Add qemu 2.4.0
[kvmfornfv.git] / qemu / hw / char / escc.c
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include "hw/hw.h"
26 #include "hw/sysbus.h"
27 #include "hw/char/escc.h"
28 #include "sysemu/char.h"
29 #include "ui/console.h"
30 #include "ui/input.h"
31 #include "trace.h"
32
33 /*
34  * Chipset docs:
35  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
36  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
37  *
38  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
39  * (Slave I/O), also produced as NCR89C105. See
40  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41  *
42  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
43  * mouse and keyboard ports don't implement all functions and they are
44  * only asynchronous. There is no DMA.
45  *
46  * Z85C30 is also used on PowerMacs. There are some small differences
47  * between Sparc version (sunzilog) and PowerMac (pmac):
48  *  Offset between control and data registers
49  *  There is some kind of lockup bug, but we can ignore it
50  *  CTS is inverted
51  *  DMA on pmac using DBDMA chip
52  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
53  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
54  */
55
56 /*
57  * Modifications:
58  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
59  *                                  serial mouse queue.
60  *                                  Implemented serial mouse protocol.
61  *
62  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
63  */
64
65 typedef enum {
66     chn_a, chn_b,
67 } ChnID;
68
69 #define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
70
71 typedef enum {
72     ser, kbd, mouse,
73 } ChnType;
74
75 #define SERIO_QUEUE_SIZE 256
76
77 typedef struct {
78     uint8_t data[SERIO_QUEUE_SIZE];
79     int rptr, wptr, count;
80 } SERIOQueue;
81
82 #define SERIAL_REGS 16
83 typedef struct ChannelState {
84     qemu_irq irq;
85     uint32_t rxint, txint, rxint_under_svc, txint_under_svc;
86     struct ChannelState *otherchn;
87     uint32_t reg;
88     uint8_t wregs[SERIAL_REGS], rregs[SERIAL_REGS];
89     SERIOQueue queue;
90     CharDriverState *chr;
91     int e0_mode, led_mode, caps_lock_mode, num_lock_mode;
92     int disabled;
93     int clock;
94     uint32_t vmstate_dummy;
95     ChnID chn; // this channel, A (base+4) or B (base+0)
96     ChnType type;
97     uint8_t rx, tx;
98     QemuInputHandlerState *hs;
99 } ChannelState;
100
101 #define ESCC(obj) OBJECT_CHECK(ESCCState, (obj), TYPE_ESCC)
102
103 typedef struct ESCCState {
104     SysBusDevice parent_obj;
105
106     struct ChannelState chn[2];
107     uint32_t it_shift;
108     MemoryRegion mmio;
109     uint32_t disabled;
110     uint32_t frequency;
111 } ESCCState;
112
113 #define SERIAL_CTRL 0
114 #define SERIAL_DATA 1
115
116 #define W_CMD     0
117 #define CMD_PTR_MASK   0x07
118 #define CMD_CMD_MASK   0x38
119 #define CMD_HI         0x08
120 #define CMD_CLR_TXINT  0x28
121 #define CMD_CLR_IUS    0x38
122 #define W_INTR    1
123 #define INTR_INTALL    0x01
124 #define INTR_TXINT     0x02
125 #define INTR_RXMODEMSK 0x18
126 #define INTR_RXINT1ST  0x08
127 #define INTR_RXINTALL  0x10
128 #define W_IVEC    2
129 #define W_RXCTRL  3
130 #define RXCTRL_RXEN    0x01
131 #define W_TXCTRL1 4
132 #define TXCTRL1_PAREN  0x01
133 #define TXCTRL1_PAREV  0x02
134 #define TXCTRL1_1STOP  0x04
135 #define TXCTRL1_1HSTOP 0x08
136 #define TXCTRL1_2STOP  0x0c
137 #define TXCTRL1_STPMSK 0x0c
138 #define TXCTRL1_CLK1X  0x00
139 #define TXCTRL1_CLK16X 0x40
140 #define TXCTRL1_CLK32X 0x80
141 #define TXCTRL1_CLK64X 0xc0
142 #define TXCTRL1_CLKMSK 0xc0
143 #define W_TXCTRL2 5
144 #define TXCTRL2_TXEN   0x08
145 #define TXCTRL2_BITMSK 0x60
146 #define TXCTRL2_5BITS  0x00
147 #define TXCTRL2_7BITS  0x20
148 #define TXCTRL2_6BITS  0x40
149 #define TXCTRL2_8BITS  0x60
150 #define W_SYNC1   6
151 #define W_SYNC2   7
152 #define W_TXBUF   8
153 #define W_MINTR   9
154 #define MINTR_STATUSHI 0x10
155 #define MINTR_RST_MASK 0xc0
156 #define MINTR_RST_B    0x40
157 #define MINTR_RST_A    0x80
158 #define MINTR_RST_ALL  0xc0
159 #define W_MISC1  10
160 #define W_CLOCK  11
