These changes are the raw update to qemu-2.6.
[kvmfornfv.git] / qemu / hw / block / nand.c
1 /*
2  * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
3  * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4  * Samsung Electronic.
5  *
6  * Copyright (c) 2006 Openedhand Ltd.
7  * Written by Andrzej Zaborowski <balrog@zabor.org>
8  *
9  * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10  * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11  * from ST Microelectronics.
12  *
13  * This code is licensed under the GNU GPL v2.
14  *
15  * Contributions after 2012-01-13 are licensed under the terms of the
16  * GNU GPL, version 2 or (at your option) any later version.
17  */
18
19 #ifndef NAND_IO
20
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/block/flash.h"
24 #include "sysemu/block-backend.h"
25 #include "hw/qdev.h"
26 #include "qapi/error.h"
27 #include "qemu/error-report.h"
28
29 # define NAND_CMD_READ0         0x00
30 # define NAND_CMD_READ1         0x01
31 # define NAND_CMD_READ2         0x50
32 # define NAND_CMD_LPREAD2       0x30
33 # define NAND_CMD_NOSERIALREAD2 0x35
34 # define NAND_CMD_RANDOMREAD1   0x05
35 # define NAND_CMD_RANDOMREAD2   0xe0
36 # define NAND_CMD_READID        0x90
37 # define NAND_CMD_RESET         0xff
38 # define NAND_CMD_PAGEPROGRAM1  0x80
39 # define NAND_CMD_PAGEPROGRAM2  0x10
40 # define NAND_CMD_CACHEPROGRAM2 0x15
41 # define NAND_CMD_BLOCKERASE1   0x60
42 # define NAND_CMD_BLOCKERASE2   0xd0
43 # define NAND_CMD_READSTATUS    0x70
44 # define NAND_CMD_COPYBACKPRG1  0x85
45
46 # define NAND_IOSTATUS_ERROR    (1 << 0)
47 # define NAND_IOSTATUS_PLANE0   (1 << 1)
48 # define NAND_IOSTATUS_PLANE1   (1 << 2)
49 # define NAND_IOSTATUS_PLANE2   (1 << 3)
50 # define NAND_IOSTATUS_PLANE3   (1 << 4)
51 # define NAND_IOSTATUS_READY    (1 << 6)
52 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
53
54 # define MAX_PAGE               0x800
55 # define MAX_OOB                0x40
56
57 typedef struct NANDFlashState NANDFlashState;
58 struct NANDFlashState {
59     DeviceState parent_obj;
60
61     uint8_t manf_id, chip_id;
62     uint8_t buswidth; /* in BYTES */
63     int size, pages;
64     int page_shift, oob_shift, erase_shift, addr_shift;
65     uint8_t *storage;
66     BlockBackend *blk;
67     int mem_oob;
68
69     uint8_t cle, ale, ce, wp, gnd;
70
71     uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
72     uint8_t *ioaddr;
73     int iolen;
74
75     uint32_t cmd;
76     uint64_t addr;
77     int addrlen;
78     int status;
79     int offset;
80
81     void (*blk_write)(NANDFlashState *s);
82     void (*blk_erase)(NANDFlashState *s);
83     void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
84
85     uint32_t ioaddr_vmstate;
86 };
87
88 #define TYPE_NAND "nand"
89
90 #define NAND(obj) \
91     OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
92
93 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
94 {
95     /* Like memcpy() but we logical-AND the data into the destination */
96     int i;
97     for (i = 0; i < n; i++) {
98         dest[i] &= src[i];
99     }
100 }
101
102 # define NAND_NO_AUTOINCR       0x00000001
103 # define NAND_BUSWIDTH_16       0x00000002
104 # define NAND_NO_PADDING        0x00000004
105 # define NAND_CACHEPRG          0x00000008
106 # define NAND_COPYBACK          0x00000010
107 # define NAND_IS_AND            0x00000020
108 # define NAND_4PAGE_ARRAY       0x00000040
109 # define NAND_NO_READRDY        0x00000100
110 # define NAND_SAMSUNG_LP        (NAND_NO_PADDING | NAND_COPYBACK)
111
112 # define NAND_IO
113
114 # define PAGE(addr)             ((addr) >> ADDR_SHIFT)
115 # define PAGE_START(page)       (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
116 # define PAGE_MASK              ((1 << ADDR_SHIFT) - 1)
117 # define OOB_SHIFT              (PAGE_SHIFT - 5)
118 # define OOB_SIZE               (1 << OOB_SHIFT)
