Add qemu 2.4.0
[kvmfornfv.git] / qemu / hw / arm / strongarm.c
1 /*
2  * StrongARM SA-1100/SA-1110 emulation
3  *
4  * Copyright (C) 2011 Dmitry Eremin-Solenikov
5  *
6  * Largely based on StrongARM emulation:
7  * Copyright (c) 2006 Openedhand Ltd.
8  * Written by Andrzej Zaborowski <balrog@zabor.org>
9  *
10  * UART code based on QEMU 16550A UART emulation
11  * Copyright (c) 2003-2004 Fabrice Bellard
12  * Copyright (c) 2008 Citrix Systems, Inc.
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License version 2 as
16  *  published by the Free Software Foundation.
17  *
18  *  This program is distributed in the hope that it will be useful,
19  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  *  GNU General Public License for more details.
22  *
23  *  You should have received a copy of the GNU General Public License along
24  *  with this program; if not, see <http://www.gnu.org/licenses/>.
25  *
26  *  Contributions after 2012-01-13 are licensed under the terms of the
27  *  GNU GPL, version 2 or (at your option) any later version.
28  */
29
30 #include "hw/boards.h"
31 #include "hw/sysbus.h"
32 #include "strongarm.h"
33 #include "qemu/error-report.h"
34 #include "hw/arm/arm.h"
35 #include "sysemu/char.h"
36 #include "sysemu/sysemu.h"
37 #include "hw/ssi.h"
38
39 //#define DEBUG
40
41 /*
42  TODO
43  - Implement cp15, c14 ?
44  - Implement cp15, c15 !!! (idle used in L)
45  - Implement idle mode handling/DIM
46  - Implement sleep mode/Wake sources
47  - Implement reset control
48  - Implement memory control regs
49  - PCMCIA handling
50  - Maybe support MBGNT/MBREQ
51  - DMA channels
52  - GPCLK
53  - IrDA
54  - MCP
55  - Enhance UART with modem signals
56  */
57
58 #ifdef DEBUG
59 # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
60 #else
61 # define DPRINTF(format, ...) do { } while (0)
62 #endif
63
64 static struct {
65     hwaddr io_base;
66     int irq;
67 } sa_serial[] = {
68     { 0x80010000, SA_PIC_UART1 },
69     { 0x80030000, SA_PIC_UART2 },
70     { 0x80050000, SA_PIC_UART3 },
71     { 0, 0 }
72 };
73
74 /* Interrupt Controller */
75
76 #define TYPE_STRONGARM_PIC "strongarm_pic"
77 #define STRONGARM_PIC(obj) \
78     OBJECT_CHECK(StrongARMPICState, (obj), TYPE_STRONGARM_PIC)
79
80 typedef struct StrongARMPICState {
81     SysBusDevice parent_obj;
82
83     MemoryRegion iomem;
84     qemu_irq    irq;
85     qemu_irq    fiq;
86
87     uint32_t pending;
88     uint32_t enabled;
89     uint32_t is_fiq;
90     uint32_t int_idle;
91 } StrongARMPICState;
92
93 #define ICIP    0x00
94 #define ICMR    0x04
95 #define ICLR    0x08
96 #define ICFP    0x10
97 #define ICPR    0x20
98 #define ICCR    0x0c
99
100 #define SA_PIC_SRCS     32
101
102
103 static void strongarm_pic_update(void *opaque)
104 {
105     StrongARMPICState *s = opaque;
106
107     /* FIXME: reflect DIM */
108     qemu_set_irq(s->fiq, s->pending & s->enabled &  s->is_fiq);
109     qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
110 }
111
112 static void strongarm_pic_set_irq(void *opaque, int irq, int level)
113 {
114     StrongARMPICState *s = opaque;
115
116     if (level) {
117         s->pending |= 1 << irq;
118     } else {
119         s->pending &= ~(1 << irq);
120     }
121
122     strongarm_pic_update(s);
123 }
124
125 static uint64_t strongarm_pic_mem_read(void *opaque, hwaddr offset,
126                                        unsigned size)
127 {
128     StrongARMPICState *s = opaque;
129
130     switch (offset) {
131     case ICIP:
132         return s->pending & ~s->is_fiq & s->enabled;
133     case ICMR:
134         return s->enabled;
135     case ICLR:
136         return s->is_fiq;
137     case ICCR:
138         return s->int_idle == 0;
139     case ICFP:
140         return s->pending & s->is_fiq & s->enabled;
141     case ICPR:
142         return s->pending;
143     default:
144         printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
145                         __func__, offset);
146         return 0;
147     }
148 }
149
150 static void strongarm_pic_mem_write(void *opaque, hwaddr offset,
151                                     uint64_t value, unsigned size)
152 {
153     StrongARMPICState *s = opaque;
154
155     switch (offset) {
156     case ICMR:
157         s->enabled = value;
158         break;
159     case ICLR:
160         s->is_fiq = value;
161         break;
162     case ICCR:
163         s->int_idle = (value & 1) ? 0 : ~0;
164         break;
165     default:
166         printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
167                         __func__, offset);
168         break;
169     }
170     strongarm_pic_update(s);
171 }
172
173 static const MemoryRegionOps strongarm_pic_ops = {
174     .read = strongarm_pic_mem_read,
175     .write = strongarm_pic_mem_write,
176     .endianness = DEVICE_NATIVE_ENDIAN,
177 };
178
179 static int strongarm_pic_initfn(SysBusDevice *sbd)
180 {
181     DeviceState *dev = DEVICE(sbd);
182     StrongARMPICState *s = STRONGARM_PIC(dev);
183
184     qdev_init_gpio_in(dev, strongarm_pic_set_irq, SA_PIC_SRCS);
185     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_pic_ops, s,
186                           "pic", 0x1000);
187     sysbus_init_mmio(sbd, &s->iomem);
188     sysbus_init_irq(sbd, &s->irq);
189     sysbus_init_irq(sbd, &s->fiq);
190
191     return 0;
192 }
193
194 static int strongarm_pic_post_load(void *opaque, int version_id)
195 {
196     strongarm_pic_update(opaque);
197     return 0;
198 }
199
200 static VMStateDescription vmstate_strongarm_pic_regs = {
201     .name = "strongarm_pic",
202     .version_id = 0,
203     .minimum_version_id = 0,
204     .post_load = strongarm_pic_post_load,
205     .fields = (VMStateField[]) {
206         VMSTATE_UINT32(pending, StrongARMPICState),
207         VMSTATE_UINT32(enabled, StrongARMPICState),
208         VMSTATE_UINT32(is_fiq, StrongARMPICState),
209         VMSTATE_UINT32(int_idle, StrongARMPICState),
210         VMSTATE_END_OF_LIST(),
211     },
212 };
213
214 static void strongarm_pic_class_init(ObjectClass *klass, void *data)
215 {
216     DeviceClass *dc = DEVICE_CLASS(klass);
217     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
218
219     k->init = strongarm_pic_initfn;
220     dc->desc = "StrongARM PIC";
221     dc->vmsd = &vmstate_strongarm_pic_regs;
222 }
223
224 static const TypeInfo strongarm_pic_info = {
225     .name          = TYPE_STRONGARM_PIC,
