These changes are the raw update to qemu-2.6.
[kvmfornfv.git] / qemu / hw / block / nvme.c
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <keith.busch@intel.com>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
13  *
14  *  http://www.nvmexpress.org/resources/
15  */
16
17 /**
18  * Usage: add options:
19  *      -drive file=<file>,if=none,id=<drive_id>
20  *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
21  */
22
23 #include "qemu/osdep.h"
24 #include <hw/block/block.h>
25 #include <hw/hw.h>
26 #include <hw/pci/msix.h>
27 #include <hw/pci/pci.h>
28 #include "sysemu/sysemu.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/block-backend.h"
32
33 #include "nvme.h"
34
35 static void nvme_process_sq(void *opaque);
36
37 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
38 {
39     return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
40 }
41
42 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
43 {
44     return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
45 }
46
47 static void nvme_inc_cq_tail(NvmeCQueue *cq)
48 {
49     cq->tail++;
50     if (cq->tail >= cq->size) {
51         cq->tail = 0;
52         cq->phase = !cq->phase;
53     }
54 }
55
56 static void nvme_inc_sq_head(NvmeSQueue *sq)
57 {
58     sq->head = (sq->head + 1) % sq->size;
59 }
60
61 static uint8_t nvme_cq_full(NvmeCQueue *cq)
62 {
63     return (cq->tail + 1) % cq->size == cq->head;
64 }
65
66 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
67 {
68     return sq->head == sq->tail;
69 }
70
71 static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
72 {
73     if (cq->irq_enabled) {
74         if (msix_enabled(&(n->parent_obj))) {
75             msix_notify(&(n->parent_obj), cq->vector);
76         } else {
77             pci_irq_pulse(&n->parent_obj);
78         }
79     }
80 }
81
82 static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
83     uint32_t len, NvmeCtrl *n)
84 {
85     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
86     trans_len = MIN(len, trans_len);
87     int num_prps = (len >> n->page_bits) + 1;
88
89     if (!prp1) {
90         return NVME_INVALID_FIELD | NVME_DNR;
91     }
92
93     pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
94     qemu_sglist_add(qsg, prp1, trans_len);
95     len -= trans_len;
96     if (len) {
97         if (!prp2) {
98             goto unmap;
99         }
100         if (len > n->page_size) {
101             uint64_t prp_list[n->max_prp_ents];
102             uint32_t nents, prp_trans;
103             int i = 0;
104
105             nents = (len + n->page_size - 1) >> n->page_bits;
106             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
107             pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
108             while (len != 0) {
109                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
110
111                 if (i == n->max_prp_ents - 1 && len > n->page_size) {
112                     if (!prp_ent || prp_ent & (n->page_size - 1)) {
113                         goto unmap;
114                     }
115
116                     i = 0;
117                     nents = (len + n->page_size - 1) >> n->page_bits;
118                     prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
119                     pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
120                         prp_trans);
121                     prp_ent = le64_to_cpu(prp_list[i]);
122                 }
123
124                 if (!prp_ent || prp_ent & (n->page_size - 1)) {
125                     goto unmap;
126                 }
127
128                 trans_len = MIN(len, n->page_size);
129                 qemu_sglist_add(qsg, prp_ent, trans_len);
130                 len -= trans_len;
131                 i++;
132             }
133         } else {
134             if (prp2 & (n->page_size - 1)) {
135                 goto unmap;
136             }
137             qemu_sglist_add(qsg, prp2, len);
138         }
139     }
140     return NVME_SUCCESS;
141
142  unmap:
