These changes are the raw update to qemu-2.6.
[kvmfornfv.git] / qemu / hw / i386 / kvmvapic.c
1 /*
2  * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3  *
4  * Copyright (C) 2007-2008 Qumranet Technologies
5  * Copyright (C) 2012      Jan Kiszka, Siemens AG
6  *
7  * This work is licensed under the terms of the GNU GPL version 2, or
8  * (at your option) any later version. See the COPYING file in the
9  * top-level directory.
10  */
11 #include "qemu/osdep.h"
12 #include "sysemu/sysemu.h"
13 #include "sysemu/cpus.h"
14 #include "sysemu/kvm.h"
15 #include "hw/i386/apic_internal.h"
16 #include "hw/sysbus.h"
17
18 #define VAPIC_IO_PORT           0x7e
19
20 #define VAPIC_CPU_SHIFT         7
21
22 #define ROM_BLOCK_SIZE          512
23 #define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
24
25 typedef enum VAPICMode {
26     VAPIC_INACTIVE = 0,
27     VAPIC_ACTIVE   = 1,
28     VAPIC_STANDBY  = 2,
29 } VAPICMode;
30
31 typedef struct VAPICHandlers {
32     uint32_t set_tpr;
33     uint32_t set_tpr_eax;
34     uint32_t get_tpr[8];
35     uint32_t get_tpr_stack;
36 } QEMU_PACKED VAPICHandlers;
37
38 typedef struct GuestROMState {
39     char signature[8];
40     uint32_t vaddr;
41     uint32_t fixup_start;
42     uint32_t fixup_end;
43     uint32_t vapic_vaddr;
44     uint32_t vapic_size;
45     uint32_t vcpu_shift;
46     uint32_t real_tpr_addr;
47     VAPICHandlers up;
48     VAPICHandlers mp;
49 } QEMU_PACKED GuestROMState;
50
51 typedef struct VAPICROMState {
52     SysBusDevice busdev;
53     MemoryRegion io;
54     MemoryRegion rom;
55     uint32_t state;
56     uint32_t rom_state_paddr;
57     uint32_t rom_state_vaddr;
58     uint32_t vapic_paddr;
59     uint32_t real_tpr_addr;
60     GuestROMState rom_state;
61     size_t rom_size;
62     bool rom_mapped_writable;
63     VMChangeStateEntry *vmsentry;
64 } VAPICROMState;
65
66 #define TYPE_VAPIC "kvmvapic"
67 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
68
69 #define TPR_INSTR_ABS_MODRM             0x1
70 #define TPR_INSTR_MATCH_MODRM_REG       0x2
71
72 typedef struct TPRInstruction {
73     uint8_t opcode;
74     uint8_t modrm_reg;
75     unsigned int flags;
76     TPRAccess access;
77     size_t length;
78     off_t addr_offset;
79 } TPRInstruction;
80
81 /* must be sorted by length, shortest first */
82 static const TPRInstruction tpr_instr[] = {
83     { /* mov abs to eax */
84         .opcode = 0xa1,
85         .access = TPR_ACCESS_READ,
86         .length = 5,
87         .addr_offset = 1,
88     },
89     { /* mov eax to abs */
90         .opcode = 0xa3,
91         .access = TPR_ACCESS_WRITE,
92         .length = 5,
93         .addr_offset = 1,
94     },
95     { /* mov r32 to r/m32 */
96         .opcode = 0x89,
97         .flags = TPR_INSTR_ABS_MODRM,
98         .access = TPR_ACCESS_WRITE,
99         .length = 6,
100         .addr_offset = 2,
101     },
102     { /* mov r/m32 to r32 */
103         .opcode = 0x8b,
104         .flags = TPR_INSTR_ABS_MODRM,
105         .access = TPR_ACCESS_READ,
106         .length = 6,
107         .addr_offset = 2,
108     },
109     { /* push r/m32 */
110         .opcode = 0xff,
111         .modrm_reg = 6,
112         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
113         .access = TPR_ACCESS_READ,
114         .length = 6,
115         .addr_offset = 2,
116     },
117     { /* mov imm32, r/m32 (c7/0) */
118         .opcode = 0xc7,
119         .modrm_reg = 0,
120         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
121         .access = TPR_ACCESS_WRITE,
122         .length = 10,
123         .addr_offset = 2,
124     },
125 };
126
127 static void read_guest_rom_state(VAPICROMState *s)
128 {
129     cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
130                              sizeof(GuestROMState));
131 }
132
133 static void write_guest_rom_state(VAPICROMState *s)
134 {
135     cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
136                               sizeof(GuestROMState));
137 }
138
139 static void update_guest_rom_state(VAPICROMState *s)
140 {
141     read_guest_rom_state(s);
142
143     s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
144     s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
145
146     write_guest_rom_state(s);
147 }
148
149 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
150 {
151     CPUState *cs = CPU(x86_env_get_cpu(env));
152     hwaddr paddr;
153     target_ulong addr;
154
155     if (s->state == VAPIC_ACTIVE) {
156         return 0;
157     }
158     /*
159      * If there is no prior TPR access instruction we could analyze (which is
160      * the case after resume from hibernation), we need to scan the possible
161      * virtual address space for the APIC mapping.
