These changes are the raw update to qemu-2.6.
[kvmfornfv.git] / qemu / disas / libvixl / vixl / a64 / instructions-a64.cc
1 // Copyright 2015, ARM Limited
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 #include "vixl/a64/instructions-a64.h"
28 #include "vixl/a64/assembler-a64.h"
29
30 namespace vixl {
31
32
33 // Floating-point infinity values.
34 const float16 kFP16PositiveInfinity = 0x7c00;
35 const float16 kFP16NegativeInfinity = 0xfc00;
36 const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
37 const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
38 const double kFP64PositiveInfinity =
39     rawbits_to_double(UINT64_C(0x7ff0000000000000));
40 const double kFP64NegativeInfinity =
41     rawbits_to_double(UINT64_C(0xfff0000000000000));
42
43
44 // The default NaN values (for FPCR.DN=1).
45 const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
46 const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
47 const float16 kFP16DefaultNaN = 0x7e00;
48
49
50 static uint64_t RotateRight(uint64_t value,
51                             unsigned int rotate,
52                             unsigned int width) {
53   VIXL_ASSERT(width <= 64);
54   rotate &= 63;
55   return ((value & ((UINT64_C(1) << rotate) - 1)) <<
56           (width - rotate)) | (value >> rotate);
57 }
58
59
60 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
61                                     uint64_t value,
62                                     unsigned width) {
63   VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
64               (width == 32));
65   VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
66   uint64_t result = value & ((UINT64_C(1) << width) - 1);
67   for (unsigned i = width; i < reg_size; i *= 2) {
68     result |= (result << i);
69   }
70   return result;
71 }
72
73
74 bool Instruction::IsLoad() const {
75   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
76     return false;
77   }
78
79   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
80     return Mask(LoadStorePairLBit) != 0;
81   } else {
82     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
83     switch (op) {
84       case LDRB_w:
85       case LDRH_w:
86       case LDR_w:
87       case LDR_x:
88       case LDRSB_w:
89       case LDRSB_x:
90       case LDRSH_w:
91       case LDRSH_x:
92       case LDRSW_x:
93       case LDR_b:
94       case LDR_h:
95       case LDR_s:
96       case LDR_d:
97       case LDR_q: return true;
98       default: return false;
99     }
100   }
101 }
102
103
104 bool Instruction::IsStore() const {
105   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
106     return false;
107   }
108
109   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
110     return Mask(LoadStorePairLBit) == 0;
111   } else {
112     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
113     switch (op) {
114       case STRB_w:
115       case STRH_w:
116       case STR_w:
117       case STR_x:
118       case STR_b:
119       case STR_h:
120       case STR_s:
121       case STR_d:
122       case STR_q: return true;
123       default: return false;
124     }
125   }
126 }
127
128
129 // Logical immediates can't encode zero, so a return value of zero is used to
130 // indicate a failure case. Specifically, where the constraints on imm_s are
131 // not met.
132 uint64_t Instruction::ImmLogical() const {
133   unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
134   int32_t n = BitN();
135   int32_t imm_s = ImmSetBits();
136   int32_t imm_r = ImmRotate();
137
138   // An integer is constructed from the n, imm_s and imm_r bits according to
139   // the following table:
140   //
141   //  N   imms    immr    size        S             R
142   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
143   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
144   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
145   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
146   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
147   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
148   // (s bits must not be all set)
149   //
150   // A pattern is constructed of size bits, where the least significant S+1
151   // bits are set. The pattern is rotated right by R, and repeated across a
152   // 32 or 64-bit value, depending on destination register width.