119 # define SECTOR(addr)           ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
120 # define SECTOR_OFFSET(addr)    ((addr) & ((511 >> PAGE_SHIFT) << 8))
121
122 # define PAGE_SIZE              256
123 # define PAGE_SHIFT             8
124 # define PAGE_SECTORS           1
125 # define ADDR_SHIFT             8
126 # include "nand.c"
127 # define PAGE_SIZE              512
128 # define PAGE_SHIFT             9
129 # define PAGE_SECTORS           1
130 # define ADDR_SHIFT             8
131 # include "nand.c"
132 # define PAGE_SIZE              2048
133 # define PAGE_SHIFT             11
134 # define PAGE_SECTORS           4
135 # define ADDR_SHIFT             16
136 # include "nand.c"
137
138 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
139 static const struct {
140     int size;
141     int width;
142     int page_shift;
143     int erase_shift;
144     uint32_t options;
145 } nand_flash_ids[0x100] = {
146     [0 ... 0xff] = { 0 },
147
148     [0x6e] = { 1,       8,      8, 4, 0 },
149     [0x64] = { 2,       8,      8, 4, 0 },
150     [0x6b] = { 4,       8,      9, 4, 0 },
151     [0xe8] = { 1,       8,      8, 4, 0 },
152     [0xec] = { 1,       8,      8, 4, 0 },
153     [0xea] = { 2,       8,      8, 4, 0 },
154     [0xd5] = { 4,       8,      9, 4, 0 },
155     [0xe3] = { 4,       8,      9, 4, 0 },
156     [0xe5] = { 4,       8,      9, 4, 0 },
157     [0xd6] = { 8,       8,      9, 4, 0 },
158
159     [0x39] = { 8,       8,      9, 4, 0 },
160     [0xe6] = { 8,       8,      9, 4, 0 },
161     [0x49] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
162     [0x59] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
163
164     [0x33] = { 16,      8,      9, 5, 0 },
165     [0x73] = { 16,      8,      9, 5, 0 },
166     [0x43] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
167     [0x53] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
168
169     [0x35] = { 32,      8,      9, 5, 0 },
170     [0x75] = { 32,      8,      9, 5, 0 },
171     [0x45] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
172     [0x55] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
173
174     [0x36] = { 64,      8,      9, 5, 0 },
175     [0x76] = { 64,      8,      9, 5, 0 },
176     [0x46] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
177     [0x56] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
178
179     [0x78] = { 128,     8,      9, 5, 0 },
180     [0x39] = { 128,     8,      9, 5, 0 },
181     [0x79] = { 128,     8,      9, 5, 0 },
182     [0x72] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
183     [0x49] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
184     [0x74] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
185     [0x59] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
186
187     [0x71] = { 256,     8,      9, 5, 0 },
188
189     /*
190      * These are the new chips with large page size. The pagesize and the
191      * erasesize is determined from the extended id bytes
192      */
193 # define LP_OPTIONS     (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
194 # define LP_OPTIONS16   (LP_OPTIONS | NAND_BUSWIDTH_16)
195
196     /* 512 Megabit */
197     [0xa2] = { 64,      8,      0, 0, LP_OPTIONS },
198     [0xf2] = { 64,      8,      0, 0, LP_OPTIONS },
199     [0xb2] = { 64,      16,     0, 0, LP_OPTIONS16 },
200     [0xc2] = { 64,      16,     0, 0, LP_OPTIONS16 },
201
202     /* 1 Gigabit */
203     [0xa1] = { 128,     8,      0, 0, LP_OPTIONS },
204     [0xf1] = { 128,     8,      0, 0, LP_OPTIONS },
205     [0xb1] = { 128,     16,     0, 0, LP_OPTIONS16 },
206     [0xc1] = { 128,     16,     0, 0, LP_OPTIONS16 },
207
208     /* 2 Gigabit */
209     [0xaa] = { 256,     8,      0, 0, LP_OPTIONS },
210     [0xda] = { 256,     8,      0, 0, LP_OPTIONS },
211     [0xba] = { 256,     16,     0, 0, LP_OPTIONS16 },
212     [0xca] = { 256,     16,     0, 0, LP_OPTIONS16 },