161 #define CLOCK_TRXC     0x08
162 #define W_BRGLO  12
163 #define W_BRGHI  13
164 #define W_MISC2  14
165 #define MISC2_PLLDIS   0x30
166 #define W_EXTINT 15
167 #define EXTINT_DCD     0x08
168 #define EXTINT_SYNCINT 0x10
169 #define EXTINT_CTSINT  0x20
170 #define EXTINT_TXUNDRN 0x40
171 #define EXTINT_BRKINT  0x80
172
173 #define R_STATUS  0
174 #define STATUS_RXAV    0x01
175 #define STATUS_ZERO    0x02
176 #define STATUS_TXEMPTY 0x04
177 #define STATUS_DCD     0x08
178 #define STATUS_SYNC    0x10
179 #define STATUS_CTS     0x20
180 #define STATUS_TXUNDRN 0x40
181 #define STATUS_BRK     0x80
182 #define R_SPEC    1
183 #define SPEC_ALLSENT   0x01
184 #define SPEC_BITS8     0x06
185 #define R_IVEC    2
186 #define IVEC_TXINTB    0x00
187 #define IVEC_LONOINT   0x06
188 #define IVEC_LORXINTA  0x0c
189 #define IVEC_LORXINTB  0x04
190 #define IVEC_LOTXINTA  0x08
191 #define IVEC_HINOINT   0x60
192 #define IVEC_HIRXINTA  0x30
193 #define IVEC_HIRXINTB  0x20
194 #define IVEC_HITXINTA  0x10
195 #define R_INTR    3
196 #define INTR_EXTINTB   0x01
197 #define INTR_TXINTB    0x02
198 #define INTR_RXINTB    0x04
199 #define INTR_EXTINTA   0x08
200 #define INTR_TXINTA    0x10
201 #define INTR_RXINTA    0x20
202 #define R_IPEN    4
203 #define R_TXCTRL1 5
204 #define R_TXCTRL2 6
205 #define R_BC      7
206 #define R_RXBUF   8
207 #define R_RXCTRL  9
208 #define R_MISC   10
209 #define R_MISC1  11
210 #define R_BRGLO  12
211 #define R_BRGHI  13
212 #define R_MISC1I 14
213 #define R_EXTINT 15
214
215 static void handle_kbd_command(ChannelState *s, int val);
216 static int serial_can_receive(void *opaque);
217 static void serial_receive_byte(ChannelState *s, int ch);
218
219 static void clear_queue(void *opaque)
220 {
221     ChannelState *s = opaque;
222     SERIOQueue *q = &s->queue;
223     q->rptr = q->wptr = q->count = 0;
224 }
225
226 static void put_queue(void *opaque, int b)
227 {
228     ChannelState *s = opaque;
229     SERIOQueue *q = &s->queue;
230
231     trace_escc_put_queue(CHN_C(s), b);
232     if (q->count >= SERIO_QUEUE_SIZE)
233         return;
234     q->data[q->wptr] = b;
235     if (++q->wptr == SERIO_QUEUE_SIZE)
236         q->wptr = 0;
237     q->count++;
238     serial_receive_byte(s, 0);
239 }
240
241 static uint32_t get_queue(void *opaque)
242 {
243     ChannelState *s = opaque;
244     SERIOQueue *q = &s->queue;
245     int val;
246
247     if (q->count == 0) {
248         return 0;
249     } else {
250         val = q->data[q->rptr];
251         if (++q->rptr == SERIO_QUEUE_SIZE)
252             q->rptr = 0;
253         q->count--;
254     }
255     trace_escc_get_queue(CHN_C(s), val);
256     if (q->count > 0)
257         serial_receive_byte(s, 0);
258     return val;
259 }
260
261 static int escc_update_irq_chn(ChannelState *s)
262 {
263     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
264          // tx ints enabled, pending
265          ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
266            ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
267           s->rxint == 1) || // rx ints enabled, pending
268          ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
269           (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
270         return 1;
271     }
272     return 0;
273 }
274
275 static void escc_update_irq(ChannelState *s)
276 {
277     int irq;
278
279     irq = escc_update_irq_chn(s);
280     irq |= escc_update_irq_chn(s->otherchn);
281
282     trace_escc_update_irq(irq);
283     qemu_set_irq(s->irq, irq);
284 }
285
286 static void escc_reset_chn(ChannelState *s)
287 {
288     int i;
289
290     s->reg = 0;
291     for (i = 0; i < SERIAL_REGS; i++) {
292         s->rregs[i] = 0;
293         s->wregs[i] = 0;
294     }
295     s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
296     s->wregs[W_MINTR] = MINTR_RST_ALL;
297     s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
298     s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
299     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
300         EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
301     if (s->disabled)