143     qemu_sglist_destroy(qsg);
144     return NVME_INVALID_FIELD | NVME_DNR;
145 }
146
147 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
148     uint64_t prp1, uint64_t prp2)
149 {
150     QEMUSGList qsg;
151
152     if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
153         return NVME_INVALID_FIELD | NVME_DNR;
154     }
155     if (dma_buf_read(ptr, len, &qsg)) {
156         qemu_sglist_destroy(&qsg);
157         return NVME_INVALID_FIELD | NVME_DNR;
158     }
159     qemu_sglist_destroy(&qsg);
160     return NVME_SUCCESS;
161 }
162
163 static void nvme_post_cqes(void *opaque)
164 {
165     NvmeCQueue *cq = opaque;
166     NvmeCtrl *n = cq->ctrl;
167     NvmeRequest *req, *next;
168
169     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
170         NvmeSQueue *sq;
171         hwaddr addr;
172
173         if (nvme_cq_full(cq)) {
174             break;
175         }
176
177         QTAILQ_REMOVE(&cq->req_list, req, entry);
178         sq = req->sq;
179         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
180         req->cqe.sq_id = cpu_to_le16(sq->sqid);
181         req->cqe.sq_head = cpu_to_le16(sq->head);
182         addr = cq->dma_addr + cq->tail * n->cqe_size;
183         nvme_inc_cq_tail(cq);
184         pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
185             sizeof(req->cqe));
186         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
187     }
188     nvme_isr_notify(n, cq);
189 }
190
191 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
192 {
193     assert(cq->cqid == req->sq->cqid);
194     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
195     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
196     timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
197 }
198
199 static void nvme_rw_cb(void *opaque, int ret)
200 {
201     NvmeRequest *req = opaque;
202     NvmeSQueue *sq = req->sq;
203     NvmeCtrl *n = sq->ctrl;
204     NvmeCQueue *cq = n->cq[sq->cqid];
205
206     if (!ret) {
207         block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
208         req->status = NVME_SUCCESS;
209     } else {
210         block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
211         req->status = NVME_INTERNAL_DEV_ERROR;
212     }
213     if (req->has_sg) {
214         qemu_sglist_destroy(&req->qsg);
215     }
216     nvme_enqueue_req_completion(cq, req);
217 }
218
219 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
220     NvmeRequest *req)
221 {
222     req->has_sg = false;
223     block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
224          BLOCK_ACCT_FLUSH);
225     req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
226
227     return NVME_NO_COMPLETE;
228 }
229
230 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
231     NvmeRequest *req)
232 {
233     NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
234     uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
235     uint64_t slba = le64_to_cpu(rw->slba);
236     uint64_t prp1 = le64_to_cpu(rw->prp1);
237     uint64_t prp2 = le64_to_cpu(rw->prp2);
238
239     uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
240     uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
241     uint64_t data_size = (uint64_t)nlb << data_shift;
242     uint64_t aio_slba  = slba << (data_shift - BDRV_SECTOR_BITS);
243     int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
244     enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
245
246     if ((slba + nlb) > ns->id_ns.nsze) {
247         block_acct_invalid(blk_get_stats(n->conf.blk), acct);
248         return NVME_LBA_RANGE | NVME_DNR;
249     }
250
251     if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
252         block_acct_invalid(blk_get_stats(n->conf.blk), acct);
253         return NVME_INVALID_FIELD | NVME_DNR;
254     }
255
256     assert((nlb << data_shift) == req->qsg.size);
257
258     req->has_sg = true;
259     dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
260     req->aiocb = is_write ?