213
214     /* 4 Gigabit */
215     [0xac] = { 512,     8,      0, 0, LP_OPTIONS },
216     [0xdc] = { 512,     8,      0, 0, LP_OPTIONS },
217     [0xbc] = { 512,     16,     0, 0, LP_OPTIONS16 },
218     [0xcc] = { 512,     16,     0, 0, LP_OPTIONS16 },
219
220     /* 8 Gigabit */
221     [0xa3] = { 1024,    8,      0, 0, LP_OPTIONS },
222     [0xd3] = { 1024,    8,      0, 0, LP_OPTIONS },
223     [0xb3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
224     [0xc3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
225
226     /* 16 Gigabit */
227     [0xa5] = { 2048,    8,      0, 0, LP_OPTIONS },
228     [0xd5] = { 2048,    8,      0, 0, LP_OPTIONS },
229     [0xb5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
230     [0xc5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
231 };
232
233 static void nand_reset(DeviceState *dev)
234 {
235     NANDFlashState *s = NAND(dev);
236     s->cmd = NAND_CMD_READ0;
237     s->addr = 0;
238     s->addrlen = 0;
239     s->iolen = 0;
240     s->offset = 0;
241     s->status &= NAND_IOSTATUS_UNPROTCT;
242     s->status |= NAND_IOSTATUS_READY;
243 }
244
245 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
246 {
247     s->ioaddr[s->iolen++] = value;
248     for (value = s->buswidth; --value;) {
249         s->ioaddr[s->iolen++] = 0;
250     }
251 }
252
253 static void nand_command(NANDFlashState *s)
254 {
255     unsigned int offset;
256     switch (s->cmd) {
257     case NAND_CMD_READ0:
258         s->iolen = 0;
259         break;
260
261     case NAND_CMD_READID:
262         s->ioaddr = s->io;
263         s->iolen = 0;
264         nand_pushio_byte(s, s->manf_id);
265         nand_pushio_byte(s, s->chip_id);
266         nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
267         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
268             /* Page Size, Block Size, Spare Size; bit 6 indicates
269              * 8 vs 16 bit width NAND.
270              */
271             nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
272         } else {
273             nand_pushio_byte(s, 0xc0); /* Multi-plane */
274         }
275         break;
276
277     case NAND_CMD_RANDOMREAD2:
278     case NAND_CMD_NOSERIALREAD2:
279         if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
280             break;
281         offset = s->addr & ((1 << s->addr_shift) - 1);
282         s->blk_load(s, s->addr, offset);
283         if (s->gnd)
284             s->iolen = (1 << s->page_shift) - offset;
285         else
286             s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
287         break;
288
289     case NAND_CMD_RESET:
290         nand_reset(DEVICE(s));
291         break;
292
293     case NAND_CMD_PAGEPROGRAM1:
294         s->ioaddr = s->io;
295         s->iolen = 0;
296         break;
297
298     case NAND_CMD_PAGEPROGRAM2:
299         if (s->wp) {
300             s->blk_write(s);
301         }
302         break;
303
304     case NAND_CMD_BLOCKERASE1:
305         break;
306
307     case NAND_CMD_BLOCKERASE2:
308         s->addr &= (1ull << s->addrlen * 8) - 1;
309         s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
310                                                                     16 : 8;
311
312         if (s->wp) {
313             s->blk_erase(s);
314         }
315         break;
316
317     case NAND_CMD_READSTATUS:
318         s->ioaddr = s->io;
319         s->iolen = 0;
320         nand_pushio_byte(s, s->status);
321         break;
322
323     default:
324         printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
325     }
326 }
327
328 static void nand_pre_save(void *opaque)
329 {
330     NANDFlashState *s = NAND(opaque);
331
332     s->ioaddr_vmstate = s->ioaddr - s->io;
333 }
334
335 static int nand_post_load(void *opaque, int version_id)
336 {
337     NANDFlashState *s = NAND(opaque);
338
