These changes are the raw update to qemu-2.6.
[kvmfornfv.git] / qemu / hw / arm / boot.c
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/hw.h"
13 #include "hw/arm/arm.h"
14 #include "hw/arm/linux-boot-if.h"
15 #include "sysemu/kvm.h"
16 #include "sysemu/sysemu.h"
17 #include "hw/boards.h"
18 #include "hw/loader.h"
19 #include "elf.h"
20 #include "sysemu/device_tree.h"
21 #include "qemu/config-file.h"
22 #include "exec/address-spaces.h"
23
24 /* Kernel boot protocol is specified in the kernel docs
25  * Documentation/arm/Booting and Documentation/arm64/booting.txt
26  * They have different preferred image load offsets from system RAM base.
27  */
28 #define KERNEL_ARGS_ADDR 0x100
29 #define KERNEL_LOAD_ADDR 0x00010000
30 #define KERNEL64_LOAD_ADDR 0x00080000
31
32 typedef enum {
33     FIXUP_NONE = 0,     /* do nothing */
34     FIXUP_TERMINATOR,   /* end of insns */
35     FIXUP_BOARDID,      /* overwrite with board ID number */
36     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
37     FIXUP_ARGPTR,       /* overwrite with pointer to kernel args */
38     FIXUP_ENTRYPOINT,   /* overwrite with kernel entry point */
39     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
40     FIXUP_BOOTREG,      /* overwrite with boot register address */
41     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
42     FIXUP_MAX,
43 } FixupType;
44
45 typedef struct ARMInsnFixup {
46     uint32_t insn;
47     FixupType fixup;
48 } ARMInsnFixup;
49
50 static const ARMInsnFixup bootloader_aarch64[] = {
51     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
52     { 0xaa1f03e1 }, /* mov x1, xzr */
53     { 0xaa1f03e2 }, /* mov x2, xzr */
54     { 0xaa1f03e3 }, /* mov x3, xzr */
55     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
56     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
57     { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
58     { 0 }, /* .word @DTB Higher 32-bits */
59     { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
60     { 0 }, /* .word @Kernel Entry Higher 32-bits */
61     { 0, FIXUP_TERMINATOR }
62 };
63
64 /* A very small bootloader: call the board-setup code (if needed),
65  * set r0-r2, then jump to the kernel.
66  * If we're not calling boot setup code then we don't copy across
67  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
68  */
69
70 static const ARMInsnFixup bootloader[] = {
71     { 0xe28fe004 }, /* add     lr, pc, #4 */
72     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
73     { 0, FIXUP_BOARD_SETUP },
74 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
75     { 0xe3a00000 }, /* mov     r0, #0 */
76     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
77     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
78     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
79     { 0, FIXUP_BOARDID },
80     { 0, FIXUP_ARGPTR },
81     { 0, FIXUP_ENTRYPOINT },
82     { 0, FIXUP_TERMINATOR }
83 };
84
85 /* Handling for secondary CPU boot in a multicore system.
86  * Unlike the uniprocessor/primary CPU boot, this is platform
87  * dependent. The default code here is based on the secondary
88  * CPU boot protocol used on realview/vexpress boards, with
89  * some parameterisation to increase its flexibility.
90  * QEMU platform models for which this code is not appropriate
91  * should override write_secondary_boot and secondary_cpu_reset_hook
92  * instead.
93  *
94  * This code enables the interrupt controllers for the secondary
95  * CPUs and then puts all the secondary CPUs into a loop waiting
96  * for an interprocessor interrupt and polling a configurable
97  * location for the kernel secondary CPU entry point.