226     .parent        = TYPE_SYS_BUS_DEVICE,
227     .instance_size = sizeof(StrongARMPICState),
228     .class_init    = strongarm_pic_class_init,
229 };
230
231 /* Real-Time Clock */
232 #define RTAR 0x00 /* RTC Alarm register */
233 #define RCNR 0x04 /* RTC Counter register */
234 #define RTTR 0x08 /* RTC Timer Trim register */
235 #define RTSR 0x10 /* RTC Status register */
236
237 #define RTSR_AL (1 << 0) /* RTC Alarm detected */
238 #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
239 #define RTSR_ALE (1 << 2) /* RTC Alarm enable */
240 #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
241
242 /* 16 LSB of RTTR are clockdiv for internal trim logic,
243  * trim delete isn't emulated, so
244  * f = 32 768 / (RTTR_trim + 1) */
245
246 #define TYPE_STRONGARM_RTC "strongarm-rtc"
247 #define STRONGARM_RTC(obj) \
248     OBJECT_CHECK(StrongARMRTCState, (obj), TYPE_STRONGARM_RTC)
249
250 typedef struct StrongARMRTCState {
251     SysBusDevice parent_obj;
252
253     MemoryRegion iomem;
254     uint32_t rttr;
255     uint32_t rtsr;
256     uint32_t rtar;
257     uint32_t last_rcnr;
258     int64_t last_hz;
259     QEMUTimer *rtc_alarm;
260     QEMUTimer *rtc_hz;
261     qemu_irq rtc_irq;
262     qemu_irq rtc_hz_irq;
263 } StrongARMRTCState;
264
265 static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
266 {
267     qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
268     qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
269 }
270
271 static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
272 {
273     int64_t rt = qemu_clock_get_ms(rtc_clock);
274     s->last_rcnr += ((rt - s->last_hz) << 15) /
275             (1000 * ((s->rttr & 0xffff) + 1));
276     s->last_hz = rt;
277 }
278
279 static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
280 {
281     if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
282         timer_mod(s->rtc_hz, s->last_hz + 1000);
283     } else {
284         timer_del(s->rtc_hz);
285     }
286
287     if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
288         timer_mod(s->rtc_alarm, s->last_hz +
289                 (((s->rtar - s->last_rcnr) * 1000 *
290                   ((s->rttr & 0xffff) + 1)) >> 15));
291     } else {
292         timer_del(s->rtc_alarm);
293     }
294 }
295
296 static inline void strongarm_rtc_alarm_tick(void *opaque)
297 {
298     StrongARMRTCState *s = opaque;
299     s->rtsr |= RTSR_AL;
300     strongarm_rtc_timer_update(s);
301     strongarm_rtc_int_update(s);
302 }
303
304 static inline void strongarm_rtc_hz_tick(void *opaque)
305 {
306     StrongARMRTCState *s = opaque;
307     s->rtsr |= RTSR_HZ;
308     strongarm_rtc_timer_update(s);
309     strongarm_rtc_int_update(s);
310 }
311
312 static uint64_t strongarm_rtc_read(void *opaque, hwaddr addr,
313                                    unsigned size)
314 {
315     StrongARMRTCState *s = opaque;
316
317     switch (addr) {
318     case RTTR:
319         return s->rttr;
320     case RTSR:
321         return s->rtsr;
322     case RTAR:
323         return s->rtar;
324     case RCNR:
325         return s->last_rcnr +
326                 ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
327                 (1000 * ((s->rttr & 0xffff) + 1));
328     default:
329         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
330         return 0;
331     }
332 }
333
334 static void strongarm_rtc_write(void *opaque, hwaddr addr,
335                                 uint64_t value, unsigned size)
336 {
337     StrongARMRTCState *s = opaque;
338     uint32_t old_rtsr;
339
340     switch (addr) {
341     case RTTR:
342         strongarm_rtc_hzupdate(s);
343         s->rttr = value;
344         strongarm_rtc_timer_update(s);
345         break;
346
347     case RTSR:
348         old_rtsr = s->rtsr;
349         s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
350                   (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
351
352         if (s->rtsr != old_rtsr) {
353             strongarm_rtc_timer_update(s);
354         }
355
356         strongarm_rtc_int_update(s);
357         break;
358
359     case RTAR:
360         s->rtar = value;
361         strongarm_rtc_timer_update(s);
362         break;
363
364     case RCNR:
365         strongarm_rtc_hzupdate(s);
366         s->last_rcnr = value;
367         strongarm_rtc_timer_update(s);
368         break;
369
370     default:
371         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
372     }
373 }
374
375 static const MemoryRegionOps strongarm_rtc_ops = {
376     .read = strongarm_rtc_read,
377     .write = strongarm_rtc_write,
378     .endianness = DEVICE_NATIVE_ENDIAN,
379 };
380
381 static int strongarm_rtc_init(SysBusDevice *dev)
382 {
383     StrongARMRTCState *s = STRONGARM_RTC(dev);
384     struct tm tm;
385
386     s->rttr = 0x0;
387     s->rtsr = 0;
388
389     qemu_get_timedate(&tm, 0);
390
391     s->last_rcnr = (uint32_t) mktimegm(&tm);
392     s->last_hz = qemu_clock_get_ms(rtc_clock);
393
394     s->rtc_alarm = timer_new_ms(rtc_clock, strongarm_rtc_alarm_tick, s);
395     s->rtc_hz = timer_new_ms(rtc_clock, strongarm_rtc_hz_tick, s);
396
397     sysbus_init_irq(dev, &s->rtc_irq);
398     sysbus_init_irq(dev, &s->rtc_hz_irq);
399
400     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_rtc_ops, s,
401                           "rtc", 0x10000);
402     sysbus_init_mmio(dev, &s->iomem);
403
404     return 0;
405 }
406
407 static void strongarm_rtc_pre_save(void *opaque)
408 {
409     StrongARMRTCState *s = opaque;
410
411     strongarm_rtc_hzupdate(s);
412 }
413
414 static int strongarm_rtc_post_load(void *opaque, int version_id)
415 {
416     StrongARMRTCState *s = opaque;
417
418     strongarm_rtc_timer_update(s);
419     strongarm_rtc_int_update(s);
420
421     return 0;
422 }
423
424 static const VMStateDescription vmstate_strongarm_rtc_regs = {
425     .name = "strongarm-rtc",
426     .version_id = 0,
427     .minimum_version_id = 0,
428     .pre_save = strongarm_rtc_pre_save,
429     .post_load = strongarm_rtc_post_load,
430     .fields = (VMStateField[]) {
431         VMSTATE_UINT32(rttr, StrongARMRTCState),
432         VMSTATE_UINT32(rtsr, StrongARMRTCState),
433         VMSTATE_UINT32(rtar, StrongARMRTCState),
434         VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
435         VMSTATE_INT64(last_hz, StrongARMRTCState),
436         VMSTATE_END_OF_LIST(),
437     },