261         dma_blk_write(n->conf.blk, &req->qsg, aio_slba, nvme_rw_cb, req) :
262         dma_blk_read(n->conf.blk, &req->qsg, aio_slba, nvme_rw_cb, req);
263
264     return NVME_NO_COMPLETE;
265 }
266
267 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
268 {
269     NvmeNamespace *ns;
270     uint32_t nsid = le32_to_cpu(cmd->nsid);
271
272     if (nsid == 0 || nsid > n->num_namespaces) {
273         return NVME_INVALID_NSID | NVME_DNR;
274     }
275
276     ns = &n->namespaces[nsid - 1];
277     switch (cmd->opcode) {
278     case NVME_CMD_FLUSH:
279         return nvme_flush(n, ns, cmd, req);
280     case NVME_CMD_WRITE:
281     case NVME_CMD_READ:
282         return nvme_rw(n, ns, cmd, req);
283     default:
284         return NVME_INVALID_OPCODE | NVME_DNR;
285     }
286 }
287
288 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
289 {
290     n->sq[sq->sqid] = NULL;
291     timer_del(sq->timer);
292     timer_free(sq->timer);
293     g_free(sq->io_req);
294     if (sq->sqid) {
295         g_free(sq);
296     }
297 }
298
299 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
300 {
301     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
302     NvmeRequest *req, *next;
303     NvmeSQueue *sq;
304     NvmeCQueue *cq;
305     uint16_t qid = le16_to_cpu(c->qid);
306
307     if (!qid || nvme_check_sqid(n, qid)) {
308         return NVME_INVALID_QID | NVME_DNR;
309     }
310
311     sq = n->sq[qid];
312     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
313         req = QTAILQ_FIRST(&sq->out_req_list);
314         assert(req->aiocb);
315         blk_aio_cancel(req->aiocb);
316     }
317     if (!nvme_check_cqid(n, sq->cqid)) {
318         cq = n->cq[sq->cqid];
319         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
320
321         nvme_post_cqes(cq);
322         QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
323             if (req->sq == sq) {
324                 QTAILQ_REMOVE(&cq->req_list, req, entry);
325                 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
326             }
327         }
328     }
329
330     nvme_free_sq(sq, n);
331     return NVME_SUCCESS;
332 }
333
334 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
335     uint16_t sqid, uint16_t cqid, uint16_t size)
336 {
337     int i;
338     NvmeCQueue *cq;
339
340     sq->ctrl = n;
341     sq->dma_addr = dma_addr;
342     sq->sqid = sqid;
343     sq->size = size;
344     sq->cqid = cqid;
345     sq->head = sq->tail = 0;
346     sq->io_req = g_new(NvmeRequest, sq->size);
347
348     QTAILQ_INIT(&sq->req_list);
349     QTAILQ_INIT(&sq->out_req_list);
350     for (i = 0; i < sq->size; i++) {
351         sq->io_req[i].sq = sq;
352         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
353     }
354     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
355
356     assert(n->cq[cqid]);
357     cq = n->cq[cqid];
358     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
359     n->sq[sqid] = sq;
360 }
361
362 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
363 {
364     NvmeSQueue *sq;
365     NvmeCreateSq *c = (NvmeCreateSq *)cmd;
366
367     uint16_t cqid = le16_to_cpu(c->cqid);
368     uint16_t sqid = le16_to_cpu(c->sqid);
369     uint16_t qsize = le16_to_cpu(c->qsize);
370     uint16_t qflags = le16_to_cpu(c->sq_flags);
371     uint64_t prp1 = le64_to_cpu(c->prp1);
372
373     if (!cqid || nvme_check_cqid(n, cqid)) {
374         return NVME_INVALID_CQID | NVME_DNR;
375     }
376     if (!sqid || (sqid && !nvme_check_sqid(n, sqid))) {
377         return NVME_INVALID_QID | NVME_DNR;
378     }
379     if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
380         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
381     }
382     if (!prp1 || prp1 & (n->page_size - 1)) {
383         return NVME_INVALID_FIELD | NVME_DNR;
384     }
385     if (!(NVME_SQ_FLAGS_PC(qflags))) {
386         return NVME_INVALID_FIELD | NVME_DNR;
387     }
388     sq = g_malloc0(sizeof(*sq));
389     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
390     return NVME_SUCCESS;
391 }
392
393 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
394 {
395     n->cq[cq->cqid] = NULL;
396     timer_del(cq->timer);
397     timer_free(cq->timer);
398     msix_vector_unuse(&n->parent_obj, cq->vector);
399     if (cq->cqid) {