153   //
154
155   if (n == 1) {
156     if (imm_s == 0x3f) {
157       return 0;
158     }
159     uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
160     return RotateRight(bits, imm_r, 64);
161   } else {
162     if ((imm_s >> 1) == 0x1f) {
163       return 0;
164     }
165     for (int width = 0x20; width >= 0x2; width >>= 1) {
166       if ((imm_s & width) == 0) {
167         int mask = width - 1;
168         if ((imm_s & mask) == mask) {
169           return 0;
170         }
171         uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
172         return RepeatBitsAcrossReg(reg_size,
173                                    RotateRight(bits, imm_r & mask, width),
174                                    width);
175       }
176     }
177   }
178   VIXL_UNREACHABLE();
179   return 0;
180 }
181
182
183 uint32_t Instruction::ImmNEONabcdefgh() const {
184   return ImmNEONabc() << 5 | ImmNEONdefgh();
185 }
186
187
188 float Instruction::Imm8ToFP32(uint32_t imm8) {
189   //   Imm8: abcdefgh (8 bits)
190   // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
191   // where B is b ^ 1
192   uint32_t bits = imm8;
193   uint32_t bit7 = (bits >> 7) & 0x1;
194   uint32_t bit6 = (bits >> 6) & 0x1;
195   uint32_t bit5_to_0 = bits & 0x3f;
196   uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
197
198   return rawbits_to_float(result);
199 }
200
201
202 float Instruction::ImmFP32() const {
203   return Imm8ToFP32(ImmFP());
204 }
205
206
207 double Instruction::Imm8ToFP64(uint32_t imm8) {
208   //   Imm8: abcdefgh (8 bits)
209   // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
210   //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
211   // where B is b ^ 1
212   uint32_t bits = imm8;
213   uint64_t bit7 = (bits >> 7) & 0x1;
214   uint64_t bit6 = (bits >> 6) & 0x1;
215   uint64_t bit5_to_0 = bits & 0x3f;
216   uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
217
218   return rawbits_to_double(result);
219 }
220
221
222 double Instruction::ImmFP64() const {
223   return Imm8ToFP64(ImmFP());
224 }
225
226
227 float Instruction::ImmNEONFP32() const {
228   return Imm8ToFP32(ImmNEONabcdefgh());
229 }
230
231
232 double Instruction::ImmNEONFP64() const {
233   return Imm8ToFP64(ImmNEONabcdefgh());
234 }
235
236
237 unsigned CalcLSDataSize(LoadStoreOp op) {
238   VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
239   unsigned size = static_cast<Instr>(op) >> LSSize_offset;
240   if ((op & LSVector_mask) != 0) {
241     // Vector register memory operations encode the access size in the "size"
242     // and "opc" fields.
243     if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
244       size = kQRegSizeInBytesLog2;
245     }
246   }
247   return size;
248 }
249
250
251 unsigned CalcLSPairDataSize(LoadStorePairOp op) {
252   VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
253   VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
254   switch (op) {
255     case STP_q:
256     case LDP_q: return kQRegSizeInBytesLog2;
257     case STP_x:
258     case LDP_x:
259     case STP_d:
260     case LDP_d: return kXRegSizeInBytesLog2;
261     default: return kWRegSizeInBytesLog2;
262   }
263 }
264
265
266 int Instruction::ImmBranchRangeBitwidth(ImmBranchType branch_type) {
267   switch (branch_type) {
268     case UncondBranchType:
269       return ImmUncondBranch_width;
270     case CondBranchType:
271       return ImmCondBranch_width;
272     case CompareBranchType:
273       return ImmCmpBranch_width;
274     case TestBranchType:
275       return ImmTestBranch_width;
276     default:
277       VIXL_UNREACHABLE();
278       return 0;
279   }
280 }
281
282
283 int32_t Instruction::ImmBranchForwardRange(ImmBranchType branch_type) {
284   int32_t encoded_max = 1 << (ImmBranchRangeBitwidth(branch_type) - 1);
285   return encoded_max * kInstructionSize;
286 }
287
288
289 bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
290                                      int64_t offset) {
291   return is_intn(ImmBranchRangeBitwidth(branch_type), offset);
292 }
293
294
295 const Instruction* Instruction::ImmPCOffsetTarget() const {
296   const Instruction * base = this;
297   ptrdiff_t offset;
298   if (IsPCRelAddressing()) {
299     // ADR and ADRP.
300     offset = ImmPCRel();
301     if (Mask(PCRelAddressingMask) == ADRP) {
302       base = AlignDown(base, kPageSize);
303       offset *= kPageSize;
304     } else {
305       VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
306     }
307   } else {
308     // All PC-relative branches.
309     VIXL_ASSERT(BranchType() != UnknownBranchType);
310     // Relative branch offsets are instruction-size-aligned.