438 };
439
440 static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
441 {
442     DeviceClass *dc = DEVICE_CLASS(klass);
443     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
444
445     k->init = strongarm_rtc_init;
446     dc->desc = "StrongARM RTC Controller";
447     dc->vmsd = &vmstate_strongarm_rtc_regs;
448 }
449
450 static const TypeInfo strongarm_rtc_sysbus_info = {
451     .name          = TYPE_STRONGARM_RTC,
452     .parent        = TYPE_SYS_BUS_DEVICE,
453     .instance_size = sizeof(StrongARMRTCState),
454     .class_init    = strongarm_rtc_sysbus_class_init,
455 };
456
457 /* GPIO */
458 #define GPLR 0x00
459 #define GPDR 0x04
460 #define GPSR 0x08
461 #define GPCR 0x0c
462 #define GRER 0x10
463 #define GFER 0x14
464 #define GEDR 0x18
465 #define GAFR 0x1c
466
467 #define TYPE_STRONGARM_GPIO "strongarm-gpio"
468 #define STRONGARM_GPIO(obj) \
469     OBJECT_CHECK(StrongARMGPIOInfo, (obj), TYPE_STRONGARM_GPIO)
470
471 typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
472 struct StrongARMGPIOInfo {
473     SysBusDevice busdev;
474     MemoryRegion iomem;
475     qemu_irq handler[28];
476     qemu_irq irqs[11];
477     qemu_irq irqX;
478
479     uint32_t ilevel;
480     uint32_t olevel;
481     uint32_t dir;
482     uint32_t rising;
483     uint32_t falling;
484     uint32_t status;
485     uint32_t gafr;
486
487     uint32_t prev_level;
488 };
489
490
491 static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
492 {
493     int i;
494     for (i = 0; i < 11; i++) {
495         qemu_set_irq(s->irqs[i], s->status & (1 << i));
496     }
497
498     qemu_set_irq(s->irqX, (s->status & ~0x7ff));
499 }
500
501 static void strongarm_gpio_set(void *opaque, int line, int level)
502 {
503     StrongARMGPIOInfo *s = opaque;
504     uint32_t mask;
505
506     mask = 1 << line;
507
508     if (level) {
509         s->status |= s->rising & mask &
510                 ~s->ilevel & ~s->dir;
511         s->ilevel |= mask;
512     } else {
513         s->status |= s->falling & mask &
514                 s->ilevel & ~s->dir;
515         s->ilevel &= ~mask;
516     }
517
518     if (s->status & mask) {
519         strongarm_gpio_irq_update(s);
520     }
521 }
522
523 static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
524 {
525     uint32_t level, diff;
526     int bit;
527
528     level = s->olevel & s->dir;
529
530     for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
531         bit = ctz32(diff);
532         qemu_set_irq(s->handler[bit], (level >> bit) & 1);
533     }
534
535     s->prev_level = level;
536 }
537
538 static uint64_t strongarm_gpio_read(void *opaque, hwaddr offset,
539                                     unsigned size)
540 {
541     StrongARMGPIOInfo *s = opaque;
542
543     switch (offset) {
544     case GPDR:        /* GPIO Pin-Direction registers */
545         return s->dir;
546
547     case GPSR:        /* GPIO Pin-Output Set registers */
548         qemu_log_mask(LOG_GUEST_ERROR,
549                       "strongarm GPIO: read from write only register GPSR\n");
550         return 0;
551
552     case GPCR:        /* GPIO Pin-Output Clear registers */
553         qemu_log_mask(LOG_GUEST_ERROR,
554                       "strongarm GPIO: read from write only register GPCR\n");
555         return 0;
556
557     case GRER:        /* GPIO Rising-Edge Detect Enable registers */
558         return s->rising;
559
560     case GFER:        /* GPIO Falling-Edge Detect Enable registers */
561         return s->falling;
562
563     case GAFR:        /* GPIO Alternate Function registers */
564         return s->gafr;
565
566     case GPLR:        /* GPIO Pin-Level registers */
567         return (s->olevel & s->dir) |
568                (s->ilevel & ~s->dir);
569
570     case GEDR:        /* GPIO Edge Detect Status registers */
571         return s->status;
572
573     default:
574         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
575     }
576
577     return 0;
578 }
579
580 static void strongarm_gpio_write(void *opaque, hwaddr offset,
581                                  uint64_t value, unsigned size)
582 {
583     StrongARMGPIOInfo *s = opaque;
584
585     switch (offset) {
586     case GPDR:        /* GPIO Pin-Direction registers */
587         s->dir = value;
588         strongarm_gpio_handler_update(s);
589         break;
590
591     case GPSR:        /* GPIO Pin-Output Set registers */
592         s->olevel |= value;
593         strongarm_gpio_handler_update(s);
594         break;
595
596     case GPCR:        /* GPIO Pin-Output Clear registers */
597         s->olevel &= ~value;
598         strongarm_gpio_handler_update(s);
599         break;
600
601     case GRER:        /* GPIO Rising-Edge Detect Enable registers */
602         s->rising = value;
603         break;
604
605     case GFER:        /* GPIO Falling-Edge Detect Enable registers */
606         s->falling = value;
607         break;
608
609     case GAFR:        /* GPIO Alternate Function registers */
610         s->gafr = value;
611         break;
612
613     case GEDR:        /* GPIO Edge Detect Status registers */
614         s->status &= ~value;
615         strongarm_gpio_irq_update(s);
616         break;
617
618     default:
619         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
620     }
621 }
622
623 static const MemoryRegionOps strongarm_gpio_ops = {
624     .read = strongarm_gpio_read,
625     .write = strongarm_gpio_write,
626     .endianness = DEVICE_NATIVE_ENDIAN,
627 };
628
629 static DeviceState *strongarm_gpio_init(hwaddr base,
630                 DeviceState *pic)
631 {
632     DeviceState *dev;
633     int i;
634
635     dev = qdev_create(NULL, TYPE_STRONGARM_GPIO);
636     qdev_init_nofail(dev);
637
638     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
639     for (i = 0; i < 12; i++)
640         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
641                     qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
642
643     return dev;
644 }
645
646 static int strongarm_gpio_initfn(SysBusDevice *sbd)
647 {
648     DeviceState *dev = DEVICE(sbd);
649     StrongARMGPIOInfo *s = STRONGARM_GPIO(dev);
650     int i;
651
652     qdev_init_gpio_in(dev, strongarm_gpio_set, 28);
653     qdev_init_gpio_out(dev, s->handler, 28);
654
655     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_gpio_ops, s,
656                           "gpio", 0x1000);