98  */
99 #define DSB_INSN 0xf57ff04f
100 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
101
102 static const ARMInsnFixup smpboot[] = {
103     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
104     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
105     { 0xe3a01001 }, /* mov r1, #1 */
106     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
107     { 0xe3a010ff }, /* mov r1, #0xff */
108     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
109     { 0, FIXUP_DSB },   /* dsb */
110     { 0xe320f003 }, /* wfi */
111     { 0xe5901000 }, /* ldr     r1, [r0] */
112     { 0xe1110001 }, /* tst     r1, r1 */
113     { 0x0afffffb }, /* beq     <wfi> */
114     { 0xe12fff11 }, /* bx      r1 */
115     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
116     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
117     { 0, FIXUP_TERMINATOR }
118 };
119
120 static void write_bootloader(const char *name, hwaddr addr,
121                              const ARMInsnFixup *insns, uint32_t *fixupcontext)
122 {
123     /* Fix up the specified bootloader fragment and write it into
124      * guest memory using rom_add_blob_fixed(). fixupcontext is
125      * an array giving the values to write in for the fixup types
126      * which write a value into the code array.
127      */
128     int i, len;
129     uint32_t *code;
130
131     len = 0;
132     while (insns[len].fixup != FIXUP_TERMINATOR) {
133         len++;
134     }
135
136     code = g_new0(uint32_t, len);
137
138     for (i = 0; i < len; i++) {
139         uint32_t insn = insns[i].insn;
140         FixupType fixup = insns[i].fixup;
141
142         switch (fixup) {
143         case FIXUP_NONE:
144             break;
145         case FIXUP_BOARDID:
146         case FIXUP_BOARD_SETUP:
147         case FIXUP_ARGPTR:
148         case FIXUP_ENTRYPOINT:
149         case FIXUP_GIC_CPU_IF:
150         case FIXUP_BOOTREG:
151         case FIXUP_DSB:
152             insn = fixupcontext[fixup];
153             break;
154         default:
155             abort();
156         }
157         code[i] = tswap32(insn);
158     }
159
160     rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
161
162     g_free(code);
163 }
164
165 static void default_write_secondary(ARMCPU *cpu,
166                                     const struct arm_boot_info *info)
167 {
168     uint32_t fixupcontext[FIXUP_MAX];
169
170     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
171     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
172     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
173         fixupcontext[FIXUP_DSB] = DSB_INSN;
174     } else {
175         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
176     }
177
178     write_bootloader("smpboot", info->smp_loader_start,
179                      smpboot, fixupcontext);
180 }
181
182 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
183                                             const struct arm_boot_info *info,
184                                             hwaddr mvbar_addr)
185 {
186     int n;
187     uint32_t mvbar_blob[] = {
188         /* mvbar_addr: secure monitor vectors
189          * Default unimplemented and unused vectors to spin. Makes it
190          * easier to debug (as opposed to the CPU running away).
191          */
192         0xeafffffe, /* (spin) */
193         0xeafffffe, /* (spin) */
194         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
195         0xeafffffe, /* (spin) */
196         0xeafffffe, /* (spin) */
197         0xeafffffe, /* (spin) */
198         0xeafffffe, /* (spin) */
199         0xeafffffe, /* (spin) */
200     };
201     uint32_t board_setup_blob[] = {
202         /* board setup addr */
203         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
204         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
205         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
206         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
207         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
208         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
209         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
210         0xe1a0f001, /* mov     pc, r1                 ;return */
211     };
212
213     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
214     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
215
216     /* check that these blobs don't overlap */
217     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
218           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
219
220     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
221         mvbar_blob[n] = tswap32(mvbar_blob[n]);
222     }
223     rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
