760     }
761
762     qemu_del_vm_change_state_handler(s->vmsentry);
763 }
764
765 static int vapic_post_load(void *opaque, int version_id)
766 {
767     VAPICROMState *s = opaque;
768
769     /*
770      * The old implementation of qemu-kvm did not provide the state
771      * VAPIC_STANDBY. Reconstruct it.
772      */
773     if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
774         s->state = VAPIC_STANDBY;
775     }
776
777     if (s->state != VAPIC_INACTIVE) {
778         if (vapic_prepare(s) < 0) {
779             return -1;
780         }
781     }
782
783     if (!s->vmsentry) {
784         s->vmsentry =
785             qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
786     }
787     return 0;
788 }
789
790 static const VMStateDescription vmstate_handlers = {
791     .name = "kvmvapic-handlers",
792     .version_id = 1,
793     .minimum_version_id = 1,
794     .fields = (VMStateField[]) {
795         VMSTATE_UINT32(set_tpr, VAPICHandlers),
796         VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
797         VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
798         VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
799         VMSTATE_END_OF_LIST()
800     }
801 };
802
803 static const VMStateDescription vmstate_guest_rom = {
804     .name = "kvmvapic-guest-rom",
805     .version_id = 1,
806     .minimum_version_id = 1,
807     .fields = (VMStateField[]) {
808         VMSTATE_UNUSED(8),     /* signature */
809         VMSTATE_UINT32(vaddr, GuestROMState),
810         VMSTATE_UINT32(fixup_start, GuestROMState),
811         VMSTATE_UINT32(fixup_end, GuestROMState),
812         VMSTATE_UINT32(vapic_vaddr, GuestROMState),
813         VMSTATE_UINT32(vapic_size, GuestROMState),
814         VMSTATE_UINT32(vcpu_shift, GuestROMState),
815         VMSTATE_UINT32(real_tpr_addr, GuestROMState),
816         VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
817         VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
818         VMSTATE_END_OF_LIST()
819     }
820 };
821
822 static const VMStateDescription vmstate_vapic = {
823     .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
824     .version_id = 1,
825     .minimum_version_id = 1,
826     .post_load = vapic_post_load,
827     .fields = (VMStateField[]) {
828         VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
829                        GuestROMState),
830         VMSTATE_UINT32(state, VAPICROMState),
831         VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
832         VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
833         VMSTATE_UINT32(vapic_paddr, VAPICROMState),
834         VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
835         VMSTATE_END_OF_LIST()
836     }
837 };
838
839 static void vapic_class_init(ObjectClass *klass, void *data)
840 {
841     DeviceClass *dc = DEVICE_CLASS(klass);
842
843     dc->reset   = vapic_reset;
844     dc->vmsd    = &vmstate_vapic;
845     dc->realize = vapic_realize;
846 }
847
848 static const TypeInfo vapic_type = {
849     .name          = TYPE_VAPIC,
850     .parent        = TYPE_SYS_BUS_DEVICE,
851     .instance_size = sizeof(VAPICROMState),
852     .class_init    = vapic_class_init,
853 };
854
855 static void vapic_register(void)
856 {
857     type_register_static(&vapic_type);
858 }
859
860 type_init(vapic_register);