162      */
163     for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
164         paddr = cpu_get_phys_page_debug(cs, addr);
165         if (paddr != APIC_DEFAULT_ADDRESS) {
166             continue;
167         }
168         s->real_tpr_addr = addr + 0x80;
169         update_guest_rom_state(s);
170         return 0;
171     }
172     return -1;
173 }
174
175 static uint8_t modrm_reg(uint8_t modrm)
176 {
177     return (modrm >> 3) & 7;
178 }
179
180 static bool is_abs_modrm(uint8_t modrm)
181 {
182     return (modrm & 0xc7) == 0x05;
183 }
184
185 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
186 {
187     return opcode[0] == instr->opcode &&
188         (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
189         (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
190          modrm_reg(opcode[1]) == instr->modrm_reg);
191 }
192
193 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
194                                     target_ulong *pip, TPRAccess access)
195 {
196     CPUState *cs = CPU(cpu);
197     const TPRInstruction *instr;
198     target_ulong ip = *pip;
199     uint8_t opcode[2];
200     uint32_t real_tpr_addr;
201     int i;
202
203     if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
204         (ip & 0xf0000000ULL) != 0xe0000000ULL) {
205         return -1;
206     }
207
208     /*
209      * Early Windows 2003 SMP initialization contains a
210      *
211      *   mov imm32, r/m32
212      *
213      * instruction that is patched by TPR optimization. The problem is that
214      * RSP, used by the patched instruction, is zero, so the guest gets a
215      * double fault and dies.
216      */
217     if (cpu->env.regs[R_ESP] == 0) {
218         return -1;
219     }
220
221     if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
222         /*
223          * KVM without kernel-based TPR access reporting will pass an IP that
224          * points after the accessing instruction. So we need to look backward
225          * to find the reason.
226          */
227         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
228             instr = &tpr_instr[i];
229             if (instr->access != access) {
230                 continue;
231             }
232             if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
233                                     sizeof(opcode), 0) < 0) {
234                 return -1;
235             }
236             if (opcode_matches(opcode, instr)) {
237                 ip -= instr->length;
238                 goto instruction_ok;
239             }
240         }
241         return -1;
242     } else {
243         if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
244             return -1;
245         }
246         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
247             instr = &tpr_instr[i];
248             if (opcode_matches(opcode, instr)) {
249                 goto instruction_ok;
250             }
251         }
252         return -1;
253     }
254
255 instruction_ok:
256     /*
257      * Grab the virtual TPR address from the instruction
258      * and update the cached values.