224                        mvbar_addr);
225
226     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
227         board_setup_blob[n] = tswap32(board_setup_blob[n]);
228     }
229     rom_add_blob_fixed("board-setup", board_setup_blob,
230                        sizeof(board_setup_blob), info->board_setup_addr);
231 }
232
233 static void default_reset_secondary(ARMCPU *cpu,
234                                     const struct arm_boot_info *info)
235 {
236     CPUState *cs = CPU(cpu);
237
238     address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
239                                0, MEMTXATTRS_UNSPECIFIED, NULL);
240     cpu_set_pc(cs, info->smp_loader_start);
241 }
242
243 static inline bool have_dtb(const struct arm_boot_info *info)
244 {
245     return info->dtb_filename || info->get_dtb;
246 }
247
248 #define WRITE_WORD(p, value) do { \
249     address_space_stl_notdirty(&address_space_memory, p, value, \
250                                MEMTXATTRS_UNSPECIFIED, NULL);  \
251     p += 4;                       \
252 } while (0)
253
254 static void set_kernel_args(const struct arm_boot_info *info)
255 {
256     int initrd_size = info->initrd_size;
257     hwaddr base = info->loader_start;
258     hwaddr p;
259
260     p = base + KERNEL_ARGS_ADDR;
261     /* ATAG_CORE */
262     WRITE_WORD(p, 5);
263     WRITE_WORD(p, 0x54410001);
264     WRITE_WORD(p, 1);
265     WRITE_WORD(p, 0x1000);
266     WRITE_WORD(p, 0);
267     /* ATAG_MEM */
268     /* TODO: handle multiple chips on one ATAG list */
269     WRITE_WORD(p, 4);
270     WRITE_WORD(p, 0x54410002);
271     WRITE_WORD(p, info->ram_size);
272     WRITE_WORD(p, info->loader_start);
273     if (initrd_size) {
274         /* ATAG_INITRD2 */
275         WRITE_WORD(p, 4);
276         WRITE_WORD(p, 0x54420005);
277         WRITE_WORD(p, info->initrd_start);
278         WRITE_WORD(p, initrd_size);
279     }
280     if (info->kernel_cmdline && *info->kernel_cmdline) {
281         /* ATAG_CMDLINE */
282         int cmdline_size;
283
284         cmdline_size = strlen(info->kernel_cmdline);
285         cpu_physical_memory_write(p + 8, info->kernel_cmdline,
286                                   cmdline_size + 1);
287         cmdline_size = (cmdline_size >> 2) + 1;
288         WRITE_WORD(p, cmdline_size + 2);
289         WRITE_WORD(p, 0x54410009);
290         p += cmdline_size * 4;
291     }
292     if (info->atag_board) {
293         /* ATAG_BOARD */
294         int atag_board_len;
295         uint8_t atag_board_buf[0x1000];
296
297         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
298         WRITE_WORD(p, (atag_board_len + 8) >> 2);
299         WRITE_WORD(p, 0x414f4d50);
300         cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
301         p += atag_board_len;
302     }
303     /* ATAG_END */
304     WRITE_WORD(p, 0);
305     WRITE_WORD(p, 0);
306 }
307
308 static void set_kernel_args_old(const struct arm_boot_info *info)
309 {
310     hwaddr p;
311     const char *s;
312     int initrd_size = info->initrd_size;
313     hwaddr base = info->loader_start;
314
315     /* see linux/include/asm-arm/setup.h */
316     p = base + KERNEL_ARGS_ADDR;
317     /* page_size */
318     WRITE_WORD(p, 4096);
319     /* nr_pages */
320     WRITE_WORD(p, info->ram_size / 4096);
321     /* ramdisk_size */
322     WRITE_WORD(p, 0);
323 #define FLAG_READONLY   1
324 #define FLAG_RDLOAD     4
325 #define FLAG_RDPROMPT   8
326     /* flags */
327     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
328     /* rootdev */
329     WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
330     /* video_num_cols */
331     WRITE_WORD(p, 0);
332     /* video_num_rows */
333     WRITE_WORD(p, 0);
334     /* video_x */
335     WRITE_WORD(p, 0);
336     /* video_y */
337     WRITE_WORD(p, 0);
338     /* memc_control_reg */
339     WRITE_WORD(p, 0);
340     /* unsigned char sounddefault */
341     /* unsigned char adfsdrives */
342     /* unsigned char bytes_per_char_h */
343     /* unsigned char bytes_per_char_v */
344     WRITE_WORD(p, 0);
345     /* pages_in_bank[4] */
346     WRITE_WORD(p, 0);
347     WRITE_WORD(p, 0);
348     WRITE_WORD(p, 0);
349     WRITE_WORD(p, 0);
350     /* pages_in_vram */
351     WRITE_WORD(p, 0);
352     /* initrd_start */
353     if (initrd_size) {
354         WRITE_WORD(p, info->initrd_start);
355     } else {
356         WRITE_WORD(p, 0);
357     }
358     /* initrd_size */
359     WRITE_WORD(p, initrd_size);
360     /* rd_start */
361     WRITE_WORD(p, 0);
362     /* system_rev */
363     WRITE_WORD(p, 0);
364     /* system_serial_low */
365     WRITE_WORD(p, 0);
366     /* system_serial_high */
367     WRITE_WORD(p, 0);
368     /* mem_fclk_21285 */
369     WRITE_WORD(p, 0);
