Add qemu 2.4.0
[kvmfornfv.git] / qemu / hw / dma / i8257.c
1 /*
2  * QEMU DMA emulation
3  *
4  * Copyright (c) 2003-2004 Vassili Karpov (malc)
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/isa/isa.h"
26 #include "qemu/main-loop.h"
27 #include "trace.h"
28
29 /* #define DEBUG_DMA */
30
31 #define dolog(...) fprintf (stderr, "dma: " __VA_ARGS__)
32 #ifdef DEBUG_DMA
33 #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__)
34 #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__)
35 #else
36 #define linfo(...)
37 #define ldebug(...)
38 #endif
39
40 struct dma_regs {
41     int now[2];
42     uint16_t base[2];
43     uint8_t mode;
44     uint8_t page;
45     uint8_t pageh;
46     uint8_t dack;
47     uint8_t eop;
48     DMA_transfer_handler transfer_handler;
49     void *opaque;
50 };
51
52 #define ADDR 0
53 #define COUNT 1
54
55 static struct dma_cont {
56     uint8_t status;
57     uint8_t command;
58     uint8_t mask;
59     uint8_t flip_flop;
60     int dshift;
61     struct dma_regs regs[4];
62     qemu_irq *cpu_request_exit;
63     MemoryRegion channel_io;
64     MemoryRegion cont_io;
65 } dma_controllers[2];
66
67 enum {
68     CMD_MEMORY_TO_MEMORY = 0x01,
69     CMD_FIXED_ADDRESS    = 0x02,
70     CMD_BLOCK_CONTROLLER = 0x04,
71     CMD_COMPRESSED_TIME  = 0x08,
72     CMD_CYCLIC_PRIORITY  = 0x10,
73     CMD_EXTENDED_WRITE   = 0x20,
74     CMD_LOW_DREQ         = 0x40,
75     CMD_LOW_DACK         = 0x80,
76     CMD_NOT_SUPPORTED    = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS
77     | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE
78     | CMD_LOW_DREQ | CMD_LOW_DACK
79
80 };
81
82 static void DMA_run (void);
83
84 static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
85
86 static void write_page (void *opaque, uint32_t nport, uint32_t data)
87 {
88     struct dma_cont *d = opaque;
89     int ichan;
90
91     ichan = channels[nport & 7];
92     if (-1 == ichan) {
93         dolog ("invalid channel %#x %#x\n", nport, data);
94         return;
95     }
96     d->regs[ichan].page = data;
97 }
98
99 static void write_pageh (void *opaque, uint32_t nport, uint32_t data)
100 {
101     struct dma_cont *d = opaque;
102     int ichan;
103
104     ichan = channels[nport & 7];
105     if (-1 == ichan) {
106         dolog ("invalid channel %#x %#x\n", nport, data);
107         return;
108     }
109     d->regs[ichan].pageh = data;
110 }
111
112 static uint32_t read_page (void *opaque, uint32_t nport)
113 {
114     struct dma_cont *d = opaque;
115     int ichan;
116
117     ichan = channels[nport & 7];
118     if (-1 == ichan) {
119         dolog ("invalid channel read %#x\n", nport);
120         return 0;
121     }
122     return d->regs[ichan].page;
123 }
124
125 static uint32_t read_pageh (void *opaque, uint32_t nport)
126 {
127     struct dma_cont *d = opaque;
128     int ichan;
129
130     ichan = channels[nport & 7];
131     if (-1 == ichan) {
132         dolog ("invalid channel read %#x\n", nport);
133         return 0;
134     }
135     return d->regs[ichan].pageh;
136 }
137
138 static inline void init_chan (struct dma_cont *d, int ichan)
139 {
140     struct dma_regs *r;
141
142     r = d->regs + ichan;
143     r->now[ADDR] = r->base[ADDR] << d->dshift;
144     r->now[COUNT] = 0;
145 }
146
147 static inline int getff (struct dma_cont *d)
148 {
149     int ff;
150
151     ff = d->flip_flop;
152     d->flip_flop = !ff;
153     return ff;
154 }
155
156 static uint64_t read_chan(void *opaque, hwaddr nport, unsigned size)
157 {
158     struct dma_cont *d = opaque;
159     int ichan, nreg, iport, ff, val, dir;
160     struct dma_regs *r;
161
162     iport = (nport >> d->dshift) & 0x0f;
163     ichan = iport >> 1;
164     nreg = iport & 1;
165     r = d->regs + ichan;
166
167     dir = ((r->mode >> 5) & 1) ? -1 : 1;
168     ff = getff (d);
169     if (nreg)
170         val = (r->base[COUNT] << d->dshift) - r->now[COUNT];
171     else
172         val = r->now[ADDR] + r->now[COUNT] * dir;
173
174     ldebug ("read_chan %#x -> %d\n", iport, val);
175     return (val >> (d->dshift + (ff << 3))) & 0xff;
176 }
177
178 static void write_chan(void *opaque, hwaddr nport, uint64_t data,