657
658     sysbus_init_mmio(sbd, &s->iomem);
659     for (i = 0; i < 11; i++) {
660         sysbus_init_irq(sbd, &s->irqs[i]);
661     }
662     sysbus_init_irq(sbd, &s->irqX);
663
664     return 0;
665 }
666
667 static const VMStateDescription vmstate_strongarm_gpio_regs = {
668     .name = "strongarm-gpio",
669     .version_id = 0,
670     .minimum_version_id = 0,
671     .fields = (VMStateField[]) {
672         VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
673         VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
674         VMSTATE_UINT32(dir, StrongARMGPIOInfo),
675         VMSTATE_UINT32(rising, StrongARMGPIOInfo),
676         VMSTATE_UINT32(falling, StrongARMGPIOInfo),
677         VMSTATE_UINT32(status, StrongARMGPIOInfo),
678         VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
679         VMSTATE_UINT32(prev_level, StrongARMGPIOInfo),
680         VMSTATE_END_OF_LIST(),
681     },
682 };
683
684 static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
685 {
686     DeviceClass *dc = DEVICE_CLASS(klass);
687     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
688
689     k->init = strongarm_gpio_initfn;
690     dc->desc = "StrongARM GPIO controller";
691     dc->vmsd = &vmstate_strongarm_gpio_regs;
692 }
693
694 static const TypeInfo strongarm_gpio_info = {
695     .name          = TYPE_STRONGARM_GPIO,
696     .parent        = TYPE_SYS_BUS_DEVICE,
697     .instance_size = sizeof(StrongARMGPIOInfo),
698     .class_init    = strongarm_gpio_class_init,
699 };
700
701 /* Peripheral Pin Controller */
702 #define PPDR 0x00
703 #define PPSR 0x04
704 #define PPAR 0x08
705 #define PSDR 0x0c
706 #define PPFR 0x10
707
708 #define TYPE_STRONGARM_PPC "strongarm-ppc"
709 #define STRONGARM_PPC(obj) \
710     OBJECT_CHECK(StrongARMPPCInfo, (obj), TYPE_STRONGARM_PPC)
711
712 typedef struct StrongARMPPCInfo StrongARMPPCInfo;
713 struct StrongARMPPCInfo {
714     SysBusDevice parent_obj;
715
716     MemoryRegion iomem;
717     qemu_irq handler[28];
718
719     uint32_t ilevel;
720     uint32_t olevel;
721     uint32_t dir;
722     uint32_t ppar;
723     uint32_t psdr;
724     uint32_t ppfr;
725
726     uint32_t prev_level;
727 };
728
729 static void strongarm_ppc_set(void *opaque, int line, int level)
730 {
731     StrongARMPPCInfo *s = opaque;
732
733     if (level) {
734         s->ilevel |= 1 << line;
735     } else {
736         s->ilevel &= ~(1 << line);
737     }
738 }
739
740 static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
741 {
742     uint32_t level, diff;
743     int bit;
744
745     level = s->olevel & s->dir;
746
747     for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
748         bit = ctz32(diff);
749         qemu_set_irq(s->handler[bit], (level >> bit) & 1);
750     }
751
752     s->prev_level = level;
753 }
754
755 static uint64_t strongarm_ppc_read(void *opaque, hwaddr offset,
756                                    unsigned size)
757 {
758     StrongARMPPCInfo *s = opaque;
759
760     switch (offset) {
761     case PPDR:        /* PPC Pin Direction registers */
762         return s->dir | ~0x3fffff;
763
764     case PPSR:        /* PPC Pin State registers */
765         return (s->olevel & s->dir) |
766                (s->ilevel & ~s->dir) |
767                ~0x3fffff;
768
769     case PPAR:
770         return s->ppar | ~0x41000;
771
772     case PSDR:
773         return s->psdr;
774
775     case PPFR:
776         return s->ppfr | ~0x7f001;
777
778     default:
779         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
780     }
781
782     return 0;
783 }
784
785 static void strongarm_ppc_write(void *opaque, hwaddr offset,
786                                 uint64_t value, unsigned size)
787 {
788     StrongARMPPCInfo *s = opaque;
789
790     switch (offset) {
791     case PPDR:        /* PPC Pin Direction registers */
792         s->dir = value & 0x3fffff;
793         strongarm_ppc_handler_update(s);
794         break;
795
796     case PPSR:        /* PPC Pin State registers */
797         s->olevel = value & s->dir & 0x3fffff;
798         strongarm_ppc_handler_update(s);
799         break;
800
801     case PPAR:
802         s->ppar = value & 0x41000;
803         break;
804
805     case PSDR:
806         s->psdr = value & 0x3fffff;
807         break;
808
809     case PPFR:
810         s->ppfr = value & 0x7f001;
811         break;
812
813     default:
814         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
815     }
816 }
817
818 static const MemoryRegionOps strongarm_ppc_ops = {
819     .read = strongarm_ppc_read,
820     .write = strongarm_ppc_write,
821     .endianness = DEVICE_NATIVE_ENDIAN,
822 };
823
824 static int strongarm_ppc_init(SysBusDevice *sbd)
825 {
826     DeviceState *dev = DEVICE(sbd);
827     StrongARMPPCInfo *s = STRONGARM_PPC(dev);
828
829     qdev_init_gpio_in(dev, strongarm_ppc_set, 22);
830     qdev_init_gpio_out(dev, s->handler, 22);
831
832     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ppc_ops, s,
833                           "ppc", 0x1000);
834
835     sysbus_init_mmio(sbd, &s->iomem);
836
837     return 0;
838 }
839
840 static const VMStateDescription vmstate_strongarm_ppc_regs = {
841     .name = "strongarm-ppc",
842     .version_id = 0,
843     .minimum_version_id = 0,
844     .fields = (VMStateField[]) {
845         VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
846         VMSTATE_UINT32(olevel, StrongARMPPCInfo),
847         VMSTATE_UINT32(dir, StrongARMPPCInfo),
848         VMSTATE_UINT32(ppar, StrongARMPPCInfo),
849         VMSTATE_UINT32(psdr, StrongARMPPCInfo),
850         VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
851         VMSTATE_UINT32(prev_level, StrongARMPPCInfo),
852         VMSTATE_END_OF_LIST(),
853     },
854 };
855
856 static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
857 {
858     DeviceClass *dc = DEVICE_CLASS(klass);
859     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
860
861     k->init = strongarm_ppc_init;
862     dc->desc = "StrongARM PPC controller";
863     dc->vmsd = &vmstate_strongarm_ppc_regs;
864 }
865
866 static const TypeInfo strongarm_ppc_info = {
867     .name          = TYPE_STRONGARM_PPC,
868     .parent        = TYPE_SYS_BUS_DEVICE,
869     .instance_size = sizeof(StrongARMPPCInfo),
870     .class_init    = strongarm_ppc_class_init,
871 };
872
873 /* UART Ports */
874 #define UTCR0 0x00
875 #define UTCR1 0x04