370     /* zero unused fields */
371     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
372         WRITE_WORD(p, 0);
373     }
374     s = info->kernel_cmdline;
375     if (s) {
376         cpu_physical_memory_write(p, s, strlen(s) + 1);
377     } else {
378         WRITE_WORD(p, 0);
379     }
380 }
381
382 /**
383  * load_dtb() - load a device tree binary image into memory
384  * @addr:       the address to load the image at
385  * @binfo:      struct describing the boot environment
386  * @addr_limit: upper limit of the available memory area at @addr
387  *
388  * Load a device tree supplied by the machine or by the user  with the
389  * '-dtb' command line option, and put it at offset @addr in target
390  * memory.
391  *
392  * If @addr_limit contains a meaningful value (i.e., it is strictly greater
393  * than @addr), the device tree is only loaded if its size does not exceed
394  * the limit.
395  *
396  * Returns: the size of the device tree image on success,
397  *          0 if the image size exceeds the limit,
398  *          -1 on errors.
399  *
400  * Note: Must not be called unless have_dtb(binfo) is true.
401  */
402 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
403                     hwaddr addr_limit)
404 {
405     void *fdt = NULL;
406     int size, rc;
407     uint32_t acells, scells;
408
409     if (binfo->dtb_filename) {
410         char *filename;
411         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
412         if (!filename) {
413             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
414             goto fail;
415         }
416
417         fdt = load_device_tree(filename, &size);
418         if (!fdt) {
419             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
420             g_free(filename);
421             goto fail;
422         }
423         g_free(filename);
424     } else {
425         fdt = binfo->get_dtb(binfo, &size);
426         if (!fdt) {
427             fprintf(stderr, "Board was unable to create a dtb blob\n");
428             goto fail;
429         }
430     }
431
432     if (addr_limit > addr && size > (addr_limit - addr)) {
433         /* Installing the device tree blob at addr would exceed addr_limit.
434          * Whether this constitutes failure is up to the caller to decide,
435          * so just return 0 as size, i.e., no error.
436          */
437         g_free(fdt);
438         return 0;
439     }
440
441     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
442                                    NULL, &error_fatal);
443     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
444                                    NULL, &error_fatal);
445     if (acells == 0 || scells == 0) {
446         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
447         goto fail;
448     }
449
450     if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
451         /* This is user error so deserves a friendlier error message
452          * than the failure of setprop_sized_cells would provide
453          */
454         fprintf(stderr, "qemu: dtb file not compatible with "
455                 "RAM size > 4GB\n");
456         goto fail;
457     }
458
459     rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
460                                       acells, binfo->loader_start,
461                                       scells, binfo->ram_size);
462     if (rc < 0) {
463         fprintf(stderr, "couldn't set /memory/reg\n");
464         goto fail;
465     }
466
467     if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
468         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
469                                      binfo->kernel_cmdline);
470         if (rc < 0) {
471             fprintf(stderr, "couldn't set /chosen/bootargs\n");
472             goto fail;
473         }
474     }
475
476     if (binfo->initrd_size) {
477         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
478                                    binfo->initrd_start);
479         if (rc < 0) {
480             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
481             goto fail;
482         }
483
484         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
485                                    binfo->initrd_start + binfo->initrd_size);
486         if (rc < 0) {
487             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
488             goto fail;
489         }
490     }
491
492     if (binfo->modify_dtb) {
493         binfo->modify_dtb(binfo, fdt);
494     }
495
496     qemu_fdt_dumpdtb(fdt, size);
497
498     /* Put the DTB into the memory map as a ROM image: this will ensure
499      * the DTB is copied again upon reset, even if addr points into RAM.