302         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
303             STATUS_CTS | STATUS_TXUNDRN;
304     else
305         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
306     s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
307
308     s->rx = s->tx = 0;
309     s->rxint = s->txint = 0;
310     s->rxint_under_svc = s->txint_under_svc = 0;
311     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
312     clear_queue(s);
313 }
314
315 static void escc_reset(DeviceState *d)
316 {
317     ESCCState *s = ESCC(d);
318
319     escc_reset_chn(&s->chn[0]);
320     escc_reset_chn(&s->chn[1]);
321 }
322
323 static inline void set_rxint(ChannelState *s)
324 {
325     s->rxint = 1;
326     /* XXX: missing daisy chainnig: chn_b rx should have a lower priority
327        than chn_a rx/tx/special_condition service*/
328     s->rxint_under_svc = 1;
329     if (s->chn == chn_a) {
330         s->rregs[R_INTR] |= INTR_RXINTA;
331         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
332             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
333         else
334             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
335     } else {
336         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
337         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
338             s->rregs[R_IVEC] = IVEC_HIRXINTB;
339         else
340             s->rregs[R_IVEC] = IVEC_LORXINTB;
341     }
342     escc_update_irq(s);
343 }
344
345 static inline void set_txint(ChannelState *s)
346 {
347     s->txint = 1;
348     if (!s->rxint_under_svc) {
349         s->txint_under_svc = 1;
350         if (s->chn == chn_a) {
351             if (s->wregs[W_INTR] & INTR_TXINT) {
352                 s->rregs[R_INTR] |= INTR_TXINTA;
353             }
354             if (s->wregs[W_MINTR] & MINTR_STATUSHI)
355                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
356             else
357                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
358         } else {
359             s->rregs[R_IVEC] = IVEC_TXINTB;
360             if (s->wregs[W_INTR] & INTR_TXINT) {
361                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
362             }
363         }
364     escc_update_irq(s);
365     }
366 }
367
368 static inline void clr_rxint(ChannelState *s)
369 {
370     s->rxint = 0;
371     s->rxint_under_svc = 0;
372     if (s->chn == chn_a) {
373         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
374             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
375         else
376             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
377         s->rregs[R_INTR] &= ~INTR_RXINTA;
378     } else {
379         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
380             s->rregs[R_IVEC] = IVEC_HINOINT;
381         else
382             s->rregs[R_IVEC] = IVEC_LONOINT;
383         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
384     }
385     if (s->txint)
386         set_txint(s);
387     escc_update_irq(s);
388 }
389
390 static inline void clr_txint(ChannelState *s)
391 {
392     s->txint = 0;
393     s->txint_under_svc = 0;
394     if (s->chn == chn_a) {
395         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
396             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
397         else
398             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
399         s->rregs[R_INTR] &= ~INTR_TXINTA;
400     } else {
401         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
402         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
403             s->rregs[R_IVEC] = IVEC_HINOINT;
404         else
405             s->rregs[R_IVEC] = IVEC_LONOINT;
406         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
407     }
408     if (s->rxint)
409         set_rxint(s);
410     escc_update_irq(s);
411 }
412
413 static void escc_update_parameters(ChannelState *s)
414 {
415     int speed, parity, data_bits, stop_bits;
416     QEMUSerialSetParams ssp;
417
418     if (!s->chr || s->type != ser)
419         return;
420
421     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