259      */
260     if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
261                             (void *)&real_tpr_addr,
262                             sizeof(real_tpr_addr), 0) < 0) {
263         return -1;
264     }
265     real_tpr_addr = le32_to_cpu(real_tpr_addr);
266     if ((real_tpr_addr & 0xfff) != 0x80) {
267         return -1;
268     }
269     s->real_tpr_addr = real_tpr_addr;
270     update_guest_rom_state(s);
271
272     *pip = ip;
273     return 0;
274 }
275
276 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
277 {
278     CPUState *cs = CPU(x86_env_get_cpu(env));
279     hwaddr paddr;
280     uint32_t rom_state_vaddr;
281     uint32_t pos, patch, offset;
282
283     /* nothing to do if already activated */
284     if (s->state == VAPIC_ACTIVE) {
285         return 0;
286     }
287
288     /* bail out if ROM init code was not executed (missing ROM?) */
289     if (s->state == VAPIC_INACTIVE) {
290         return -1;
291     }
292
293     /* find out virtual address of the ROM */
294     rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
295     paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
296     if (paddr == -1) {
297         return -1;
298     }
299     paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
300     if (paddr != s->rom_state_paddr) {
301         return -1;
302     }
303     read_guest_rom_state(s);
304     if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
305         return -1;
306     }
307     s->rom_state_vaddr = rom_state_vaddr;
308
309     /* fixup addresses in ROM if needed */
310     if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
311         return 0;
312     }
313     for (pos = le32_to_cpu(s->rom_state.fixup_start);
314          pos < le32_to_cpu(s->rom_state.fixup_end);
315          pos += 4) {
316         cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
317                                  &offset, sizeof(offset));
318         offset = le32_to_cpu(offset);
319         cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
320         patch = le32_to_cpu(patch);
321         patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
322         patch = cpu_to_le32(patch);
323         cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
324     }
325     read_guest_rom_state(s);
326     s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
327         le32_to_cpu(s->rom_state.vaddr);
328
329     return 0;
330 }
331
332 /*
333  * Tries to read the unique processor number from the Kernel Processor Control
334  * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
335  * cannot be accessed or is considered invalid. This also ensures that we are
336  * not patching the wrong guest.
337  */
338 static int get_kpcr_number(X86CPU *cpu)
339 {
340     CPUX86State *env = &cpu->env;
341     struct kpcr {
342         uint8_t  fill1[0x1c];
343         uint32_t self;
344         uint8_t  fill2[0x31];
345         uint8_t  number;
346     } QEMU_PACKED kpcr;
347
348     if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
349                             (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
350         kpcr.self != env->segs[R_FS].base) {
351         return -1;
352     }
353     return kpcr.number;
354 }
355
356 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
357 {
358     int cpu_number = get_kpcr_number(cpu);
359     hwaddr vapic_paddr;
360     static const uint8_t enabled = 1;
361
362     if (cpu_number < 0) {
363         return -1;
364     }
365     vapic_paddr = s->vapic_paddr +
366         (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
367     cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
368                               &enabled, sizeof(enabled));
369     apic_enable_vapic(cpu->apic_state, vapic_paddr);
370
371     s->state = VAPIC_ACTIVE;
372
373     return 0;
374 }
375
376 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
377 {
378     cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
379 }
380
381 static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
382                        uint32_t target)
383 {
384     uint32_t offset;
385
386     offset = cpu_to_le32(target - ip - 5);
387     patch_byte(cpu, ip, 0xe8); /* call near */
388     cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
389 }
390
391 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
392 {
393     CPUState *cs = CPU(cpu);
394     CPUX86State *env = &cpu->env;
395     VAPICHandlers *handlers;
396     uint8_t opcode[2];
397     uint32_t imm32;
398     target_ulong current_pc = 0;
399     target_ulong current_cs_base = 0;
400     int current_flags = 0;
401
402     if (smp_cpus == 1) {
403         handlers = &s->rom_state.up;
404     } else {
405         handlers = &s->rom_state.mp;
406     }
407
408     if (!kvm_enabled()) {
409         cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
410                              &current_flags);
411     }
412
413     pause_all_vcpus();
414
415     cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
416
417     switch (opcode[0]) {