339     if (s->ioaddr_vmstate > sizeof(s->io)) {
340         return -EINVAL;
341     }
342     s->ioaddr = s->io + s->ioaddr_vmstate;
343
344     return 0;
345 }
346
347 static const VMStateDescription vmstate_nand = {
348     .name = "nand",
349     .version_id = 1,
350     .minimum_version_id = 1,
351     .pre_save = nand_pre_save,
352     .post_load = nand_post_load,
353     .fields = (VMStateField[]) {
354         VMSTATE_UINT8(cle, NANDFlashState),
355         VMSTATE_UINT8(ale, NANDFlashState),
356         VMSTATE_UINT8(ce, NANDFlashState),
357         VMSTATE_UINT8(wp, NANDFlashState),
358         VMSTATE_UINT8(gnd, NANDFlashState),
359         VMSTATE_BUFFER(io, NANDFlashState),
360         VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
361         VMSTATE_INT32(iolen, NANDFlashState),
362         VMSTATE_UINT32(cmd, NANDFlashState),
363         VMSTATE_UINT64(addr, NANDFlashState),
364         VMSTATE_INT32(addrlen, NANDFlashState),
365         VMSTATE_INT32(status, NANDFlashState),
366         VMSTATE_INT32(offset, NANDFlashState),
367         /* XXX: do we want to save s->storage too? */
368         VMSTATE_END_OF_LIST()
369     }
370 };
371
372 static void nand_realize(DeviceState *dev, Error **errp)
373 {
374     int pagesize;
375     NANDFlashState *s = NAND(dev);
376
377     s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
378     s->size = nand_flash_ids[s->chip_id].size << 20;
379     if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
380         s->page_shift = 11;
381         s->erase_shift = 6;
382     } else {
383         s->page_shift = nand_flash_ids[s->chip_id].page_shift;
384         s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
385     }
386
387     switch (1 << s->page_shift) {
388     case 256:
389         nand_init_256(s);
390         break;
391     case 512:
392         nand_init_512(s);
393         break;
394     case 2048:
395         nand_init_2048(s);
396         break;
397     default:
398         error_setg(errp, "Unsupported NAND block size %#x",
399                    1 << s->page_shift);
400         return;
401     }
402
403     pagesize = 1 << s->oob_shift;
404     s->mem_oob = 1;
405     if (s->blk) {
406         if (blk_is_read_only(s->blk)) {
407             error_setg(errp, "Can't use a read-only drive");
408             return;
409         }
410         if (blk_getlength(s->blk) >=
411                 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
412             pagesize = 0;
413             s->mem_oob = 0;
414         }
415     } else {
416         pagesize += 1 << s->page_shift;
417     }
418     if (pagesize) {
419         s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
420                         0xff, s->pages * pagesize);
421     }
422     /* Give s->ioaddr a sane value in case we save state before it is used. */
423     s->ioaddr = s->io;
424 }
425
426 static Property nand_properties[] = {
427     DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
428     DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
429     DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
430     DEFINE_PROP_END_OF_LIST(),
431 };
432
433 static void nand_class_init(ObjectClass *klass, void *data)
434 {
435     DeviceClass *dc = DEVICE_CLASS(klass);
436
437     dc->realize = nand_realize;
438     dc->reset = nand_reset;
439     dc->vmsd = &vmstate_nand;
440     dc->props = nand_properties;
441 }
442
443 static const TypeInfo nand_info = {
444     .name          = TYPE_NAND,
445     .parent        = TYPE_DEVICE,
446     .instance_size = sizeof(NANDFlashState),
447     .class_init    = nand_class_init,
448 };
449
450 static void nand_register_types(void)
451 {
452     type_register_static(&nand_info);
453 }
454
455 /*
456  * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
457  * outputs are R/B and eight I/O pins.
458  *
459  * CE, WP and R/B are active low.