876 #define UTCR2 0x08
877 #define UTCR3 0x0c
878 #define UTDR  0x14
879 #define UTSR0 0x1c
880 #define UTSR1 0x20
881
882 #define UTCR0_PE  (1 << 0) /* Parity enable */
883 #define UTCR0_OES (1 << 1) /* Even parity */
884 #define UTCR0_SBS (1 << 2) /* 2 stop bits */
885 #define UTCR0_DSS (1 << 3) /* 8-bit data */
886
887 #define UTCR3_RXE (1 << 0) /* Rx enable */
888 #define UTCR3_TXE (1 << 1) /* Tx enable */
889 #define UTCR3_BRK (1 << 2) /* Force Break */
890 #define UTCR3_RIE (1 << 3) /* Rx int enable */
891 #define UTCR3_TIE (1 << 4) /* Tx int enable */
892 #define UTCR3_LBM (1 << 5) /* Loopback */
893
894 #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
895 #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
896 #define UTSR0_RID (1 << 2) /* Receiver Idle */
897 #define UTSR0_RBB (1 << 3) /* Receiver begin break */
898 #define UTSR0_REB (1 << 4) /* Receiver end break */
899 #define UTSR0_EIF (1 << 5) /* Error in FIFO */
900
901 #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
902 #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
903 #define UTSR1_PRE (1 << 3) /* Parity error */
904 #define UTSR1_FRE (1 << 4) /* Frame error */
905 #define UTSR1_ROR (1 << 5) /* Receive Over Run */
906
907 #define RX_FIFO_PRE (1 << 8)
908 #define RX_FIFO_FRE (1 << 9)
909 #define RX_FIFO_ROR (1 << 10)
910
911 #define TYPE_STRONGARM_UART "strongarm-uart"
912 #define STRONGARM_UART(obj) \
913     OBJECT_CHECK(StrongARMUARTState, (obj), TYPE_STRONGARM_UART)
914
915 typedef struct StrongARMUARTState {
916     SysBusDevice parent_obj;
917
918     MemoryRegion iomem;
919     CharDriverState *chr;
920     qemu_irq irq;
921
922     uint8_t utcr0;
923     uint16_t brd;
924     uint8_t utcr3;
925     uint8_t utsr0;
926     uint8_t utsr1;
927
928     uint8_t tx_fifo[8];
929     uint8_t tx_start;
930     uint8_t tx_len;
931     uint16_t rx_fifo[12]; /* value + error flags in high bits */
932     uint8_t rx_start;
933     uint8_t rx_len;
934
935     uint64_t char_transmit_time; /* time to transmit a char in ticks*/
936     bool wait_break_end;
937     QEMUTimer *rx_timeout_timer;
938     QEMUTimer *tx_timer;
939 } StrongARMUARTState;
940
941 static void strongarm_uart_update_status(StrongARMUARTState *s)
942 {
943     uint16_t utsr1 = 0;
944
945     if (s->tx_len != 8) {
946         utsr1 |= UTSR1_TNF;
947     }
948
949     if (s->rx_len != 0) {
950         uint16_t ent = s->rx_fifo[s->rx_start];
951
952         utsr1 |= UTSR1_RNE;
953         if (ent & RX_FIFO_PRE) {
954             s->utsr1 |= UTSR1_PRE;
955         }
956         if (ent & RX_FIFO_FRE) {
957             s->utsr1 |= UTSR1_FRE;
958         }
959         if (ent & RX_FIFO_ROR) {
960             s->utsr1 |= UTSR1_ROR;
961         }
962     }
963
964     s->utsr1 = utsr1;
965 }
966
967 static void strongarm_uart_update_int_status(StrongARMUARTState *s)
968 {
969     uint16_t utsr0 = s->utsr0 &
970             (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
971     int i;
972
973     if ((s->utcr3 & UTCR3_TXE) &&
974                 (s->utcr3 & UTCR3_TIE) &&
975                 s->tx_len <= 4) {
976         utsr0 |= UTSR0_TFS;
977     }
978
979     if ((s->utcr3 & UTCR3_RXE) &&
980                 (s->utcr3 & UTCR3_RIE) &&
981                 s->rx_len > 4) {
982         utsr0 |= UTSR0_RFS;
983     }
984
985     for (i = 0; i < s->rx_len && i < 4; i++)
986         if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
987             utsr0 |= UTSR0_EIF;
988             break;
989         }
990
991     s->utsr0 = utsr0;
992     qemu_set_irq(s->irq, utsr0);
993 }
994
995 static void strongarm_uart_update_parameters(StrongARMUARTState *s)
996 {
997     int speed, parity, data_bits, stop_bits, frame_size;
998     QEMUSerialSetParams ssp;
999
1000     /* Start bit. */
1001     frame_size = 1;
1002     if (s->utcr0 & UTCR0_PE) {
1003         /* Parity bit. */
1004         frame_size++;
1005         if (s->utcr0 & UTCR0_OES) {
1006             parity = 'E';
1007         } else {
1008             parity = 'O';
1009         }
1010     } else {
1011             parity = 'N';
1012     }
1013     if (s->utcr0 & UTCR0_SBS) {
1014         stop_bits = 2;
1015     } else {
1016         stop_bits = 1;
1017     }
1018
1019     data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
1020     frame_size += data_bits + stop_bits;
1021     speed = 3686400 / 16 / (s->brd + 1);
1022     ssp.speed = speed;
1023     ssp.parity = parity;
1024     ssp.data_bits = data_bits;
1025     ssp.stop_bits = stop_bits;
1026     s->char_transmit_time =  (get_ticks_per_sec() / speed) * frame_size;
1027     if (s->chr) {
1028         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
1029     }
1030
1031     DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
1032             speed, parity, data_bits, stop_bits);
1033 }
1034
1035 static void strongarm_uart_rx_to(void *opaque)
1036 {
1037     StrongARMUARTState *s = opaque;
1038
1039     if (s->rx_len) {
1040         s->utsr0 |= UTSR0_RID;
1041         strongarm_uart_update_int_status(s);
1042     }
1043 }
1044
1045 static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
1046 {
1047     if ((s->utcr3 & UTCR3_RXE) == 0) {
1048         /* rx disabled */
1049         return;
1050     }
1051
1052     if (s->wait_break_end) {
1053         s->utsr0 |= UTSR0_REB;
1054         s->wait_break_end = false;
1055     }
1056
1057     if (s->rx_len < 12) {
1058         s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
1059         s->rx_len++;
1060     } else
1061         s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
1062 }
1063
1064 static int strongarm_uart_can_receive(void *opaque)
1065 {
1066     StrongARMUARTState *s = opaque;
1067
1068     if (s->rx_len == 12) {
1069         return 0;
1070     }
1071     /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
1072     if (s->rx_len < 8) {
1073         return 8 - s->rx_len;
1074     }
1075     return 1;
1076 }
1077
1078 static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
1079 {
1080     StrongARMUARTState *s = opaque;
1081     int i;
1082
1083     for (i = 0; i < size; i++) {
1084         strongarm_uart_rx_push(s, buf[i]);
1085     }
1086
1087     /* call the timeout receive callback in 3 char transmit time */
1088     timer_mod(s->rx_timeout_timer,
1089                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
1090
1091     strongarm_uart_update_status(s);