500      */
501     rom_add_blob_fixed("dtb", fdt, size, addr);
502
503     g_free(fdt);
504
505     return size;
506
507 fail:
508     g_free(fdt);
509     return -1;
510 }
511
512 static void do_cpu_reset(void *opaque)
513 {
514     ARMCPU *cpu = opaque;
515     CPUState *cs = CPU(cpu);
516     CPUARMState *env = &cpu->env;
517     const struct arm_boot_info *info = env->boot_info;
518
519     cpu_reset(cs);
520     if (info) {
521         if (!info->is_linux) {
522             int i;
523             /* Jump to the entry point.  */
524             uint64_t entry = info->entry;
525
526             switch (info->endianness) {
527             case ARM_ENDIANNESS_LE:
528                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
529                 for (i = 1; i < 4; ++i) {
530                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
531                 }
532                 env->uncached_cpsr &= ~CPSR_E;
533                 break;
534             case ARM_ENDIANNESS_BE8:
535                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
536                 for (i = 1; i < 4; ++i) {
537                     env->cp15.sctlr_el[i] |= SCTLR_EE;
538                 }
539                 env->uncached_cpsr |= CPSR_E;
540                 break;
541             case ARM_ENDIANNESS_BE32:
542                 env->cp15.sctlr_el[1] |= SCTLR_B;
543                 break;
544             case ARM_ENDIANNESS_UNKNOWN:
545                 break; /* Board's decision */
546             default:
547                 g_assert_not_reached();
548             }
549
550             if (!env->aarch64) {
551                 env->thumb = info->entry & 1;
552                 entry &= 0xfffffffe;
553             }
554             cpu_set_pc(cs, entry);
555         } else {
556             /* If we are booting Linux then we need to check whether we are
557              * booting into secure or non-secure state and adjust the state
558              * accordingly.  Out of reset, ARM is defined to be in secure state
559              * (SCR.NS = 0), we change that here if non-secure boot has been
560              * requested.
561              */
562             if (arm_feature(env, ARM_FEATURE_EL3)) {
563                 /* AArch64 is defined to come out of reset into EL3 if enabled.
564                  * If we are booting Linux then we need to adjust our EL as
565                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
566                  * SVC, which Linux expects, so no privilege/exception level to
567                  * adjust.
568                  */
569                 if (env->aarch64) {
570                     env->cp15.scr_el3 |= SCR_RW;
571                     if (arm_feature(env, ARM_FEATURE_EL2)) {
572                         env->cp15.hcr_el2 |= HCR_RW;
573                         env->pstate = PSTATE_MODE_EL2h;
574                     } else {
575                         env->pstate = PSTATE_MODE_EL1h;
576                     }
577                 }
578
579                 /* Set to non-secure if not a secure boot */
580                 if (!info->secure_boot &&
581                     (cs != first_cpu || !info->secure_board_setup)) {
582                     /* Linux expects non-secure state */
583                     env->cp15.scr_el3 |= SCR_NS;
584                 }
585             }
586
587             if (cs == first_cpu) {
588                 cpu_set_pc(cs, info->loader_start);
589
590                 if (!have_dtb(info)) {
591                     if (old_param) {
592                         set_kernel_args_old(info);
593                     } else {
594                         set_kernel_args(info);
595                     }
596                 }
597             } else {
598                 info->secondary_cpu_reset_hook(cpu, info);
599             }
600         }
601     }
602 }
603
604 /**
605  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
606  *                          by key.
607  * @fw_cfg:         The firmware config instance to store the data in.
608  * @size_key:       The firmware config key to store the size of the loaded
609  *                  data under, with fw_cfg_add_i32().
610  * @data_key:       The firmware config key to store the loaded data under,
611  *                  with fw_cfg_add_bytes().
612  * @image_name:     The name of the image file to load. If it is NULL, the
613  *                  function returns without doing anything.