311     offset = ImmBranch() << kInstructionSizeLog2;
312   }
313   return base + offset;
314 }
315
316
317 int Instruction::ImmBranch() const {
318   switch (BranchType()) {
319     case CondBranchType: return ImmCondBranch();
320     case UncondBranchType: return ImmUncondBranch();
321     case CompareBranchType: return ImmCmpBranch();
322     case TestBranchType: return ImmTestBranch();
323     default: VIXL_UNREACHABLE();
324   }
325   return 0;
326 }
327
328
329 void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
330   if (IsPCRelAddressing()) {
331     SetPCRelImmTarget(target);
332   } else {
333     SetBranchImmTarget(target);
334   }
335 }
336
337
338 void Instruction::SetPCRelImmTarget(const Instruction* target) {
339   ptrdiff_t imm21;
340   if ((Mask(PCRelAddressingMask) == ADR)) {
341     imm21 = target - this;
342   } else {
343     VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
344     uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
345     uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
346     imm21 = target_page - this_page;
347   }
348   Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
349
350   SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
351 }
352
353
354 void Instruction::SetBranchImmTarget(const Instruction* target) {
355   VIXL_ASSERT(((target - this) & 3) == 0);
356   Instr branch_imm = 0;
357   uint32_t imm_mask = 0;
358   int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
359   switch (BranchType()) {
360     case CondBranchType: {
361       branch_imm = Assembler::ImmCondBranch(offset);
362       imm_mask = ImmCondBranch_mask;
363       break;
364     }
365     case UncondBranchType: {
366       branch_imm = Assembler::ImmUncondBranch(offset);
367       imm_mask = ImmUncondBranch_mask;
368       break;
369     }
370     case CompareBranchType: {
371       branch_imm = Assembler::ImmCmpBranch(offset);
372       imm_mask = ImmCmpBranch_mask;
373       break;
374     }
375     case TestBranchType: {
376       branch_imm = Assembler::ImmTestBranch(offset);
377       imm_mask = ImmTestBranch_mask;
378       break;
379     }
380     default: VIXL_UNREACHABLE();
381   }
382   SetInstructionBits(Mask(~imm_mask) | branch_imm);
383 }
384
385
386 void Instruction::SetImmLLiteral(const Instruction* source) {
387   VIXL_ASSERT(IsWordAligned(source));
388   ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
389   Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
390   Instr mask = ImmLLiteral_mask;
391
392   SetInstructionBits(Mask(~mask) | imm);
393 }
394
395
396 VectorFormat VectorFormatHalfWidth(const VectorFormat vform) {
397   VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
398               vform == kFormatH || vform == kFormatS || vform == kFormatD);
399   switch (vform) {
400     case kFormat8H: return kFormat8B;
401     case kFormat4S: return kFormat4H;
402     case kFormat2D: return kFormat2S;
403     case kFormatH:  return kFormatB;
404     case kFormatS:  return kFormatH;
405     case kFormatD:  return kFormatS;
406     default: VIXL_UNREACHABLE(); return kFormatUndefined;
407   }
408 }
409
410
411 VectorFormat VectorFormatDoubleWidth(const VectorFormat vform) {
412   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
413               vform == kFormatB || vform == kFormatH || vform == kFormatS);
414   switch (vform) {
415     case kFormat8B: return kFormat8H;
416     case kFormat4H: return kFormat4S;
417     case kFormat2S: return kFormat2D;
418     case kFormatB:  return kFormatH;
419     case kFormatH:  return kFormatS;
420     case kFormatS:  return kFormatD;
421     default: VIXL_UNREACHABLE(); return kFormatUndefined;
422   }
423 }
424
425
426 VectorFormat VectorFormatFillQ(const VectorFormat vform) {
427   switch (vform) {
428     case kFormatB:
429     case kFormat8B:
430     case kFormat16B: return kFormat16B;
431     case kFormatH:
432     case kFormat4H:
433     case kFormat8H:  return kFormat8H;
434     case kFormatS:
435     case kFormat2S:
436     case kFormat4S:  return kFormat4S;
437     case kFormatD:
438     case kFormat1D:
439     case kFormat2D:  return kFormat2D;
440     default: VIXL_UNREACHABLE(); return kFormatUndefined;
441   }
442 }
443
444 VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform) {
445   switch (vform) {
446     case kFormat4H: return kFormat8B;
447     case kFormat8H: return kFormat16B;
448     case kFormat2S: return kFormat4H;
449     case kFormat4S: return kFormat8H;
450     case kFormat1D: return kFormat2S;
451     case kFormat2D: return kFormat4S;
452     default: VIXL_UNREACHABLE(); return kFormatUndefined;