1092     strongarm_uart_update_int_status(s);
1093 }
1094
1095 static void strongarm_uart_event(void *opaque, int event)
1096 {
1097     StrongARMUARTState *s = opaque;
1098     if (event == CHR_EVENT_BREAK) {
1099         s->utsr0 |= UTSR0_RBB;
1100         strongarm_uart_rx_push(s, RX_FIFO_FRE);
1101         s->wait_break_end = true;
1102         strongarm_uart_update_status(s);
1103         strongarm_uart_update_int_status(s);
1104     }
1105 }
1106
1107 static void strongarm_uart_tx(void *opaque)
1108 {
1109     StrongARMUARTState *s = opaque;
1110     uint64_t new_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1111
1112     if (s->utcr3 & UTCR3_LBM) /* loopback */ {
1113         strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
1114     } else if (s->chr) {
1115         qemu_chr_fe_write(s->chr, &s->tx_fifo[s->tx_start], 1);
1116     }
1117
1118     s->tx_start = (s->tx_start + 1) % 8;
1119     s->tx_len--;
1120     if (s->tx_len) {
1121         timer_mod(s->tx_timer, new_xmit_ts + s->char_transmit_time);
1122     }
1123     strongarm_uart_update_status(s);
1124     strongarm_uart_update_int_status(s);
1125 }
1126
1127 static uint64_t strongarm_uart_read(void *opaque, hwaddr addr,
1128                                     unsigned size)
1129 {
1130     StrongARMUARTState *s = opaque;
1131     uint16_t ret;
1132
1133     switch (addr) {
1134     case UTCR0:
1135         return s->utcr0;
1136
1137     case UTCR1:
1138         return s->brd >> 8;
1139
1140     case UTCR2:
1141         return s->brd & 0xff;
1142
1143     case UTCR3:
1144         return s->utcr3;
1145
1146     case UTDR:
1147         if (s->rx_len != 0) {
1148             ret = s->rx_fifo[s->rx_start];
1149             s->rx_start = (s->rx_start + 1) % 12;
1150             s->rx_len--;
1151             strongarm_uart_update_status(s);
1152             strongarm_uart_update_int_status(s);
1153             return ret;
1154         }
1155         return 0;
1156
1157     case UTSR0:
1158         return s->utsr0;
1159
1160     case UTSR1:
1161         return s->utsr1;
1162
1163     default:
1164         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1165         return 0;
1166     }
1167 }
1168
1169 static void strongarm_uart_write(void *opaque, hwaddr addr,
1170                                  uint64_t value, unsigned size)
1171 {
1172     StrongARMUARTState *s = opaque;
1173
1174     switch (addr) {
1175     case UTCR0:
1176         s->utcr0 = value & 0x7f;
1177         strongarm_uart_update_parameters(s);
1178         break;
1179
1180     case UTCR1:
1181         s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
1182         strongarm_uart_update_parameters(s);
1183         break;
1184
1185     case UTCR2:
1186         s->brd = (s->brd & 0xf00) | (value & 0xff);
1187         strongarm_uart_update_parameters(s);
1188         break;
1189
1190     case UTCR3:
1191         s->utcr3 = value & 0x3f;
1192         if ((s->utcr3 & UTCR3_RXE) == 0) {
1193             s->rx_len = 0;
1194         }
1195         if ((s->utcr3 & UTCR3_TXE) == 0) {
1196             s->tx_len = 0;
1197         }
1198         strongarm_uart_update_status(s);
1199         strongarm_uart_update_int_status(s);
1200         break;
1201
1202     case UTDR:
1203         if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
1204             s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
1205             s->tx_len++;
1206             strongarm_uart_update_status(s);
1207             strongarm_uart_update_int_status(s);
1208             if (s->tx_len == 1) {
1209                 strongarm_uart_tx(s);
1210             }
1211         }
1212         break;
1213
1214     case UTSR0:
1215         s->utsr0 = s->utsr0 & ~(value &
1216                 (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
1217         strongarm_uart_update_int_status(s);
1218         break;
1219
1220     default:
1221         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1222     }
1223 }
1224
1225 static const MemoryRegionOps strongarm_uart_ops = {
1226     .read = strongarm_uart_read,
1227     .write = strongarm_uart_write,
1228     .endianness = DEVICE_NATIVE_ENDIAN,
1229 };
1230
1231 static int strongarm_uart_init(SysBusDevice *dev)
1232 {
1233     StrongARMUARTState *s = STRONGARM_UART(dev);
1234
1235     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_uart_ops, s,
1236                           "uart", 0x10000);
1237     sysbus_init_mmio(dev, &s->iomem);
1238     sysbus_init_irq(dev, &s->irq);
1239
1240     s->rx_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_rx_to, s);
1241     s->tx_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_tx, s);
1242
1243     if (s->chr) {
1244         qemu_chr_add_handlers(s->chr,
1245                         strongarm_uart_can_receive,
1246                         strongarm_uart_receive,
1247                         strongarm_uart_event,
1248                         s);
1249     }
1250
1251     return 0;
1252 }
1253
1254 static void strongarm_uart_reset(DeviceState *dev)
1255 {
1256     StrongARMUARTState *s = STRONGARM_UART(dev);
1257
1258     s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
1259     s->brd = 23;    /* 9600 */
1260     /* enable send & recv - this actually violates spec */
1261     s->utcr3 = UTCR3_TXE | UTCR3_RXE;
1262
1263     s->rx_len = s->tx_len = 0;
1264
1265     strongarm_uart_update_parameters(s);
1266     strongarm_uart_update_status(s);
1267     strongarm_uart_update_int_status(s);
1268 }
1269
1270 static int strongarm_uart_post_load(void *opaque, int version_id)
1271 {
1272     StrongARMUARTState *s = opaque;
1273
1274     strongarm_uart_update_parameters(s);
1275     strongarm_uart_update_status(s);
1276     strongarm_uart_update_int_status(s);
1277
1278     /* tx and restart timer */
1279     if (s->tx_len) {
1280         strongarm_uart_tx(s);
1281     }
1282
1283     /* restart rx timeout timer */
1284     if (s->rx_len) {
1285         timer_mod(s->rx_timeout_timer,
1286                 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
1287     }
1288
1289     return 0;
1290 }
1291
1292 static const VMStateDescription vmstate_strongarm_uart_regs = {
1293     .name = "strongarm-uart",
1294     .version_id = 0,
1295     .minimum_version_id = 0,
1296     .post_load = strongarm_uart_post_load,
1297     .fields = (VMStateField[]) {
1298         VMSTATE_UINT8(utcr0, StrongARMUARTState),