422         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
423             parity = 'E';
424         else
425             parity = 'O';
426     } else {
427         parity = 'N';
428     }
429     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
430         stop_bits = 2;
431     else
432         stop_bits = 1;
433     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
434     case TXCTRL2_5BITS:
435         data_bits = 5;
436         break;
437     case TXCTRL2_7BITS:
438         data_bits = 7;
439         break;
440     case TXCTRL2_6BITS:
441         data_bits = 6;
442         break;
443     default:
444     case TXCTRL2_8BITS:
445         data_bits = 8;
446         break;
447     }
448     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
449     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
450     case TXCTRL1_CLK1X:
451         break;
452     case TXCTRL1_CLK16X:
453         speed /= 16;
454         break;
455     case TXCTRL1_CLK32X:
456         speed /= 32;
457         break;
458     default:
459     case TXCTRL1_CLK64X:
460         speed /= 64;
461         break;
462     }
463     ssp.speed = speed;
464     ssp.parity = parity;
465     ssp.data_bits = data_bits;
466     ssp.stop_bits = stop_bits;
467     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
468     qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
469 }
470
471 static void escc_mem_write(void *opaque, hwaddr addr,
472                            uint64_t val, unsigned size)
473 {
474     ESCCState *serial = opaque;
475     ChannelState *s;
476     uint32_t saddr;
477     int newreg, channel;
478
479     val &= 0xff;
480     saddr = (addr >> serial->it_shift) & 1;
481     channel = (addr >> (serial->it_shift + 1)) & 1;
482     s = &serial->chn[channel];
483     switch (saddr) {
484     case SERIAL_CTRL:
485         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
486         newreg = 0;
487         switch (s->reg) {
488         case W_CMD:
489             newreg = val & CMD_PTR_MASK;
490             val &= CMD_CMD_MASK;
491             switch (val) {
492             case CMD_HI:
493                 newreg |= CMD_HI;
494                 break;
495             case CMD_CLR_TXINT:
496                 clr_txint(s);
497                 break;
498             case CMD_CLR_IUS:
499                 if (s->rxint_under_svc) {
500                     s->rxint_under_svc = 0;
501                     if (s->txint) {
502                         set_txint(s);
503                     }
504                 } else if (s->txint_under_svc) {
505                     s->txint_under_svc = 0;
506                 }
507                 escc_update_irq(s);
508                 break;
509             default:
510                 break;
511             }
512             break;
513         case W_INTR ... W_RXCTRL:
514         case W_SYNC1 ... W_TXBUF:
515         case W_MISC1 ... W_CLOCK:
516         case W_MISC2 ... W_EXTINT:
517             s->wregs[s->reg] = val;
518             break;
519         case W_TXCTRL1:
520         case W_TXCTRL2:
521             s->wregs[s->reg] = val;
522             escc_update_parameters(s);
523             break;
524         case W_BRGLO:
525         case W_BRGHI:
526             s->wregs[s->reg] = val;
527             s->rregs[s->reg] = val;
528             escc_update_parameters(s);
529             break;
530         case W_MINTR:
531             switch (val & MINTR_RST_MASK) {
532             case 0:
533             default:
534                 break;
535             case MINTR_RST_B:
536                 escc_reset_chn(&serial->chn[0]);
537                 return;
538             case MINTR_RST_A:
539                 escc_reset_chn(&serial->chn[1]);
540                 return;
541             case MINTR_RST_ALL:
542                 escc_reset(DEVICE(serial));
543                 return;
544             }
545             break;
546         default:
547             break;
548         }
549         if (s->reg == 0)
550             s->reg = newreg;
551         else
552             s->reg = 0;
553         break;
554     case SERIAL_DATA:
555         trace_escc_mem_writeb_data(CHN_C(s), val);