400         g_free(cq);
401     }
402 }
403
404 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
405 {
406     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
407     NvmeCQueue *cq;
408     uint16_t qid = le16_to_cpu(c->qid);
409
410     if (!qid || nvme_check_cqid(n, qid)) {
411         return NVME_INVALID_CQID | NVME_DNR;
412     }
413
414     cq = n->cq[qid];
415     if (!QTAILQ_EMPTY(&cq->sq_list)) {
416         return NVME_INVALID_QUEUE_DEL;
417     }
418     nvme_free_cq(cq, n);
419     return NVME_SUCCESS;
420 }
421
422 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
423     uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
424 {
425     cq->ctrl = n;
426     cq->cqid = cqid;
427     cq->size = size;
428     cq->dma_addr = dma_addr;
429     cq->phase = 1;
430     cq->irq_enabled = irq_enabled;
431     cq->vector = vector;
432     cq->head = cq->tail = 0;
433     QTAILQ_INIT(&cq->req_list);
434     QTAILQ_INIT(&cq->sq_list);
435     msix_vector_use(&n->parent_obj, cq->vector);
436     n->cq[cqid] = cq;
437     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
438 }
439
440 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
441 {
442     NvmeCQueue *cq;
443     NvmeCreateCq *c = (NvmeCreateCq *)cmd;
444     uint16_t cqid = le16_to_cpu(c->cqid);
445     uint16_t vector = le16_to_cpu(c->irq_vector);
446     uint16_t qsize = le16_to_cpu(c->qsize);
447     uint16_t qflags = le16_to_cpu(c->cq_flags);
448     uint64_t prp1 = le64_to_cpu(c->prp1);
449
450     if (!cqid || (cqid && !nvme_check_cqid(n, cqid))) {
451         return NVME_INVALID_CQID | NVME_DNR;
452     }
453     if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
454         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
455     }
456     if (!prp1) {
457         return NVME_INVALID_FIELD | NVME_DNR;
458     }
459     if (vector > n->num_queues) {
460         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
461     }
462     if (!(NVME_CQ_FLAGS_PC(qflags))) {
463         return NVME_INVALID_FIELD | NVME_DNR;
464     }
465
466     cq = g_malloc0(sizeof(*cq));
467     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
468         NVME_CQ_FLAGS_IEN(qflags));
469     return NVME_SUCCESS;
470 }
471
472 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
473 {
474     NvmeNamespace *ns;
475     NvmeIdentify *c = (NvmeIdentify *)cmd;
476     uint32_t cns  = le32_to_cpu(c->cns);
477     uint32_t nsid = le32_to_cpu(c->nsid);
478     uint64_t prp1 = le64_to_cpu(c->prp1);
479     uint64_t prp2 = le64_to_cpu(c->prp2);
480
481     if (cns) {
482         return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
483             prp1, prp2);
484     }
485     if (nsid == 0 || nsid > n->num_namespaces) {
486         return NVME_INVALID_NSID | NVME_DNR;
487     }
488
489     ns = &n->namespaces[nsid - 1];
490     return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
491         prp1, prp2);
492 }
493
494 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
495 {
496     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
497     uint32_t result;
498
499     switch (dw10) {
500     case NVME_VOLATILE_WRITE_CACHE:
501         result = blk_enable_write_cache(n->conf.blk);
502         break;
503     case NVME_NUMBER_OF_QUEUES:
504         result = cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
505         break;
506     default:
507         return NVME_INVALID_FIELD | NVME_DNR;
508     }
509
510     req->cqe.result = result;
511     return NVME_SUCCESS;
512 }
513
514 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
515 {
516     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
517     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
518
519     switch (dw10) {
520     case NVME_VOLATILE_WRITE_CACHE:
521         blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
522         break;
523     case NVME_NUMBER_OF_QUEUES:
524         req->cqe.result =
525             cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
526         break;
527     default:
528         return NVME_INVALID_FIELD | NVME_DNR;
529     }
530     return NVME_SUCCESS;
531 }
532
533 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
534 {
535     switch (cmd->opcode) {
536     case NVME_ADM_CMD_DELETE_SQ:
537         return nvme_del_sq(n, cmd);