418     case 0x89: /* mov r32 to r/m32 */
419         patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
420         patch_call(s, cpu, ip + 1, handlers->set_tpr);
421         break;
422     case 0x8b: /* mov r/m32 to r32 */
423         patch_byte(cpu, ip, 0x90);
424         patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
425         break;
426     case 0xa1: /* mov abs to eax */
427         patch_call(s, cpu, ip, handlers->get_tpr[0]);
428         break;
429     case 0xa3: /* mov eax to abs */
430         patch_call(s, cpu, ip, handlers->set_tpr_eax);
431         break;
432     case 0xc7: /* mov imm32, r/m32 (c7/0) */
433         patch_byte(cpu, ip, 0x68);  /* push imm32 */
434         cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
435         cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
436         patch_call(s, cpu, ip + 5, handlers->set_tpr);
437         break;
438     case 0xff: /* push r/m32 */
439         patch_byte(cpu, ip, 0x50); /* push eax */
440         patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
441         break;
442     default:
443         abort();
444     }
445
446     resume_all_vcpus();
447
448     if (!kvm_enabled()) {
449         cs->current_tb = NULL;
450         tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
451         cpu_resume_from_signal(cs, NULL);
452     }
453 }
454
455 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
456                              TPRAccess access)
457 {
458     VAPICROMState *s = VAPIC(dev);
459     X86CPU *cpu = X86_CPU(cs);
460     CPUX86State *env = &cpu->env;
461
462     cpu_synchronize_state(cs);
463
464     if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
465         if (s->state == VAPIC_ACTIVE) {
466             vapic_enable(s, cpu);
467         }
468         return;
469     }
470     if (update_rom_mapping(s, env, ip) < 0) {
471         return;
472     }
473     if (vapic_enable(s, cpu) < 0) {
474         return;
475     }
476     patch_instruction(s, cpu, ip);
477 }
478
479 typedef struct VAPICEnableTPRReporting {
480     DeviceState *apic;
481     bool enable;
482 } VAPICEnableTPRReporting;
483
484 static void vapic_do_enable_tpr_reporting(void *data)
485 {
486     VAPICEnableTPRReporting *info = data;
487
488     apic_enable_tpr_access_reporting(info->apic, info->enable);
489 }
490
491 static void vapic_enable_tpr_reporting(bool enable)
492 {
493     VAPICEnableTPRReporting info = {
494         .enable = enable,
495     };
496     CPUState *cs;
497     X86CPU *cpu;
498
499     CPU_FOREACH(cs) {
500         cpu = X86_CPU(cs);
501         info.apic = cpu->apic_state;
502         run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
503     }
504 }
505
506 static void vapic_reset(DeviceState *dev)
507 {
508     VAPICROMState *s = VAPIC(dev);
509
510     s->state = VAPIC_INACTIVE;
511     s->rom_state_paddr = 0;
512     vapic_enable_tpr_reporting(false);
513 }
514
515 /*
516  * Set the IRQ polling hypercalls to the supported variant:
517  *  - vmcall if using KVM in-kernel irqchip
518  *  - 32-bit VAPIC port write otherwise
519  */
520 static int patch_hypercalls(VAPICROMState *s)
521 {
522     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
523     static const uint8_t vmcall_pattern[] = { /* vmcall */
524         0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
525     };
526     static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
527         0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
528     };
529     uint8_t alternates[2];
530     const uint8_t *pattern;
531     const uint8_t *patch;
532     int patches = 0;
533     off_t pos;
534     uint8_t *rom;
535
536     rom = g_malloc(s->rom_size);
537     cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
538
539     for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
540         if (kvm_irqchip_in_kernel()) {
541             pattern = outl_pattern;
542             alternates[0] = outl_pattern[7];
543             alternates[1] = outl_pattern[7];
544             patch = &vmcall_pattern[5];
545         } else {
546             pattern = vmcall_pattern;
547             alternates[0] = vmcall_pattern[7];
548             alternates[1] = 0xd9; /* AMD's VMMCALL */
549             patch = &outl_pattern[5];
550         }
551         if (memcmp(rom + pos, pattern, 7) == 0 &&
552             (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
553             cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
554             /*
555              * Don't flush the tb here. Under ordinary conditions, the patched
556              * calls are miles away from the current IP. Under malicious
557              * conditions, the guest could trick us to crash.
558              */
559         }
560     }
561
562     g_free(rom);
563
564     if (patches != 0 && patches != 2) {
565         return -1;
566     }
567
568     return 0;
569 }
570
571 /*
572  * For TCG mode or the time KVM honors read-only memory regions, we need to
573  * enable write access to the option ROM so that variables can be updated by
574  * the guest.