460  */
461 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
462                   uint8_t ce, uint8_t wp, uint8_t gnd)
463 {
464     NANDFlashState *s = NAND(dev);
465
466     s->cle = cle;
467     s->ale = ale;
468     s->ce = ce;
469     s->wp = wp;
470     s->gnd = gnd;
471     if (wp) {
472         s->status |= NAND_IOSTATUS_UNPROTCT;
473     } else {
474         s->status &= ~NAND_IOSTATUS_UNPROTCT;
475     }
476 }
477
478 void nand_getpins(DeviceState *dev, int *rb)
479 {
480     *rb = 1;
481 }
482
483 void nand_setio(DeviceState *dev, uint32_t value)
484 {
485     int i;
486     NANDFlashState *s = NAND(dev);
487
488     if (!s->ce && s->cle) {
489         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
490             if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
491                 return;
492             if (value == NAND_CMD_RANDOMREAD1) {
493                 s->addr &= ~((1 << s->addr_shift) - 1);
494                 s->addrlen = 0;
495                 return;
496             }
497         }
498         if (value == NAND_CMD_READ0) {
499             s->offset = 0;
500         } else if (value == NAND_CMD_READ1) {
501             s->offset = 0x100;
502             value = NAND_CMD_READ0;
503         } else if (value == NAND_CMD_READ2) {
504             s->offset = 1 << s->page_shift;
505             value = NAND_CMD_READ0;
506         }
507
508         s->cmd = value;
509
510         if (s->cmd == NAND_CMD_READSTATUS ||
511                 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
512                 s->cmd == NAND_CMD_BLOCKERASE1 ||
513                 s->cmd == NAND_CMD_BLOCKERASE2 ||
514                 s->cmd == NAND_CMD_NOSERIALREAD2 ||
515                 s->cmd == NAND_CMD_RANDOMREAD2 ||
516                 s->cmd == NAND_CMD_RESET) {
517             nand_command(s);
518         }
519
520         if (s->cmd != NAND_CMD_RANDOMREAD2) {
521             s->addrlen = 0;
522         }
523     }
524
525     if (s->ale) {
526         unsigned int shift = s->addrlen * 8;
527         uint64_t mask = ~(0xffull << shift);
528         uint64_t v = (uint64_t)value << shift;
529
530         s->addr = (s->addr & mask) | v;
531         s->addrlen ++;
532
533         switch (s->addrlen) {
534         case 1:
535             if (s->cmd == NAND_CMD_READID) {
536                 nand_command(s);
537             }
538             break;
539         case 2: /* fix cache address as a byte address */
540             s->addr <<= (s->buswidth - 1);
541             break;
542         case 3:
543             if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
544                     (s->cmd == NAND_CMD_READ0 ||
545                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
546                 nand_command(s);
547             }
548             break;
549         case 4:
550             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
551                     nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
552                     (s->cmd == NAND_CMD_READ0 ||
553                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
554                 nand_command(s);
555             }
556             break;
557         case 5:
558             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
559                     nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
560                     (s->cmd == NAND_CMD_READ0 ||
561                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
562                 nand_command(s);
563             }
564             break;
565         default:
566             break;
567         }
568     }
569
570     if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
571         if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
572             for (i = s->buswidth; i--; value >>= 8) {
573                 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
574             }
575         }
576     } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
577         if ((s->addr & ((1 << s->addr_shift) - 1)) <
578                 (1 << s->page_shift) + (1 << s->oob_shift)) {
579             for (i = s->buswidth; i--; s->addr++, value >>= 8) {
580                 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
581                     (uint8_t) (value & 0xff);
582             }
583         }
584     }
585 }
586
587 uint32_t nand_getio(DeviceState *dev)
588 {
589     int offset;
590     uint32_t x = 0;
591     NANDFlashState *s = NAND(dev);
592
593     /* Allow sequential reading */
594     if (!s->iolen && s->cmd == NAND_CMD_READ0) {
595         offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
596         s->offset = 0;
597
598         s->blk_load(s, s->addr, offset);
599         if (s->gnd)
600             s->iolen = (1 << s->page_shift) - offset;
601         else
602             s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
603     }
604
605     if (s->ce || s->iolen <= 0) {
606         return 0;
607     }
608
609     for (offset = s->buswidth; offset--;) {
610         x |= s->ioaddr[offset] << (offset << 3);
611     }
612     /* after receiving READ STATUS command all subsequent reads will
613      * return the status register value until another command is issued
614      */
615     if (s->cmd != NAND_CMD_READSTATUS) {
616         s->addr   += s->buswidth;
617         s->ioaddr += s->buswidth;
618         s->iolen  -= s->buswidth;
619     }
620     return x;
621 }
622
623 uint32_t nand_getbuswidth(DeviceState *dev)
624 {
625     NANDFlashState *s = (NANDFlashState *) dev;
626     return s->buswidth << 3;
627 }
628
629 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
630 {
631     DeviceState *dev;
632
633     if (nand_flash_ids[chip_id].size == 0) {
634         hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
635     }
636     dev = DEVICE(object_new(TYPE_NAND));
637     qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
638     qdev_prop_set_uint8(dev, "chip_id", chip_id);
639     if (blk) {