179                        unsigned size)
180 {
181     struct dma_cont *d = opaque;
182     int iport, ichan, nreg;
183     struct dma_regs *r;
184
185     iport = (nport >> d->dshift) & 0x0f;
186     ichan = iport >> 1;
187     nreg = iport & 1;
188     r = d->regs + ichan;
189     if (getff (d)) {
190         r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00);
191         init_chan (d, ichan);
192     } else {
193         r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff);
194     }
195 }
196
197 static void write_cont(void *opaque, hwaddr nport, uint64_t data,
198                        unsigned size)
199 {
200     struct dma_cont *d = opaque;
201     int iport, ichan = 0;
202
203     iport = (nport >> d->dshift) & 0x0f;
204     switch (iport) {
205     case 0x00:                  /* command */
206         if ((data != 0) && (data & CMD_NOT_SUPPORTED)) {
207             dolog("command %"PRIx64" not supported\n", data);
208             return;
209         }
210         d->command = data;
211         break;
212
213     case 0x01:
214         ichan = data & 3;
215         if (data & 4) {
216             d->status |= 1 << (ichan + 4);
217         }
218         else {
219             d->status &= ~(1 << (ichan + 4));
220         }
221         d->status &= ~(1 << ichan);
222         DMA_run();
223         break;
224
225     case 0x02:                  /* single mask */
226         if (data & 4)
227             d->mask |= 1 << (data & 3);
228         else
229             d->mask &= ~(1 << (data & 3));
230         DMA_run();
231         break;
232
233     case 0x03:                  /* mode */
234         {
235             ichan = data & 3;
236 #ifdef DEBUG_DMA
237             {
238                 int op, ai, dir, opmode;
239                 op = (data >> 2) & 3;
240                 ai = (data >> 4) & 1;
241                 dir = (data >> 5) & 1;
242                 opmode = (data >> 6) & 3;
243
244                 linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n",
245                        ichan, op, ai, dir, opmode);
246             }
247 #endif
248             d->regs[ichan].mode = data;
249             break;
250         }
251
252     case 0x04:                  /* clear flip flop */
253         d->flip_flop = 0;
254         break;
255
256     case 0x05:                  /* reset */
257         d->flip_flop = 0;
258         d->mask = ~0;
259         d->status = 0;
260         d->command = 0;
261         break;
262
263     case 0x06:                  /* clear mask for all channels */
264         d->mask = 0;
265         DMA_run();
266         break;
267
268     case 0x07:                  /* write mask for all channels */
269         d->mask = data;
270         DMA_run();
271         break;
272
273     default:
274         dolog ("unknown iport %#x\n", iport);
275         break;
276     }
277
278 #ifdef DEBUG_DMA
279     if (0xc != iport) {
280         linfo ("write_cont: nport %#06x, ichan % 2d, val %#06x\n",
281                nport, ichan, data);
282     }
283 #endif
284 }
285
286 static uint64_t read_cont(void *opaque, hwaddr nport, unsigned size)
287 {
288     struct dma_cont *d = opaque;
289     int iport, val;
290
291     iport = (nport >> d->dshift) & 0x0f;
292     switch (iport) {
293     case 0x00:                  /* status */
294         val = d->status;
295         d->status &= 0xf0;
296         break;
297     case 0x01:                  /* mask */
298         val = d->mask;
299         break;
300     default:
301         val = 0;
302         break;
303     }
304
305     ldebug ("read_cont: nport %#06x, iport %#04x val %#x\n", nport, iport, val);
306     return val;
307 }
308
309 int DMA_get_channel_mode (int nchan)
310 {
311     return dma_controllers[nchan > 3].regs[nchan & 3].mode;
312 }
313
314 void DMA_hold_DREQ (int nchan)
315 {
316     int ncont, ichan;
317
318     ncont = nchan > 3;
319     ichan = nchan & 3;
320     linfo ("held cont=%d chan=%d\n", ncont, ichan);
321     dma_controllers[ncont].status |= 1 << (ichan + 4);
322     DMA_run();
323 }
324
325 void DMA_release_DREQ (int nchan)
326 {
327     int ncont, ichan;