556         s->tx = val;
557         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
558             if (s->chr)
559                 qemu_chr_fe_write(s->chr, &s->tx, 1);
560             else if (s->type == kbd && !s->disabled) {
561                 handle_kbd_command(s, val);
562             }
563         }
564         s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
565         s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
566         set_txint(s);
567         break;
568     default:
569         break;
570     }
571 }
572
573 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
574                               unsigned size)
575 {
576     ESCCState *serial = opaque;
577     ChannelState *s;
578     uint32_t saddr;
579     uint32_t ret;
580     int channel;
581
582     saddr = (addr >> serial->it_shift) & 1;
583     channel = (addr >> (serial->it_shift + 1)) & 1;
584     s = &serial->chn[channel];
585     switch (saddr) {
586     case SERIAL_CTRL:
587         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
588         ret = s->rregs[s->reg];
589         s->reg = 0;
590         return ret;
591     case SERIAL_DATA:
592         s->rregs[R_STATUS] &= ~STATUS_RXAV;
593         clr_rxint(s);
594         if (s->type == kbd || s->type == mouse)
595             ret = get_queue(s);
596         else
597             ret = s->rx;
598         trace_escc_mem_readb_data(CHN_C(s), ret);
599         if (s->chr)
600             qemu_chr_accept_input(s->chr);
601         return ret;
602     default:
603         break;
604     }
605     return 0;
606 }
607
608 static const MemoryRegionOps escc_mem_ops = {
609     .read = escc_mem_read,
610     .write = escc_mem_write,
611     .endianness = DEVICE_NATIVE_ENDIAN,
612     .valid = {
613         .min_access_size = 1,
614         .max_access_size = 1,
615     },
616 };
617
618 static int serial_can_receive(void *opaque)
619 {
620     ChannelState *s = opaque;
621     int ret;
622
623     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
624         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
625         // char already available
626         ret = 0;
627     else
628         ret = 1;
629     return ret;
630 }
631
632 static void serial_receive_byte(ChannelState *s, int ch)
633 {
634     trace_escc_serial_receive_byte(CHN_C(s), ch);
635     s->rregs[R_STATUS] |= STATUS_RXAV;
636     s->rx = ch;
637     set_rxint(s);
638 }
639
640 static void serial_receive_break(ChannelState *s)
641 {
642     s->rregs[R_STATUS] |= STATUS_BRK;
643     escc_update_irq(s);
644 }
645
646 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
647 {
648     ChannelState *s = opaque;
649     serial_receive_byte(s, buf[0]);
650 }
651
652 static void serial_event(void *opaque, int event)
653 {
654     ChannelState *s = opaque;
655     if (event == CHR_EVENT_BREAK)
656         serial_receive_break(s);
657 }
658
659 static const VMStateDescription vmstate_escc_chn = {
660     .name ="escc_chn",
661     .version_id = 2,
662     .minimum_version_id = 1,
663     .fields = (VMStateField[]) {
664         VMSTATE_UINT32(vmstate_dummy, ChannelState),
665         VMSTATE_UINT32(reg, ChannelState),
666         VMSTATE_UINT32(rxint, ChannelState),
667         VMSTATE_UINT32(txint, ChannelState),
668         VMSTATE_UINT32(rxint_under_svc, ChannelState),
669         VMSTATE_UINT32(txint_under_svc, ChannelState),
670         VMSTATE_UINT8(rx, ChannelState),
671         VMSTATE_UINT8(tx, ChannelState),
672         VMSTATE_BUFFER(wregs, ChannelState),
673         VMSTATE_BUFFER(rregs, ChannelState),
674         VMSTATE_END_OF_LIST()
675     }
676 };
677
678 static const VMStateDescription vmstate_escc = {
679     .name ="escc",
680     .version_id = 2,
681     .minimum_version_id = 1,
682     .fields = (VMStateField[]) {
683         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
684                              ChannelState),
685         VMSTATE_END_OF_LIST()
686     }
687 };
688
689 MemoryRegion *escc_init(hwaddr base, qemu_irq irqA, qemu_irq irqB,
690               CharDriverState *chrA, CharDriverState *chrB,