614  * @try_decompress: Whether the image should be decompressed (gunzipped) before
615  *                  adding it to fw_cfg. If decompression fails, the image is
616  *                  loaded as-is.
617  *
618  * In case of failure, the function prints an error message to stderr and the
619  * process exits with status 1.
620  */
621 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
622                                  uint16_t data_key, const char *image_name,
623                                  bool try_decompress)
624 {
625     size_t size = -1;
626     uint8_t *data;
627
628     if (image_name == NULL) {
629         return;
630     }
631
632     if (try_decompress) {
633         size = load_image_gzipped_buffer(image_name,
634                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
635     }
636
637     if (size == (size_t)-1) {
638         gchar *contents;
639         gsize length;
640
641         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
642             fprintf(stderr, "failed to load \"%s\"\n", image_name);
643             exit(1);
644         }
645         size = length;
646         data = (uint8_t *)contents;
647     }
648
649     fw_cfg_add_i32(fw_cfg, size_key, size);
650     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
651 }
652
653 static int do_arm_linux_init(Object *obj, void *opaque)
654 {
655     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
656         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
657         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
658         struct arm_boot_info *info = opaque;
659
660         if (albifc->arm_linux_init) {
661             albifc->arm_linux_init(albif, info->secure_boot);
662         }
663     }
664     return 0;
665 }
666
667 static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
668                              uint64_t *lowaddr, uint64_t *highaddr,
669                              int elf_machine)
670 {
671     bool elf_is64;
672     union {
673         Elf32_Ehdr h32;
674         Elf64_Ehdr h64;
675     } elf_header;
676     int data_swab = 0;
677     bool big_endian;
678     uint64_t ret = -1;
679     Error *err = NULL;
680
681
682     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
683     if (err) {
684         return ret;
685     }
686
687     if (elf_is64) {
688         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
689         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
690                                       : ARM_ENDIANNESS_LE;
691     } else {
692         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
693         if (big_endian) {
694             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
695                 info->endianness = ARM_ENDIANNESS_BE8;
696             } else {
697                 info->endianness = ARM_ENDIANNESS_BE32;
698                 /* In BE32, the CPU has a different view of the per-byte
699                  * address map than the rest of the system. BE32 ELF files
700                  * are organised such that they can be programmed through
701                  * the CPU's per-word byte-reversed view of the world. QEMU
702                  * however loads ELF files independently of the CPU. So
703                  * tell the ELF loader to byte reverse the data for us.
704                  */
705                 data_swab = 2;
706             }
707         } else {
708             info->endianness = ARM_ENDIANNESS_LE;
709         }
710     }
711
712     ret = load_elf(info->kernel_filename, NULL, NULL,
713                    pentry, lowaddr, highaddr, big_endian, elf_machine,
714                    1, data_swab);
715     if (ret <= 0) {
716         /* The header loaded but the image didn't */
717         exit(1);
718     }
719
720     return ret;
721 }
722
723 static void arm_load_kernel_notify(Notifier *notifier, void *data)
724 {
725     CPUState *cs;
726     int kernel_size;
727     int initrd_size;
728     int is_linux = 0;
729     uint64_t elf_entry, elf_low_addr, elf_high_addr;
730     int elf_machine;
731     hwaddr entry, kernel_load_offset;
732     static const ARMInsnFixup *primary_loader;
733     ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
734                                          notifier, notifier);
735     ARMCPU *cpu = n->cpu;
736     struct arm_boot_info *info =
737         container_of(n, struct arm_boot_info, load_kernel_notifier);
738
739     /* The board code is not supposed to set secure_board_setup unless
740      * running its code in secure mode is actually possible, and KVM
741      * doesn't support secure.
742      */
743     assert(!(info->secure_board_setup && kvm_enabled()));
744
745     /* Load the kernel.  */
746     if (!info->kernel_filename || info->firmware_loaded) {
747
748         if (have_dtb(info)) {
749             /* If we have a device tree blob, but no kernel to supply it to (or
750              * the kernel is supposed to be loaded by the bootloader), copy the
751              * DTB to the base of RAM for the bootloader to pick up.