538     case NVME_ADM_CMD_CREATE_SQ:
539         return nvme_create_sq(n, cmd);
540     case NVME_ADM_CMD_DELETE_CQ:
541         return nvme_del_cq(n, cmd);
542     case NVME_ADM_CMD_CREATE_CQ:
543         return nvme_create_cq(n, cmd);
544     case NVME_ADM_CMD_IDENTIFY:
545         return nvme_identify(n, cmd);
546     case NVME_ADM_CMD_SET_FEATURES:
547         return nvme_set_feature(n, cmd, req);
548     case NVME_ADM_CMD_GET_FEATURES:
549         return nvme_get_feature(n, cmd, req);
550     default:
551         return NVME_INVALID_OPCODE | NVME_DNR;
552     }
553 }
554
555 static void nvme_process_sq(void *opaque)
556 {
557     NvmeSQueue *sq = opaque;
558     NvmeCtrl *n = sq->ctrl;
559     NvmeCQueue *cq = n->cq[sq->cqid];
560
561     uint16_t status;
562     hwaddr addr;
563     NvmeCmd cmd;
564     NvmeRequest *req;
565
566     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
567         addr = sq->dma_addr + sq->head * n->sqe_size;
568         pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
569         nvme_inc_sq_head(sq);
570
571         req = QTAILQ_FIRST(&sq->req_list);
572         QTAILQ_REMOVE(&sq->req_list, req, entry);
573         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
574         memset(&req->cqe, 0, sizeof(req->cqe));
575         req->cqe.cid = cmd.cid;
576
577         status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
578             nvme_admin_cmd(n, &cmd, req);
579         if (status != NVME_NO_COMPLETE) {
580             req->status = status;
581             nvme_enqueue_req_completion(cq, req);
582         }
583     }
584 }
585
586 static void nvme_clear_ctrl(NvmeCtrl *n)
587 {
588     int i;
589
590     for (i = 0; i < n->num_queues; i++) {
591         if (n->sq[i] != NULL) {
592             nvme_free_sq(n->sq[i], n);
593         }
594     }
595     for (i = 0; i < n->num_queues; i++) {
596         if (n->cq[i] != NULL) {
597             nvme_free_cq(n->cq[i], n);
598         }
599     }
600
601     blk_flush(n->conf.blk);
602     n->bar.cc = 0;
603 }
604
605 static int nvme_start_ctrl(NvmeCtrl *n)
606 {
607     uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
608     uint32_t page_size = 1 << page_bits;
609
610     if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
611             n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
612             NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
613             NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
614             NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
615             NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
616             NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
617             NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
618             !NVME_AQA_ASQS(n->bar.aqa) || !NVME_AQA_ACQS(n->bar.aqa)) {
619         return -1;
620     }
621
622     n->page_bits = page_bits;
623     n->page_size = page_size;
624     n->max_prp_ents = n->page_size / sizeof(uint64_t);
625     n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
626     n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
627     nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
628         NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
629     nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
630         NVME_AQA_ASQS(n->bar.aqa) + 1);
631
632     return 0;
633 }
634
635 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
636     unsigned size)
637 {
638     switch (offset) {
639     case 0xc:
640         n->bar.intms |= data & 0xffffffff;
641         n->bar.intmc = n->bar.intms;
642         break;
643     case 0x10:
644         n->bar.intms &= ~(data & 0xffffffff);
645         n->bar.intmc = n->bar.intms;
646         break;
647     case 0x14:
648         /* Windows first sends data, then sends enable bit */
649         if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
650             !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
651         {
652             n->bar.cc = data;
653         }
654
655         if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
656             n->bar.cc = data;
657             if (nvme_start_ctrl(n)) {
658                 n->bar.csts = NVME_CSTS_FAILED;
659             } else {