691               int clock, int it_shift)
692 {
693     DeviceState *dev;
694     SysBusDevice *s;
695     ESCCState *d;
696
697     dev = qdev_create(NULL, TYPE_ESCC);
698     qdev_prop_set_uint32(dev, "disabled", 0);
699     qdev_prop_set_uint32(dev, "frequency", clock);
700     qdev_prop_set_uint32(dev, "it_shift", it_shift);
701     qdev_prop_set_chr(dev, "chrB", chrB);
702     qdev_prop_set_chr(dev, "chrA", chrA);
703     qdev_prop_set_uint32(dev, "chnBtype", ser);
704     qdev_prop_set_uint32(dev, "chnAtype", ser);
705     qdev_init_nofail(dev);
706     s = SYS_BUS_DEVICE(dev);
707     sysbus_connect_irq(s, 0, irqB);
708     sysbus_connect_irq(s, 1, irqA);
709     if (base) {
710         sysbus_mmio_map(s, 0, base);
711     }
712
713     d = ESCC(s);
714     return &d->mmio;
715 }
716
717 static const uint8_t qcode_to_keycode[Q_KEY_CODE_MAX] = {
718     [Q_KEY_CODE_SHIFT]         = 99,
719     [Q_KEY_CODE_SHIFT_R]       = 110,
720     [Q_KEY_CODE_ALT]           = 19,
721     [Q_KEY_CODE_ALT_R]         = 13,
722     [Q_KEY_CODE_ALTGR]         = 13,
723     [Q_KEY_CODE_CTRL]          = 76,
724     [Q_KEY_CODE_CTRL_R]        = 76,
725     [Q_KEY_CODE_ESC]           = 29,
726     [Q_KEY_CODE_1]             = 30,
727     [Q_KEY_CODE_2]             = 31,
728     [Q_KEY_CODE_3]             = 32,
729     [Q_KEY_CODE_4]             = 33,
730     [Q_KEY_CODE_5]             = 34,
731     [Q_KEY_CODE_6]             = 35,
732     [Q_KEY_CODE_7]             = 36,
733     [Q_KEY_CODE_8]             = 37,
734     [Q_KEY_CODE_9]             = 38,
735     [Q_KEY_CODE_0]             = 39,
736     [Q_KEY_CODE_MINUS]         = 40,
737     [Q_KEY_CODE_EQUAL]         = 41,
738     [Q_KEY_CODE_BACKSPACE]     = 43,
739     [Q_KEY_CODE_TAB]           = 53,
740     [Q_KEY_CODE_Q]             = 54,
741     [Q_KEY_CODE_W]             = 55,
742     [Q_KEY_CODE_E]             = 56,
743     [Q_KEY_CODE_R]             = 57,
744     [Q_KEY_CODE_T]             = 58,
745     [Q_KEY_CODE_Y]             = 59,
746     [Q_KEY_CODE_U]             = 60,
747     [Q_KEY_CODE_I]             = 61,
748     [Q_KEY_CODE_O]             = 62,
749     [Q_KEY_CODE_P]             = 63,
750     [Q_KEY_CODE_BRACKET_LEFT]  = 64,
751     [Q_KEY_CODE_BRACKET_RIGHT] = 65,
752     [Q_KEY_CODE_RET]           = 89,
753     [Q_KEY_CODE_A]             = 77,
754     [Q_KEY_CODE_S]             = 78,
755     [Q_KEY_CODE_D]             = 79,
756     [Q_KEY_CODE_F]             = 80,
757     [Q_KEY_CODE_G]             = 81,
758     [Q_KEY_CODE_H]             = 82,
759     [Q_KEY_CODE_J]             = 83,
760     [Q_KEY_CODE_K]             = 84,
761     [Q_KEY_CODE_L]             = 85,
762     [Q_KEY_CODE_SEMICOLON]     = 86,
763     [Q_KEY_CODE_APOSTROPHE]    = 87,
764     [Q_KEY_CODE_GRAVE_ACCENT]  = 42,
765     [Q_KEY_CODE_BACKSLASH]     = 88,
766     [Q_KEY_CODE_Z]             = 100,
767     [Q_KEY_CODE_X]             = 101,
768     [Q_KEY_CODE_C]             = 102,
769     [Q_KEY_CODE_V]             = 103,
770     [Q_KEY_CODE_B]             = 104,
771     [Q_KEY_CODE_N]             = 105,
772     [Q_KEY_CODE_M]             = 106,
773     [Q_KEY_CODE_COMMA]         = 107,
774     [Q_KEY_CODE_DOT]           = 108,
775     [Q_KEY_CODE_SLASH]         = 109,
776     [Q_KEY_CODE_ASTERISK]      = 47,
777     [Q_KEY_CODE_SPC]           = 121,
778     [Q_KEY_CODE_CAPS_LOCK]     = 119,
779     [Q_KEY_CODE_F1]            = 5,
780     [Q_KEY_CODE_F2]            = 6,
781     [Q_KEY_CODE_F3]            = 8,
782     [Q_KEY_CODE_F4]            = 10,
783     [Q_KEY_CODE_F5]            = 12,
784     [Q_KEY_CODE_F6]            = 14,
785     [Q_KEY_CODE_F7]            = 16,
786     [Q_KEY_CODE_F8]            = 17,
787     [Q_KEY_CODE_F9]            = 18,
788     [Q_KEY_CODE_F10]           = 7,
789     [Q_KEY_CODE_NUM_LOCK]      = 98,
790     [Q_KEY_CODE_SCROLL_LOCK]   = 23,
791     [Q_KEY_CODE_KP_DIVIDE]     = 46,
792     [Q_KEY_CODE_KP_MULTIPLY]   = 47,
793     [Q_KEY_CODE_KP_SUBTRACT]   = 71,
794     [Q_KEY_CODE_KP_ADD]        = 125,
795     [Q_KEY_CODE_KP_ENTER]      = 90,
796     [Q_KEY_CODE_KP_DECIMAL]    = 50,
797     [Q_KEY_CODE_KP_0]          = 94,