752              */
753             if (load_dtb(info->loader_start, info, 0) < 0) {
754                 exit(1);
755             }
756         }
757
758         if (info->kernel_filename) {
759             FWCfgState *fw_cfg;
760             bool try_decompressing_kernel;
761
762             fw_cfg = fw_cfg_find();
763             try_decompressing_kernel = arm_feature(&cpu->env,
764                                                    ARM_FEATURE_AARCH64);
765
766             /* Expose the kernel, the command line, and the initrd in fw_cfg.
767              * We don't process them here at all, it's all left to the
768              * firmware.
769              */
770             load_image_to_fw_cfg(fw_cfg,
771                                  FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
772                                  info->kernel_filename,
773                                  try_decompressing_kernel);
774             load_image_to_fw_cfg(fw_cfg,
775                                  FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
776                                  info->initrd_filename, false);
777
778             if (info->kernel_cmdline) {
779                 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
780                                strlen(info->kernel_cmdline) + 1);
781                 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
782                                   info->kernel_cmdline);
783             }
784         }
785
786         /* We will start from address 0 (typically a boot ROM image) in the
787          * same way as hardware.
788          */
789         return;
790     }
791
792     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
793         primary_loader = bootloader_aarch64;
794         kernel_load_offset = KERNEL64_LOAD_ADDR;
795         elf_machine = EM_AARCH64;
796     } else {
797         primary_loader = bootloader;
798         if (!info->write_board_setup) {
799             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
800         }
801         kernel_load_offset = KERNEL_LOAD_ADDR;
802         elf_machine = EM_ARM;
803     }
804
805     info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
806
807     if (!info->secondary_cpu_reset_hook) {
808         info->secondary_cpu_reset_hook = default_reset_secondary;
809     }
810     if (!info->write_secondary_boot) {
811         info->write_secondary_boot = default_write_secondary;
812     }
813
814     if (info->nb_cpus == 0)
815         info->nb_cpus = 1;
816
817     /* We want to put the initrd far enough into RAM that when the
818      * kernel is uncompressed it will not clobber the initrd. However
819      * on boards without much RAM we must ensure that we still leave
820      * enough room for a decent sized initrd, and on boards with large
821      * amounts of RAM we must avoid the initrd being so far up in RAM
822      * that it is outside lowmem and inaccessible to the kernel.
823      * So for boards with less  than 256MB of RAM we put the initrd
824      * halfway into RAM, and for boards with 256MB of RAM or more we put
825      * the initrd at 128MB.
826      */
827     info->initrd_start = info->loader_start +
828         MIN(info->ram_size / 2, 128 * 1024 * 1024);
829
830     /* Assume that raw images are linux kernels, and ELF images are not.  */
831     kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
832                                &elf_high_addr, elf_machine);
833     if (kernel_size > 0 && have_dtb(info)) {
834         /* If there is still some room left at the base of RAM, try and put
835          * the DTB there like we do for images loaded with -bios or -pflash.