1299         VMSTATE_UINT16(brd, StrongARMUARTState),
1300         VMSTATE_UINT8(utcr3, StrongARMUARTState),
1301         VMSTATE_UINT8(utsr0, StrongARMUARTState),
1302         VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
1303         VMSTATE_UINT8(tx_start, StrongARMUARTState),
1304         VMSTATE_UINT8(tx_len, StrongARMUARTState),
1305         VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
1306         VMSTATE_UINT8(rx_start, StrongARMUARTState),
1307         VMSTATE_UINT8(rx_len, StrongARMUARTState),
1308         VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
1309         VMSTATE_END_OF_LIST(),
1310     },
1311 };
1312
1313 static Property strongarm_uart_properties[] = {
1314     DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
1315     DEFINE_PROP_END_OF_LIST(),
1316 };
1317
1318 static void strongarm_uart_class_init(ObjectClass *klass, void *data)
1319 {
1320     DeviceClass *dc = DEVICE_CLASS(klass);
1321     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1322
1323     k->init = strongarm_uart_init;
1324     dc->desc = "StrongARM UART controller";
1325     dc->reset = strongarm_uart_reset;
1326     dc->vmsd = &vmstate_strongarm_uart_regs;
1327     dc->props = strongarm_uart_properties;
1328 }
1329
1330 static const TypeInfo strongarm_uart_info = {
1331     .name          = TYPE_STRONGARM_UART,
1332     .parent        = TYPE_SYS_BUS_DEVICE,
1333     .instance_size = sizeof(StrongARMUARTState),
1334     .class_init    = strongarm_uart_class_init,
1335 };
1336
1337 /* Synchronous Serial Ports */
1338
1339 #define TYPE_STRONGARM_SSP "strongarm-ssp"
1340 #define STRONGARM_SSP(obj) \
1341     OBJECT_CHECK(StrongARMSSPState, (obj), TYPE_STRONGARM_SSP)
1342
1343 typedef struct StrongARMSSPState {
1344     SysBusDevice parent_obj;
1345
1346     MemoryRegion iomem;
1347     qemu_irq irq;
1348     SSIBus *bus;
1349
1350     uint16_t sscr[2];
1351     uint16_t sssr;
1352
1353     uint16_t rx_fifo[8];
1354     uint8_t rx_level;
1355     uint8_t rx_start;
1356 } StrongARMSSPState;
1357
1358 #define SSCR0 0x60 /* SSP Control register 0 */
1359 #define SSCR1 0x64 /* SSP Control register 1 */
1360 #define SSDR  0x6c /* SSP Data register */
1361 #define SSSR  0x74 /* SSP Status register */
1362
1363 /* Bitfields for above registers */
1364 #define SSCR0_SPI(x)    (((x) & 0x30) == 0x00)
1365 #define SSCR0_SSP(x)    (((x) & 0x30) == 0x10)
1366 #define SSCR0_UWIRE(x)  (((x) & 0x30) == 0x20)
1367 #define SSCR0_PSP(x)    (((x) & 0x30) == 0x30)
1368 #define SSCR0_SSE       (1 << 7)
1369 #define SSCR0_DSS(x)    (((x) & 0xf) + 1)
1370 #define SSCR1_RIE       (1 << 0)
1371 #define SSCR1_TIE       (1 << 1)
1372 #define SSCR1_LBM       (1 << 2)
1373 #define SSSR_TNF        (1 << 2)
1374 #define SSSR_RNE        (1 << 3)
1375 #define SSSR_TFS        (1 << 5)
1376 #define SSSR_RFS        (1 << 6)
1377 #define SSSR_ROR        (1 << 7)
1378 #define SSSR_RW         0x0080
1379
1380 static void strongarm_ssp_int_update(StrongARMSSPState *s)
1381 {
1382     int level = 0;
1383
1384     level |= (s->sssr & SSSR_ROR);
1385     level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
1386     level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
1387     qemu_set_irq(s->irq, level);
1388 }
1389
1390 static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
1391 {
1392     s->sssr &= ~SSSR_TFS;
1393     s->sssr &= ~SSSR_TNF;
1394     if (s->sscr[0] & SSCR0_SSE) {
1395         if (s->rx_level >= 4) {
1396             s->sssr |= SSSR_RFS;
1397         } else {
1398             s->sssr &= ~SSSR_RFS;
1399         }
1400         if (s->rx_level) {
1401             s->sssr |= SSSR_RNE;
1402         } else {
1403             s->sssr &= ~SSSR_RNE;
1404         }
1405         /* TX FIFO is never filled, so it is always in underrun
1406            condition if SSP is enabled */
1407         s->sssr |= SSSR_TFS;
1408         s->sssr |= SSSR_TNF;
1409     }
1410
1411     strongarm_ssp_int_update(s);
1412 }
1413
1414 static uint64_t strongarm_ssp_read(void *opaque, hwaddr addr,
1415                                    unsigned size)
1416 {
1417     StrongARMSSPState *s = opaque;
1418     uint32_t retval;
1419
1420     switch (addr) {
1421     case SSCR0:
1422         return s->sscr[0];
1423     case SSCR1:
1424         return s->sscr[1];
1425     case SSSR:
1426         return s->sssr;
1427     case SSDR:
1428         if (~s->sscr[0] & SSCR0_SSE) {
1429             return 0xffffffff;
1430         }
1431         if (s->rx_level < 1) {
1432             printf("%s: SSP Rx Underrun\n", __func__);
1433             return 0xffffffff;
1434         }
1435         s->rx_level--;
1436         retval = s->rx_fifo[s->rx_start++];
1437         s->rx_start &= 0x7;
1438         strongarm_ssp_fifo_update(s);
1439         return retval;
1440     default:
1441         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1442         break;
1443     }
1444     return 0;
1445 }
1446
1447 static void strongarm_ssp_write(void *opaque, hwaddr addr,
1448                                 uint64_t value, unsigned size)
1449 {
1450     StrongARMSSPState *s = opaque;
1451
1452     switch (addr) {
1453     case SSCR0:
1454         s->sscr[0] = value & 0xffbf;
1455         if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
1456             printf("%s: Wrong data size: %i bits\n", __func__,
1457                    (int)SSCR0_DSS(value));
1458         }
1459         if (!(value & SSCR0_SSE)) {
1460             s->sssr = 0;
1461             s->rx_level = 0;
1462         }
1463         strongarm_ssp_fifo_update(s);
1464         break;
1465
1466     case SSCR1:
1467         s->sscr[1] = value & 0x2f;
1468         if (value & SSCR1_LBM) {
1469             printf("%s: Attempt to use SSP LBM mode\n", __func__);
1470         }
1471         strongarm_ssp_fifo_update(s);
1472         break;
1473
1474     case SSSR:
1475         s->sssr &= ~(value & SSSR_RW);
1476         strongarm_ssp_int_update(s);
1477         break;
1478
1479     case SSDR:
1480         if (SSCR0_UWIRE(s->sscr[0])) {
1481             value &= 0xff;
1482         } else
1483             /* Note how 32bits overflow does no harm here */
1484             value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
1485
1486         /* Data goes from here to the Tx FIFO and is shifted out from
1487          * there directly to the slave, no need to buffer it.