798     [Q_KEY_CODE_KP_1]          = 112,
799     [Q_KEY_CODE_KP_2]          = 113,
800     [Q_KEY_CODE_KP_3]          = 114,
801     [Q_KEY_CODE_KP_4]          = 91,
802     [Q_KEY_CODE_KP_5]          = 92,
803     [Q_KEY_CODE_KP_6]          = 93,
804     [Q_KEY_CODE_KP_7]          = 68,
805     [Q_KEY_CODE_KP_8]          = 69,
806     [Q_KEY_CODE_KP_9]          = 70,
807     [Q_KEY_CODE_LESS]          = 124,
808     [Q_KEY_CODE_F11]           = 9,
809     [Q_KEY_CODE_F12]           = 11,
810     [Q_KEY_CODE_HOME]          = 52,
811     [Q_KEY_CODE_PGUP]          = 96,
812     [Q_KEY_CODE_PGDN]          = 123,
813     [Q_KEY_CODE_END]           = 74,
814     [Q_KEY_CODE_LEFT]          = 24,
815     [Q_KEY_CODE_UP]            = 20,
816     [Q_KEY_CODE_DOWN]          = 27,
817     [Q_KEY_CODE_RIGHT]         = 28,
818     [Q_KEY_CODE_INSERT]        = 44,
819     [Q_KEY_CODE_DELETE]        = 66,
820     [Q_KEY_CODE_STOP]          = 1,
821     [Q_KEY_CODE_AGAIN]         = 3,
822     [Q_KEY_CODE_PROPS]         = 25,
823     [Q_KEY_CODE_UNDO]          = 26,
824     [Q_KEY_CODE_FRONT]         = 49,
825     [Q_KEY_CODE_COPY]          = 51,
826     [Q_KEY_CODE_OPEN]          = 72,
827     [Q_KEY_CODE_PASTE]         = 73,
828     [Q_KEY_CODE_FIND]          = 95,
829     [Q_KEY_CODE_CUT]           = 97,
830     [Q_KEY_CODE_LF]            = 111,
831     [Q_KEY_CODE_HELP]          = 118,
832     [Q_KEY_CODE_META_L]        = 120,
833     [Q_KEY_CODE_META_R]        = 122,
834     [Q_KEY_CODE_COMPOSE]       = 67,
835     [Q_KEY_CODE_PRINT]         = 22,
836     [Q_KEY_CODE_SYSRQ]         = 21,
837 };
838
839 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
840                                 InputEvent *evt)
841 {
842     ChannelState *s = (ChannelState *)dev;
843     int qcode, keycode;
844
845     assert(evt->kind == INPUT_EVENT_KIND_KEY);
846     qcode = qemu_input_key_value_to_qcode(evt->key->key);
847     trace_escc_sunkbd_event_in(qcode, QKeyCode_lookup[qcode],
848                                evt->key->down);
849
850     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
851         if (evt->key->down) {
852             s->caps_lock_mode ^= 1;
853             if (s->caps_lock_mode == 2) {
854                 return; /* Drop second press */
855             }
856         } else {
857             s->caps_lock_mode ^= 2;
858             if (s->caps_lock_mode == 3) {
859                 return; /* Drop first release */
860             }
861         }
862     }
863
864     if (qcode == Q_KEY_CODE_NUM_LOCK) {
865         if (evt->key->down) {
866             s->num_lock_mode ^= 1;
867             if (s->num_lock_mode == 2) {
868                 return; /* Drop second press */
869             }
870         } else {
871             s->num_lock_mode ^= 2;
872             if (s->num_lock_mode == 3) {
873                 return; /* Drop first release */
874             }
875         }
876     }
877
878     keycode = qcode_to_keycode[qcode];
879     if (!evt->key->down) {
880         keycode |= 0x80;
881     }
882     trace_escc_sunkbd_event_out(keycode);
883     put_queue(s, keycode);
884 }
885
886 static QemuInputHandler sunkbd_handler = {
887     .name  = "sun keyboard",
888     .mask  = INPUT_EVENT_MASK_KEY,
889     .event = sunkbd_handle_event,
890 };
891
892 static void handle_kbd_command(ChannelState *s, int val)
893 {
894     trace_escc_kbd_command(val);
895     if (s->led_mode) { // Ignore led byte
896         s->led_mode = 0;
897         return;
898     }
899     switch (val) {
900     case 1: // Reset, return type code
901         clear_queue(s);
902         put_queue(s, 0xff);
903         put_queue(s, 4); // Type 4
904         put_queue(s, 0x7f);
905         break;
906     case 0xe: // Set leds
907         s->led_mode = 1;
908         break;
909     case 7: // Query layout
910     case 0xf:
911         clear_queue(s);
912         put_queue(s, 0xfe);
913         put_queue(s, 0x21); /*  en-us layout */
914         break;
915     default:
916         break;
917     }
918 }
919
920 static void sunmouse_event(void *opaque,
921                                int dx, int dy, int dz, int buttons_state)