575  */
576 static int vapic_map_rom_writable(VAPICROMState *s)
577 {
578     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
579     MemoryRegionSection section;
580     MemoryRegion *as;
581     size_t rom_size;
582     uint8_t *ram;
583
584     as = sysbus_address_space(&s->busdev);
585
586     if (s->rom_mapped_writable) {
587         memory_region_del_subregion(as, &s->rom);
588         object_unparent(OBJECT(&s->rom));
589     }
590
591     /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
592     section = memory_region_find(as, 0, 1);
593
594     /* read ROM size from RAM region */
595     if (rom_paddr + 2 >= memory_region_size(section.mr)) {
596         return -1;
597     }
598     ram = memory_region_get_ram_ptr(section.mr);
599     rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
600     if (rom_size == 0) {
601         return -1;
602     }
603     s->rom_size = rom_size;
604
605     /* We need to round to avoid creating subpages
606      * from which we cannot run code. */
607     rom_size += rom_paddr & ~TARGET_PAGE_MASK;
608     rom_paddr &= TARGET_PAGE_MASK;
609     rom_size = TARGET_PAGE_ALIGN(rom_size);
610
611     memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
612                              rom_paddr, rom_size);
613     memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
614     s->rom_mapped_writable = true;
615     memory_region_unref(section.mr);
616
617     return 0;
618 }
619
620 static int vapic_prepare(VAPICROMState *s)
621 {
622     if (vapic_map_rom_writable(s) < 0) {
623         return -1;
624     }
625
626     if (patch_hypercalls(s) < 0) {
627         return -1;
628     }
629
630     vapic_enable_tpr_reporting(true);
631
632     return 0;
633 }
634
635 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
636                         unsigned int size)
637 {
638     VAPICROMState *s = opaque;
639     X86CPU *cpu;
640     CPUX86State *env;
641     hwaddr rom_paddr;
642
643     if (!current_cpu) {
644         return;
645     }
646
647     cpu_synchronize_state(current_cpu);
648     cpu = X86_CPU(current_cpu);
649     env = &cpu->env;
650
651     /*
652      * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
653      *  o 16-bit write access:
654      *    Reports the option ROM initialization to the hypervisor. Written
655      *    value is the offset of the state structure in the ROM.
656      *  o 8-bit write access:
657      *    Reactivates the VAPIC after a guest hibernation, i.e. after the
658      *    option ROM content has been re-initialized by a guest power cycle.
659      *  o 32-bit write access:
660      *    Poll for pending IRQs, considering the current VAPIC state.
661      */
662     switch (size) {
663     case 2:
664         if (s->state == VAPIC_INACTIVE) {
665             rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
666             s->rom_state_paddr = rom_paddr + data;
667
668             s->state = VAPIC_STANDBY;
669         }
670         if (vapic_prepare(s) < 0) {
671             s->state = VAPIC_INACTIVE;
672             s->rom_state_paddr = 0;
673             break;
674         }
675         break;
676     case 1:
677         if (kvm_enabled()) {
678             /*
679              * Disable triggering instruction in ROM by writing a NOP.
680              *
681              * We cannot do this in TCG mode as the reported IP is not
682              * accurate.
683              */
684             pause_all_vcpus();
685             patch_byte(cpu, env->eip - 2, 0x66);
686             patch_byte(cpu, env->eip - 1, 0x90);
687             resume_all_vcpus();
688         }
689
690         if (s->state == VAPIC_ACTIVE) {
691             break;
692         }
693         if (update_rom_mapping(s, env, env->eip) < 0) {
694             break;
695         }
696         if (find_real_tpr_addr(s, env) < 0) {
697             break;
698         }
699         vapic_enable(s, cpu);
700         break;
701     default:
702     case 4:
703         if (!kvm_irqchip_in_kernel()) {
704             apic_poll_irq(cpu->apic_state);
705         }
706         break;
707     }
708 }
709
710 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
711 {
712     return 0xffffffff;
713 }
714
715 static const MemoryRegionOps vapic_ops = {
716     .write = vapic_write,
717     .read = vapic_read,
718     .endianness = DEVICE_NATIVE_ENDIAN,
719 };
720
721 static void vapic_realize(DeviceState *dev, Error **errp)
722 {
723     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
724     VAPICROMState *s = VAPIC(dev);
725
726     memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