328
329     ncont = nchan > 3;
330     ichan = nchan & 3;
331     linfo ("released cont=%d chan=%d\n", ncont, ichan);
332     dma_controllers[ncont].status &= ~(1 << (ichan + 4));
333     DMA_run();
334 }
335
336 static void channel_run (int ncont, int ichan)
337 {
338     int n;
339     struct dma_regs *r = &dma_controllers[ncont].regs[ichan];
340 #ifdef DEBUG_DMA
341     int dir, opmode;
342
343     dir = (r->mode >> 5) & 1;
344     opmode = (r->mode >> 6) & 3;
345
346     if (dir) {
347         dolog ("DMA in address decrement mode\n");
348     }
349     if (opmode != 1) {
350         dolog ("DMA not in single mode select %#x\n", opmode);
351     }
352 #endif
353
354     n = r->transfer_handler (r->opaque, ichan + (ncont << 2),
355                              r->now[COUNT], (r->base[COUNT] + 1) << ncont);
356     r->now[COUNT] = n;
357     ldebug ("dma_pos %d size %d\n", n, (r->base[COUNT] + 1) << ncont);
358 }
359
360 static QEMUBH *dma_bh;
361
362 static void DMA_run (void)
363 {
364     struct dma_cont *d;
365     int icont, ichan;
366     int rearm = 0;
367     static int running = 0;
368
369     if (running) {
370         rearm = 1;
371         goto out;
372     } else {
373         running = 1;
374     }
375
376     d = dma_controllers;
377
378     for (icont = 0; icont < 2; icont++, d++) {
379         for (ichan = 0; ichan < 4; ichan++) {
380             int mask;
381
382             mask = 1 << ichan;
383
384             if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4)))) {
385                 channel_run (icont, ichan);
386                 rearm = 1;
387             }
388         }
389     }
390
391     running = 0;
392 out:
393     if (rearm)
394         qemu_bh_schedule_idle(dma_bh);
395 }
396
397 static void DMA_run_bh(void *unused)
398 {
399     DMA_run();
400 }
401
402 void DMA_register_channel (int nchan,
403                            DMA_transfer_handler transfer_handler,
404                            void *opaque)
405 {
406     struct dma_regs *r;
407     int ichan, ncont;
408
409     ncont = nchan > 3;
410     ichan = nchan & 3;
411
412     r = dma_controllers[ncont].regs + ichan;
413     r->transfer_handler = transfer_handler;
414     r->opaque = opaque;
415 }
416
417 int DMA_read_memory (int nchan, void *buf, int pos, int len)
418 {
419     struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
420     hwaddr addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
421
422     if (r->mode & 0x20) {
423         int i;
424         uint8_t *p = buf;
425
426         cpu_physical_memory_read (addr - pos - len, buf, len);
427         /* What about 16bit transfers? */
428         for (i = 0; i < len >> 1; i++) {
429             uint8_t b = p[len - i - 1];
430             p[i] = b;
431         }
432     }
433     else
434         cpu_physical_memory_read (addr + pos, buf, len);
435
436     return len;
437 }
438
439 int DMA_write_memory (int nchan, void *buf, int pos, int len)
440 {
441     struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
442     hwaddr addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
443
444     if (r->mode & 0x20) {
445         int i;
446         uint8_t *p = buf;
447
448         cpu_physical_memory_write (addr - pos - len, buf, len);
449         /* What about 16bit transfers? */
450         for (i = 0; i < len; i++) {
451             uint8_t b = p[len - i - 1];
452             p[i] = b;
453         }
454     }
455     else
456         cpu_physical_memory_write (addr + pos, buf, len);
457
458     return len;
459 }
460
461 /* request the emulator to transfer a new DMA memory block ASAP */
462 void DMA_schedule(int nchan)
463 {
464     struct dma_cont *d = &dma_controllers[nchan > 3];
465
466     qemu_irq_pulse(*d->cpu_request_exit);
467 }
468
469 static void dma_reset(void *opaque)
470 {
471     struct dma_cont *d = opaque;
472     write_cont(d, (0x05 << d->dshift), 0, 1);
473 }
474
475 static int dma_phony_handler (void *opaque, int nchan, int dma_pos, int dma_len)
476 {
477     trace_i8257_unregistered_dma(nchan, dma_pos, dma_len);
478     return dma_pos;
479 }
480
481
482 static const MemoryRegionOps channel_io_ops = {