453   }
454 }
455
456 VectorFormat VectorFormatDoubleLanes(const VectorFormat vform) {
457   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
458   switch (vform) {
459     case kFormat8B: return kFormat16B;
460     case kFormat4H: return kFormat8H;
461     case kFormat2S: return kFormat4S;
462     default: VIXL_UNREACHABLE(); return kFormatUndefined;
463   }
464 }
465
466
467 VectorFormat VectorFormatHalfLanes(const VectorFormat vform) {
468   VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
469   switch (vform) {
470     case kFormat16B: return kFormat8B;
471     case kFormat8H: return kFormat4H;
472     case kFormat4S: return kFormat2S;
473     default: VIXL_UNREACHABLE(); return kFormatUndefined;
474   }
475 }
476
477
478 VectorFormat ScalarFormatFromLaneSize(int laneSize) {
479   switch (laneSize) {
480     case 8:  return kFormatB;
481     case 16: return kFormatH;
482     case 32: return kFormatS;
483     case 64: return kFormatD;
484     default: VIXL_UNREACHABLE(); return kFormatUndefined;
485   }
486 }
487
488
489 unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
490   VIXL_ASSERT(vform != kFormatUndefined);
491   switch (vform) {
492     case kFormatB: return kBRegSize;
493     case kFormatH: return kHRegSize;
494     case kFormatS: return kSRegSize;
495     case kFormatD: return kDRegSize;
496     case kFormat8B:
497     case kFormat4H:
498     case kFormat2S:
499     case kFormat1D: return kDRegSize;
500     default: return kQRegSize;
501   }
502 }
503
504
505 unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
506   return RegisterSizeInBitsFromFormat(vform) / 8;
507 }
508
509
510 unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
511   VIXL_ASSERT(vform != kFormatUndefined);
512   switch (vform) {
513     case kFormatB:
514     case kFormat8B:
515     case kFormat16B: return 8;
516     case kFormatH:
517     case kFormat4H:
518     case kFormat8H: return 16;
519     case kFormatS:
520     case kFormat2S:
521     case kFormat4S: return 32;
522     case kFormatD:
523     case kFormat1D:
524     case kFormat2D: return 64;
525     default: VIXL_UNREACHABLE(); return 0;
526   }
527 }
528
529
530 int LaneSizeInBytesFromFormat(VectorFormat vform) {
531   return LaneSizeInBitsFromFormat(vform) / 8;
532 }
533
534
535 int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
536   VIXL_ASSERT(vform != kFormatUndefined);
537   switch (vform) {
538     case kFormatB:
539     case kFormat8B:
540     case kFormat16B: return 0;
541     case kFormatH:
542     case kFormat4H:
543     case kFormat8H: return 1;
544     case kFormatS:
545     case kFormat2S:
546     case kFormat4S: return 2;
547     case kFormatD:
548     case kFormat1D:
549     case kFormat2D: return 3;
550     default: VIXL_UNREACHABLE(); return 0;
551   }
552 }
553
554
555 int LaneCountFromFormat(VectorFormat vform) {
556   VIXL_ASSERT(vform != kFormatUndefined);
557   switch (vform) {
558     case kFormat16B: return 16;
559     case kFormat8B:
560     case kFormat8H: return 8;
561     case kFormat4H:
562     case kFormat4S: return 4;
563     case kFormat2S:
564     case kFormat2D: return 2;
565     case kFormat1D:
566     case kFormatB:
567     case kFormatH:
568     case kFormatS:
569     case kFormatD: return 1;
570     default: VIXL_UNREACHABLE(); return 0;
571   }
572 }
573
574
575 int MaxLaneCountFromFormat(VectorFormat vform) {
576   VIXL_ASSERT(vform != kFormatUndefined);
577   switch (vform) {
578     case kFormatB:
579     case kFormat8B:
580     case kFormat16B: return 16;
581     case kFormatH:
582     case kFormat4H:
583     case kFormat8H: return 8;
584     case kFormatS:
585     case kFormat2S:
586     case kFormat4S: return 4;
587     case kFormatD:
588     case kFormat1D:
589     case kFormat2D: return 2;
590     default: VIXL_UNREACHABLE(); return 0;
591   }
592 }
593
594
595 // Does 'vform' indicate a vector format or a scalar format?
596 bool IsVectorFormat(VectorFormat vform) {
597   VIXL_ASSERT(vform != kFormatUndefined);
598   switch (vform) {
599     case kFormatB:
600     case kFormatH:
601     case kFormatS:
602     case kFormatD: return false;
603     default: return true;
604   }
605 }
606
607
608 int64_t MaxIntFromFormat(VectorFormat vform) {
609   return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
610 }
611
612
613 int64_t MinIntFromFormat(VectorFormat vform) {
614   return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
615 }
616
617
618 uint64_t MaxUintFromFormat(VectorFormat vform) {
619   return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
620 }
621 }  // namespace vixl
622