660                 n->bar.csts = NVME_CSTS_READY;
661             }
662         } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
663             nvme_clear_ctrl(n);
664             n->bar.csts &= ~NVME_CSTS_READY;
665         }
666         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
667                 nvme_clear_ctrl(n);
668                 n->bar.cc = data;
669                 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
670         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
671                 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
672                 n->bar.cc = data;
673         }
674         break;
675     case 0x24:
676         n->bar.aqa = data & 0xffffffff;
677         break;
678     case 0x28:
679         n->bar.asq = data;
680         break;
681     case 0x2c:
682         n->bar.asq |= data << 32;
683         break;
684     case 0x30:
685         n->bar.acq = data;
686         break;
687     case 0x34:
688         n->bar.acq |= data << 32;
689         break;
690     default:
691         break;
692     }
693 }
694
695 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
696 {
697     NvmeCtrl *n = (NvmeCtrl *)opaque;
698     uint8_t *ptr = (uint8_t *)&n->bar;
699     uint64_t val = 0;
700
701     if (addr < sizeof(n->bar)) {
702         memcpy(&val, ptr + addr, size);
703     }
704     return val;
705 }
706
707 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
708 {
709     uint32_t qid;
710
711     if (addr & ((1 << 2) - 1)) {
712         return;
713     }
714
715     if (((addr - 0x1000) >> 2) & 1) {
716         uint16_t new_head = val & 0xffff;
717         int start_sqs;
718         NvmeCQueue *cq;
719
720         qid = (addr - (0x1000 + (1 << 2))) >> 3;
721         if (nvme_check_cqid(n, qid)) {
722             return;
723         }
724
725         cq = n->cq[qid];
726         if (new_head >= cq->size) {
727             return;
728         }
729
730         start_sqs = nvme_cq_full(cq) ? 1 : 0;
731         cq->head = new_head;
732         if (start_sqs) {
733             NvmeSQueue *sq;
734             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
735                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
736             }
737             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
738         }
739
740         if (cq->tail != cq->head) {
741             nvme_isr_notify(n, cq);
742         }
743     } else {
744         uint16_t new_tail = val & 0xffff;
745         NvmeSQueue *sq;
746
747         qid = (addr - 0x1000) >> 3;
748         if (nvme_check_sqid(n, qid)) {
749             return;
750         }
751
752         sq = n->sq[qid];
753         if (new_tail >= sq->size) {
754             return;
755         }
756
757         sq->tail = new_tail;
758         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
759     }
760 }
761
762 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
763     unsigned size)
764 {
765     NvmeCtrl *n = (NvmeCtrl *)opaque;
766     if (addr < sizeof(n->bar)) {
767         nvme_write_bar(n, addr, data, size);
768     } else if (addr >= 0x1000) {
769         nvme_process_db(n, addr, data);
770     }
771 }
772
773 static const MemoryRegionOps nvme_mmio_ops = {
774     .read = nvme_mmio_read,
775     .write = nvme_mmio_write,
776     .endianness = DEVICE_LITTLE_ENDIAN,
777     .impl = {
778         .min_access_size = 2,
779         .max_access_size = 8,
780     },
781 };
782
783 static int nvme_init(PCIDevice *pci_dev)
784 {
785     NvmeCtrl *n = NVME(pci_dev);
786     NvmeIdCtrl *id = &n->id_ctrl;
787
788     int i;
789     int64_t bs_size;
790     uint8_t *pci_conf;
791
792     if (!n->conf.blk) {
793         return -1;
794     }
795
796     bs_size = blk_getlength(n->conf.blk);
797     if (bs_size < 0) {
798         return -1;
799     }
800
801     blkconf_serial(&n->conf, &n->serial);
802     if (!n->serial) {
803         return -1;
804     }
805     blkconf_blocksizes(&n->conf);
806
807     pci_conf = pci_dev->config;
808     pci_conf[PCI_INTERRUPT_PIN] = 1;
809     pci_config_set_prog_interface(pci_dev->config, 0x2);
810     pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
811     pcie_endpoint_cap_init(&n->parent_obj, 0x80);
812
813     n->num_namespaces = 1;
814     n->num_queues = 64;