640         qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
641     }
642
643     qdev_init_nofail(dev);
644     return dev;
645 }
646
647 type_init(nand_register_types)
648
649 #else
650
651 /* Program a single page */
652 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
653 {
654     uint64_t off, page, sector, soff;
655     uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
656     if (PAGE(s->addr) >= s->pages)
657         return;
658
659     if (!s->blk) {
660         mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
661                         s->offset, s->io, s->iolen);
662     } else if (s->mem_oob) {
663         sector = SECTOR(s->addr);
664         off = (s->addr & PAGE_MASK) + s->offset;
665         soff = SECTOR_OFFSET(s->addr);
666         if (blk_read(s->blk, sector, iobuf, PAGE_SECTORS) < 0) {
667             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
668             return;
669         }
670
671         mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
672         if (off + s->iolen > PAGE_SIZE) {
673             page = PAGE(s->addr);
674             mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
675                             MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
676         }
677
678         if (blk_write(s->blk, sector, iobuf, PAGE_SECTORS) < 0) {
679             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
680         }
681     } else {
682         off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
683         sector = off >> 9;
684         soff = off & 0x1ff;
685         if (blk_read(s->blk, sector, iobuf, PAGE_SECTORS + 2) < 0) {
686             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
687             return;
688         }
689
690         mem_and(iobuf + soff, s->io, s->iolen);
691
692         if (blk_write(s->blk, sector, iobuf, PAGE_SECTORS + 2) < 0) {
693             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
694         }
695     }
696     s->offset = 0;
697 }
698
699 /* Erase a single block */
700 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
701 {
702     uint64_t i, page, addr;
703     uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
704     addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
705
706     if (PAGE(addr) >= s->pages) {
707         return;
708     }
709
710     if (!s->blk) {
711         memset(s->storage + PAGE_START(addr),
712                         0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
713     } else if (s->mem_oob) {
714         memset(s->storage + (PAGE(addr) << OOB_SHIFT),
715                         0xff, OOB_SIZE << s->erase_shift);
716         i = SECTOR(addr);
717         page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
718         for (; i < page; i ++)
719             if (blk_write(s->blk, i, iobuf, 1) < 0) {
720                 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
721             }
722     } else {
723         addr = PAGE_START(addr);
724         page = addr >> 9;
725         if (blk_read(s->blk, page, iobuf, 1) < 0) {
726             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
727         }
728         memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
729         if (blk_write(s->blk, page, iobuf, 1) < 0) {
730             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
731         }
732
733         memset(iobuf, 0xff, 0x200);
734         i = (addr & ~0x1ff) + 0x200;
735         for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
736                         i < addr; i += 0x200) {
737             if (blk_write(s->blk, i >> 9, iobuf, 1) < 0) {
738                 printf("%s: write error in sector %" PRIu64 "\n",
739                        __func__, i >> 9);
740             }
741         }
742
743         page = i >> 9;
744         if (blk_read(s->blk, page, iobuf, 1) < 0) {
745             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
746         }
747         memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
748         if (blk_write(s->blk, page, iobuf, 1) < 0) {
749             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
750         }
751     }
752 }
753
754 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
755                 uint64_t addr, int offset)
756 {
757     if (PAGE(addr) >= s->pages) {
758         return;
759     }
760
761     if (s->blk) {
762         if (s->mem_oob) {
763             if (blk_read(s->blk, SECTOR(addr), s->io, PAGE_SECTORS) < 0) {
764                 printf("%s: read error in sector %" PRIu64 "\n",
765                                 __func__, SECTOR(addr));
766             }
767             memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
768                             s->storage + (PAGE(s->addr) << OOB_SHIFT),
769                             OOB_SIZE);
770             s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
771         } else {
772             if (blk_read(s->blk, PAGE_START(addr) >> 9,
773                          s->io, (PAGE_SECTORS + 2)) < 0) {
774                 printf("%s: read error in sector %" PRIu64 "\n",
775                                 __func__, PAGE_START(addr) >> 9);
776             }
777             s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
778         }
779     } else {
780         memcpy(s->io, s->storage + PAGE_START(s->addr) +
781                         offset, PAGE_SIZE + OOB_SIZE - offset);
782         s->ioaddr = s->io;
783     }
784 }
785
786 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
787 {
788     s->oob_shift = PAGE_SHIFT - 5;
789     s->pages = s->size >> PAGE_SHIFT;
790     s->addr_shift = ADDR_SHIFT;
791
792     s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
793     s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
794     s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
795 }
796
797 # undef PAGE_SIZE
798 # undef PAGE_SHIFT
799 # undef PAGE_SECTORS
800 # undef ADDR_SHIFT
801 #endif  /* NAND_IO */