483     .read = read_chan,
484     .write = write_chan,
485     .endianness = DEVICE_NATIVE_ENDIAN,
486     .impl = {
487         .min_access_size = 1,
488         .max_access_size = 1,
489     },
490 };
491
492 /* IOport from page_base */
493 static const MemoryRegionPortio page_portio_list[] = {
494     { 0x01, 3, 1, .write = write_page, .read = read_page, },
495     { 0x07, 1, 1, .write = write_page, .read = read_page, },
496     PORTIO_END_OF_LIST(),
497 };
498
499 /* IOport from pageh_base */
500 static const MemoryRegionPortio pageh_portio_list[] = {
501     { 0x01, 3, 1, .write = write_pageh, .read = read_pageh, },
502     { 0x07, 3, 1, .write = write_pageh, .read = read_pageh, },
503     PORTIO_END_OF_LIST(),
504 };
505
506 static const MemoryRegionOps cont_io_ops = {
507     .read = read_cont,
508     .write = write_cont,
509     .endianness = DEVICE_NATIVE_ENDIAN,
510     .impl = {
511         .min_access_size = 1,
512         .max_access_size = 1,
513     },
514 };
515
516 /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */
517 static void dma_init2(struct dma_cont *d, int base, int dshift,
518                       int page_base, int pageh_base,
519                       qemu_irq *cpu_request_exit)
520 {
521     int i;
522
523     d->dshift = dshift;
524     d->cpu_request_exit = cpu_request_exit;
525
526     memory_region_init_io(&d->channel_io, NULL, &channel_io_ops, d,
527                           "dma-chan", 8 << d->dshift);
528     memory_region_add_subregion(isa_address_space_io(NULL),
529                                 base, &d->channel_io);
530
531     isa_register_portio_list(NULL, page_base, page_portio_list, d,
532                              "dma-page");
533     if (pageh_base >= 0) {
534         isa_register_portio_list(NULL, pageh_base, pageh_portio_list, d,
535                                  "dma-pageh");
536     }
537
538     memory_region_init_io(&d->cont_io, NULL, &cont_io_ops, d, "dma-cont",
539                           8 << d->dshift);
540     memory_region_add_subregion(isa_address_space_io(NULL),
541                                 base + (8 << d->dshift), &d->cont_io);
542
543     qemu_register_reset(dma_reset, d);
544     dma_reset(d);
545     for (i = 0; i < ARRAY_SIZE (d->regs); ++i) {
546         d->regs[i].transfer_handler = dma_phony_handler;
547     }
548 }
549
550 static const VMStateDescription vmstate_dma_regs = {
551     .name = "dma_regs",
552     .version_id = 1,
553     .minimum_version_id = 1,
554     .fields = (VMStateField[]) {
555         VMSTATE_INT32_ARRAY(now, struct dma_regs, 2),
556         VMSTATE_UINT16_ARRAY(base, struct dma_regs, 2),
557         VMSTATE_UINT8(mode, struct dma_regs),
558         VMSTATE_UINT8(page, struct dma_regs),
559         VMSTATE_UINT8(pageh, struct dma_regs),
560         VMSTATE_UINT8(dack, struct dma_regs),
561         VMSTATE_UINT8(eop, struct dma_regs),
562         VMSTATE_END_OF_LIST()
563     }
564 };
565
566 static int dma_post_load(void *opaque, int version_id)
567 {
568     DMA_run();
569
570     return 0;
571 }
572
573 static const VMStateDescription vmstate_dma = {
574     .name = "dma",
575     .version_id = 1,
576     .minimum_version_id = 1,
577     .post_load = dma_post_load,
578     .fields = (VMStateField[]) {
579         VMSTATE_UINT8(command, struct dma_cont),
580         VMSTATE_UINT8(mask, struct dma_cont),
581         VMSTATE_UINT8(flip_flop, struct dma_cont),
582         VMSTATE_INT32(dshift, struct dma_cont),
583         VMSTATE_STRUCT_ARRAY(regs, struct dma_cont, 4, 1, vmstate_dma_regs, struct dma_regs),
584         VMSTATE_END_OF_LIST()
585     }
586 };
587
588 void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
589 {
590     dma_init2(&dma_controllers[0], 0x00, 0, 0x80,
591               high_page_enable ? 0x480 : -1, cpu_request_exit);
592     dma_init2(&dma_controllers[1], 0xc0, 1, 0x88,
593               high_page_enable ? 0x488 : -1, cpu_request_exit);
594     vmstate_register (NULL, 0, &vmstate_dma, &dma_controllers[0]);
595     vmstate_register (NULL, 1, &vmstate_dma, &dma_controllers[1]);
596
597     dma_bh = qemu_bh_new(DMA_run_bh, NULL);
598 }