727     sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
728     sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
729
730     option_rom[nb_option_roms].name = "kvmvapic.bin";
731     option_rom[nb_option_roms].bootindex = -1;
732     nb_option_roms++;
733 }
734
735 static void do_vapic_enable(void *data)
736 {
737     VAPICROMState *s = data;
738     X86CPU *cpu = X86_CPU(first_cpu);
739
740     static const uint8_t enabled = 1;
741     cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
742                               &enabled, sizeof(enabled));
743     apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
744     s->state = VAPIC_ACTIVE;
745 }
746
747 static void kvmvapic_vm_state_change(void *opaque, int running,
748                                      RunState state)
749 {
750     VAPICROMState *s = opaque;
751     uint8_t *zero;
752
753     if (!running) {
754         return;
755     }
756
757     if (s->state == VAPIC_ACTIVE) {
758         if (smp_cpus == 1) {
759             run_on_cpu(first_cpu, do_vapic_enable, s);
760         } else {
761             zero = g_malloc0(s->rom_state.vapic_size);
762             cpu_physical_memory_write(s->vapic_paddr, zero,
763                                       s->rom_state.vapic_size);
764             g_free(zero);
765         }
766     }
767
768     qemu_del_vm_change_state_handler(s->vmsentry);
769 }
770
771 static int vapic_post_load(void *opaque, int version_id)
772 {
773     VAPICROMState *s = opaque;
774
775     /*
776      * The old implementation of qemu-kvm did not provide the state
777      * VAPIC_STANDBY. Reconstruct it.
778      */
779     if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
780         s->state = VAPIC_STANDBY;
781     }
782
783     if (s->state != VAPIC_INACTIVE) {
784         if (vapic_prepare(s) < 0) {
785             return -1;
786         }
787     }
788
789     if (!s->vmsentry) {
790         s->vmsentry =
791             qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
792     }
793     return 0;
794 }
795
796 static const VMStateDescription vmstate_handlers = {
797     .name = "kvmvapic-handlers",
798     .version_id = 1,
799     .minimum_version_id = 1,
800     .fields = (VMStateField[]) {
801         VMSTATE_UINT32(set_tpr, VAPICHandlers),
802         VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
803         VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
804         VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
805         VMSTATE_END_OF_LIST()
806     }
807 };
808
809 static const VMStateDescription vmstate_guest_rom = {
810     .name = "kvmvapic-guest-rom",
811     .version_id = 1,
812     .minimum_version_id = 1,
813     .fields = (VMStateField[]) {
814         VMSTATE_UNUSED(8),     /* signature */
815         VMSTATE_UINT32(vaddr, GuestROMState),
816         VMSTATE_UINT32(fixup_start, GuestROMState),
817         VMSTATE_UINT32(fixup_end, GuestROMState),
818         VMSTATE_UINT32(vapic_vaddr, GuestROMState),
819         VMSTATE_UINT32(vapic_size, GuestROMState),
820         VMSTATE_UINT32(vcpu_shift, GuestROMState),
821         VMSTATE_UINT32(real_tpr_addr, GuestROMState),
822         VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
823         VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
824         VMSTATE_END_OF_LIST()
825     }
826 };
827
828 static const VMStateDescription vmstate_vapic = {
829     .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
830     .version_id = 1,
831     .minimum_version_id = 1,
832     .post_load = vapic_post_load,
833     .fields = (VMStateField[]) {
834         VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
835                        GuestROMState),
836         VMSTATE_UINT32(state, VAPICROMState),
837         VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
838         VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
839         VMSTATE_UINT32(vapic_paddr, VAPICROMState),
840         VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
841         VMSTATE_END_OF_LIST()
842     }
843 };
844
845 static void vapic_class_init(ObjectClass *klass, void *data)
846 {
847     DeviceClass *dc = DEVICE_CLASS(klass);
848
849     dc->reset   = vapic_reset;
850     dc->vmsd    = &vmstate_vapic;
851     dc->realize = vapic_realize;
852 }
853
854 static const TypeInfo vapic_type = {
855     .name          = TYPE_VAPIC,
856     .parent        = TYPE_SYS_BUS_DEVICE,
857     .instance_size = sizeof(VAPICROMState),
858     .class_init    = vapic_class_init,
859 };
860
861 static void vapic_register(void)
862 {
863     type_register_static(&vapic_type);
864 }
865
866 type_init(vapic_register);