836          */
837         if (elf_low_addr > info->loader_start
838             || elf_high_addr < info->loader_start) {
839             /* Pass elf_low_addr as address limit to load_dtb if it may be
840              * pointing into RAM, otherwise pass '0' (no limit)
841              */
842             if (elf_low_addr < info->loader_start) {
843                 elf_low_addr = 0;
844             }
845             if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
846                 exit(1);
847             }
848         }
849     }
850     entry = elf_entry;
851     if (kernel_size < 0) {
852         kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
853                                   &is_linux, NULL, NULL);
854     }
855     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
856     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
857         entry = info->loader_start + kernel_load_offset;
858         kernel_size = load_image_gzipped(info->kernel_filename, entry,
859                                          info->ram_size - kernel_load_offset);
860         is_linux = 1;
861     }
862     if (kernel_size < 0) {
863         entry = info->loader_start + kernel_load_offset;
864         kernel_size = load_image_targphys(info->kernel_filename, entry,
865                                           info->ram_size - kernel_load_offset);
866         is_linux = 1;
867     }
868     if (kernel_size < 0) {
869         fprintf(stderr, "qemu: could not load kernel '%s'\n",
870                 info->kernel_filename);
871         exit(1);
872     }
873     info->entry = entry;
874     if (is_linux) {
875         uint32_t fixupcontext[FIXUP_MAX];
876
877         if (info->initrd_filename) {
878             initrd_size = load_ramdisk(info->initrd_filename,
879                                        info->initrd_start,
880                                        info->ram_size -
881                                        info->initrd_start);
882             if (initrd_size < 0) {
883                 initrd_size = load_image_targphys(info->initrd_filename,
884                                                   info->initrd_start,
885                                                   info->ram_size -
886                                                   info->initrd_start);
887             }
888             if (initrd_size < 0) {
889                 fprintf(stderr, "qemu: could not load initrd '%s'\n",
890                         info->initrd_filename);
891                 exit(1);
892             }
893         } else {
894             initrd_size = 0;
895         }
896         info->initrd_size = initrd_size;
897
898         fixupcontext[FIXUP_BOARDID] = info->board_id;
899         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
900
901         /* for device tree boot, we pass the DTB directly in r2. Otherwise
902          * we point to the kernel args.
903          */
904         if (have_dtb(info)) {
905             hwaddr align;
906             hwaddr dtb_start;
907
908             if (elf_machine == EM_AARCH64) {
909                 /*
910                  * Some AArch64 kernels on early bootup map the fdt region as
911                  *
912                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
913                  *
914                  * Let's play safe and prealign it to 2MB to give us some space.
915                  */
916                 align = 2 * 1024 * 1024;
917             } else {
918                 /*
919                  * Some 32bit kernels will trash anything in the 4K page the
920                  * initrd ends in, so make sure the DTB isn't caught up in that.
921                  */
922                 align = 4096;
923             }
924
925             /* Place the DTB after the initrd in memory with alignment. */
926             dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
927             if (load_dtb(dtb_start, info, 0) < 0) {
928                 exit(1);
929             }
930             fixupcontext[FIXUP_ARGPTR] = dtb_start;
931         } else {
932             fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
933             if (info->ram_size >= (1ULL << 32)) {
934                 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
935                         " Linux kernel using ATAGS (try passing a device tree"
936                         " using -dtb)\n");
937                 exit(1);
938             }
939         }
940         fixupcontext[FIXUP_ENTRYPOINT] = entry;
941
942         write_bootloader("bootloader", info->loader_start,
943                          primary_loader, fixupcontext);
944
945         if (info->nb_cpus > 1) {
946             info->write_secondary_boot(cpu, info);
947         }
948         if (info->write_board_setup) {
949             info->write_board_setup(cpu, info);
950         }
951
952         /* Notify devices which need to fake up firmware initialization
953          * that we're doing a direct kernel boot.
954          */
955         object_child_foreach_recursive(object_get_root(),
956                                        do_arm_linux_init, info);
957     }
958     info->is_linux = is_linux;
959
960     for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
961         ARM_CPU(cs)->env.boot_info = info;
962     }
963 }
964
965 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
966 {
967     CPUState *cs;
968
969     info->load_kernel_notifier.cpu = cpu;
970     info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
971     qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
972
973     /* CPU objects (unlike devices) are not automatically reset on system
974      * reset, so we must always register a handler to do so. If we're
975      * actually loading a kernel, the handler is also responsible for
976      * arranging that we start it correctly.
977      */
978     for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
979         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
980     }
981 }
982
983 static const TypeInfo arm_linux_boot_if_info = {
984     .name = TYPE_ARM_LINUX_BOOT_IF,
985     .parent = TYPE_INTERFACE,
986     .class_size = sizeof(ARMLinuxBootIfClass),
987 };
988
989 static void arm_linux_boot_register_types(void)
990 {
991     type_register_static(&arm_linux_boot_if_info);
992 }
993
994 type_init(arm_linux_boot_register_types)