815     n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
816     n->ns_size = bs_size / (uint64_t)n->num_namespaces;
817
818     n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
819     n->sq = g_new0(NvmeSQueue *, n->num_queues);
820     n->cq = g_new0(NvmeCQueue *, n->num_queues);
821
822     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
823                           "nvme", n->reg_size);
824     pci_register_bar(&n->parent_obj, 0,
825         PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
826         &n->iomem);
827     msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);
828
829     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
830     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
831     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
832     strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
833     strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
834     id->rab = 6;
835     id->ieee[0] = 0x00;
836     id->ieee[1] = 0x02;
837     id->ieee[2] = 0xb3;
838     id->oacs = cpu_to_le16(0);
839     id->frmw = 7 << 1;
840     id->lpa = 1 << 0;
841     id->sqes = (0x6 << 4) | 0x6;
842     id->cqes = (0x4 << 4) | 0x4;
843     id->nn = cpu_to_le32(n->num_namespaces);
844     id->psd[0].mp = cpu_to_le16(0x9c4);
845     id->psd[0].enlat = cpu_to_le32(0x10);
846     id->psd[0].exlat = cpu_to_le32(0x4);
847     if (blk_enable_write_cache(n->conf.blk)) {
848         id->vwc = 1;
849     }
850
851     n->bar.cap = 0;
852     NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
853     NVME_CAP_SET_CQR(n->bar.cap, 1);
854     NVME_CAP_SET_AMS(n->bar.cap, 1);
855     NVME_CAP_SET_TO(n->bar.cap, 0xf);
856     NVME_CAP_SET_CSS(n->bar.cap, 1);
857     NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
858
859     n->bar.vs = 0x00010100;
860     n->bar.intmc = n->bar.intms = 0;
861
862     for (i = 0; i < n->num_namespaces; i++) {
863         NvmeNamespace *ns = &n->namespaces[i];
864         NvmeIdNs *id_ns = &ns->id_ns;
865         id_ns->nsfeat = 0;
866         id_ns->nlbaf = 0;
867         id_ns->flbas = 0;
868         id_ns->mc = 0;
869         id_ns->dpc = 0;
870         id_ns->dps = 0;
871         id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
872         id_ns->ncap  = id_ns->nuse = id_ns->nsze =
873             cpu_to_le64(n->ns_size >>
874                 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
875     }
876     return 0;
877 }
878
879 static void nvme_exit(PCIDevice *pci_dev)
880 {
881     NvmeCtrl *n = NVME(pci_dev);
882
883     nvme_clear_ctrl(n);
884     g_free(n->namespaces);
885     g_free(n->cq);
886     g_free(n->sq);
887     msix_uninit_exclusive_bar(pci_dev);
888 }
889
890 static Property nvme_props[] = {
891     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
892     DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
893     DEFINE_PROP_END_OF_LIST(),
894 };
895
896 static const VMStateDescription nvme_vmstate = {
897     .name = "nvme",
898     .unmigratable = 1,
899 };
900
901 static void nvme_class_init(ObjectClass *oc, void *data)
902 {
903     DeviceClass *dc = DEVICE_CLASS(oc);
904     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
905
906     pc->init = nvme_init;
907     pc->exit = nvme_exit;
908     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
909     pc->vendor_id = PCI_VENDOR_ID_INTEL;
910     pc->device_id = 0x5845;
911     pc->revision = 1;
912     pc->is_express = 1;
913
914     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
915     dc->desc = "Non-Volatile Memory Express";
916     dc->props = nvme_props;
917     dc->vmsd = &nvme_vmstate;
918 }
919
920 static void nvme_instance_init(Object *obj)
921 {
922     NvmeCtrl *s = NVME(obj);
923
924     device_add_bootindex_property(obj, &s->conf.bootindex,
925                                   "bootindex", "/namespace@1,0",
926                                   DEVICE(obj), &error_abort);
927 }
928
929 static const TypeInfo nvme_info = {
930     .name          = "nvme",
931     .parent        = TYPE_PCI_DEVICE,
932     .instance_size = sizeof(NvmeCtrl),
933     .class_init    = nvme_class_init,
934     .instance_init = nvme_instance_init,
935 };
936
937 static void nvme_register_types(void)
938 {
939     type_register_static(&nvme_info);
940 }
941
942 type_init(nvme_register_types)