1488          */
1489         if (s->sscr[0] & SSCR0_SSE) {
1490             uint32_t readval;
1491             if (s->sscr[1] & SSCR1_LBM) {
1492                 readval = value;
1493             } else {
1494                 readval = ssi_transfer(s->bus, value);
1495             }
1496
1497             if (s->rx_level < 0x08) {
1498                 s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
1499             } else {
1500                 s->sssr |= SSSR_ROR;
1501             }
1502         }
1503         strongarm_ssp_fifo_update(s);
1504         break;
1505
1506     default:
1507         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1508         break;
1509     }
1510 }
1511
1512 static const MemoryRegionOps strongarm_ssp_ops = {
1513     .read = strongarm_ssp_read,
1514     .write = strongarm_ssp_write,
1515     .endianness = DEVICE_NATIVE_ENDIAN,
1516 };
1517
1518 static int strongarm_ssp_post_load(void *opaque, int version_id)
1519 {
1520     StrongARMSSPState *s = opaque;
1521
1522     strongarm_ssp_fifo_update(s);
1523
1524     return 0;
1525 }
1526
1527 static int strongarm_ssp_init(SysBusDevice *sbd)
1528 {
1529     DeviceState *dev = DEVICE(sbd);
1530     StrongARMSSPState *s = STRONGARM_SSP(dev);
1531
1532     sysbus_init_irq(sbd, &s->irq);
1533
1534     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ssp_ops, s,
1535                           "ssp", 0x1000);
1536     sysbus_init_mmio(sbd, &s->iomem);
1537
1538     s->bus = ssi_create_bus(dev, "ssi");
1539     return 0;
1540 }
1541
1542 static void strongarm_ssp_reset(DeviceState *dev)
1543 {
1544     StrongARMSSPState *s = STRONGARM_SSP(dev);
1545
1546     s->sssr = 0x03; /* 3 bit data, SPI, disabled */
1547     s->rx_start = 0;
1548     s->rx_level = 0;
1549 }
1550
1551 static const VMStateDescription vmstate_strongarm_ssp_regs = {
1552     .name = "strongarm-ssp",
1553     .version_id = 0,
1554     .minimum_version_id = 0,
1555     .post_load = strongarm_ssp_post_load,
1556     .fields = (VMStateField[]) {
1557         VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
1558         VMSTATE_UINT16(sssr, StrongARMSSPState),
1559         VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
1560         VMSTATE_UINT8(rx_start, StrongARMSSPState),
1561         VMSTATE_UINT8(rx_level, StrongARMSSPState),
1562         VMSTATE_END_OF_LIST(),
1563     },
1564 };
1565
1566 static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
1567 {
1568     DeviceClass *dc = DEVICE_CLASS(klass);
1569     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1570
1571     k->init = strongarm_ssp_init;
1572     dc->desc = "StrongARM SSP controller";
1573     dc->reset = strongarm_ssp_reset;
1574     dc->vmsd = &vmstate_strongarm_ssp_regs;
1575 }
1576
1577 static const TypeInfo strongarm_ssp_info = {
1578     .name          = TYPE_STRONGARM_SSP,
1579     .parent        = TYPE_SYS_BUS_DEVICE,
1580     .instance_size = sizeof(StrongARMSSPState),
1581     .class_init    = strongarm_ssp_class_init,
1582 };
1583
1584 /* Main CPU functions */
1585 StrongARMState *sa1110_init(MemoryRegion *sysmem,
1586                             unsigned int sdram_size, const char *rev)
1587 {
1588     StrongARMState *s;
1589     int i;
1590
1591     s = g_malloc0(sizeof(StrongARMState));
1592
1593     if (!rev) {
1594         rev = "sa1110-b5";
1595     }
1596
1597     if (strncmp(rev, "sa1110", 6)) {
1598         error_report("Machine requires a SA1110 processor.");
1599         exit(1);
1600     }
1601
1602     s->cpu = cpu_arm_init(rev);
1603
1604     if (!s->cpu) {
1605         error_report("Unable to find CPU definition");
1606         exit(1);
1607     }
1608
1609     memory_region_allocate_system_memory(&s->sdram, NULL, "strongarm.sdram",
1610                                          sdram_size);
1611     memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram);
1612
1613     s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
1614                     qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ),
1615                     qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ),
1616                     NULL);
1617
1618     sysbus_create_varargs("pxa25x-timer", 0x90000000,
1619                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
1620                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
1621                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
1622                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
1623                     NULL);
1624
1625     sysbus_create_simple(TYPE_STRONGARM_RTC, 0x90010000,
1626                     qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
1627
1628     s->gpio = strongarm_gpio_init(0x90040000, s->pic);
1629
1630     s->ppc = sysbus_create_varargs(TYPE_STRONGARM_PPC, 0x90060000, NULL);
1631
1632     for (i = 0; sa_serial[i].io_base; i++) {
1633         DeviceState *dev = qdev_create(NULL, TYPE_STRONGARM_UART);
1634         qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
1635         qdev_init_nofail(dev);
1636         sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0,
1637                 sa_serial[i].io_base);
1638         sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
1639                 qdev_get_gpio_in(s->pic, sa_serial[i].irq));
1640     }
1641
1642     s->ssp = sysbus_create_varargs(TYPE_STRONGARM_SSP, 0x80070000,
1643                 qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
1644     s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
1645
1646     return s;
1647 }
1648
1649 static void strongarm_register_types(void)
1650 {
1651     type_register_static(&strongarm_pic_info);
1652     type_register_static(&strongarm_rtc_sysbus_info);
1653     type_register_static(&strongarm_gpio_info);
1654     type_register_static(&strongarm_ppc_info);
1655     type_register_static(&strongarm_uart_info);
1656     type_register_static(&strongarm_ssp_info);
1657 }
1658
1659 type_init(strongarm_register_types)