922 {
923     ChannelState *s = opaque;
924     int ch;
925
926     trace_escc_sunmouse_event(dx, dy, buttons_state);
927     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
928
929     if (buttons_state & MOUSE_EVENT_LBUTTON)
930         ch ^= 0x4;
931     if (buttons_state & MOUSE_EVENT_MBUTTON)
932         ch ^= 0x2;
933     if (buttons_state & MOUSE_EVENT_RBUTTON)
934         ch ^= 0x1;
935
936     put_queue(s, ch);
937
938     ch = dx;
939
940     if (ch > 127)
941         ch = 127;
942     else if (ch < -127)
943         ch = -127;
944
945     put_queue(s, ch & 0xff);
946
947     ch = -dy;
948
949     if (ch > 127)
950         ch = 127;
951     else if (ch < -127)
952         ch = -127;
953
954     put_queue(s, ch & 0xff);
955
956     // MSC protocol specify two extra motion bytes
957
958     put_queue(s, 0);
959     put_queue(s, 0);
960 }
961
962 void slavio_serial_ms_kbd_init(hwaddr base, qemu_irq irq,
963                                int disabled, int clock, int it_shift)
964 {
965     DeviceState *dev;
966     SysBusDevice *s;
967
968     dev = qdev_create(NULL, TYPE_ESCC);
969     qdev_prop_set_uint32(dev, "disabled", disabled);
970     qdev_prop_set_uint32(dev, "frequency", clock);
971     qdev_prop_set_uint32(dev, "it_shift", it_shift);
972     qdev_prop_set_chr(dev, "chrB", NULL);
973     qdev_prop_set_chr(dev, "chrA", NULL);
974     qdev_prop_set_uint32(dev, "chnBtype", mouse);
975     qdev_prop_set_uint32(dev, "chnAtype", kbd);
976     qdev_init_nofail(dev);
977     s = SYS_BUS_DEVICE(dev);
978     sysbus_connect_irq(s, 0, irq);
979     sysbus_connect_irq(s, 1, irq);
980     sysbus_mmio_map(s, 0, base);
981 }
982
983 static int escc_init1(SysBusDevice *dev)
984 {
985     ESCCState *s = ESCC(dev);
986     unsigned int i;
987
988     s->chn[0].disabled = s->disabled;
989     s->chn[1].disabled = s->disabled;
990     for (i = 0; i < 2; i++) {
991         sysbus_init_irq(dev, &s->chn[i].irq);
992         s->chn[i].chn = 1 - i;
993         s->chn[i].clock = s->frequency / 2;
994         if (s->chn[i].chr) {
995             qemu_chr_add_handlers(s->chn[i].chr, serial_can_receive,
996                                   serial_receive1, serial_event, &s->chn[i]);
997         }
998     }
999     s->chn[0].otherchn = &s->chn[1];
1000     s->chn[1].otherchn = &s->chn[0];
1001
1002     memory_region_init_io(&s->mmio, OBJECT(s), &escc_mem_ops, s, "escc",
1003                           ESCC_SIZE << s->it_shift);
1004     sysbus_init_mmio(dev, &s->mmio);
1005
1006     if (s->chn[0].type == mouse) {
1007         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
1008                                      "QEMU Sun Mouse");
1009     }
1010     if (s->chn[1].type == kbd) {
1011         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
1012                                                    &sunkbd_handler);
1013     }
1014
1015     return 0;
1016 }
1017
1018 static Property escc_properties[] = {
1019     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
1020     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
1021     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
1022     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
1023     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
1024     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
1025     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
1026     DEFINE_PROP_END_OF_LIST(),
1027 };
1028
1029 static void escc_class_init(ObjectClass *klass, void *data)
1030 {
1031     DeviceClass *dc = DEVICE_CLASS(klass);
1032     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1033
1034     k->init = escc_init1;
1035     dc->reset = escc_reset;
1036     dc->vmsd = &vmstate_escc;
1037     dc->props = escc_properties;
1038 }
1039
1040 static const TypeInfo escc_info = {
1041     .name          = TYPE_ESCC,
1042     .parent        = TYPE_SYS_BUS_DEVICE,
1043     .instance_size = sizeof(ESCCState),
1044     .class_init    = escc_class_init,
1045 };
1046
1047 static void escc_register_types(void)
1048 {
1049     type_register_static(&escc_info);
1050 }
1051
1052 type_init(escc_register_types)