These changes are the raw update to qemu-2.6.
[kvmfornfv.git] / qemu / block / io.c
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "block/throttle-groups.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
36
37 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
38         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
39         BlockCompletionFunc *cb, void *opaque);
40 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
41         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
42         BlockCompletionFunc *cb, void *opaque);
43 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
44                                          int64_t sector_num, int nb_sectors,
45                                          QEMUIOVector *iov);
46 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
47                                          int64_t sector_num, int nb_sectors,
48                                          QEMUIOVector *iov);
49 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
50                                          int64_t sector_num,
51                                          QEMUIOVector *qiov,
52                                          int nb_sectors,
53                                          BdrvRequestFlags flags,
54                                          BlockCompletionFunc *cb,
55                                          void *opaque,
56                                          bool is_write);
57 static void coroutine_fn bdrv_co_do_rw(void *opaque);
58 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
59     int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
60
61 /* throttling disk I/O limits */
62 void bdrv_set_io_limits(BlockDriverState *bs,
63                         ThrottleConfig *cfg)
64 {
65     int i;
66
67     throttle_group_config(bs, cfg);
68
69     for (i = 0; i < 2; i++) {
70         qemu_co_enter_next(&bs->throttled_reqs[i]);
71     }
72 }
73
74 /* this function drain all the throttled IOs */
75 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
76 {
77     bool drained = false;
78     bool enabled = bs->io_limits_enabled;
79     int i;
80
81     bs->io_limits_enabled = false;
82
83     for (i = 0; i < 2; i++) {
84         while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
85             drained = true;
86         }
87     }
88
89     bs->io_limits_enabled = enabled;
90
91     return drained;
92 }
93
94 void bdrv_io_limits_disable(BlockDriverState *bs)
95 {
96     bs->io_limits_enabled = false;
97     bdrv_start_throttled_reqs(bs);
98     throttle_group_unregister_bs(bs);
99 }
100
101 /* should be called before bdrv_set_io_limits if a limit is set */
102 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
103 {
104     assert(!bs->io_limits_enabled);
105     throttle_group_register_bs(bs, group);
106     bs->io_limits_enabled = true;
107 }
108
109 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
110 {
111     /* this bs is not part of any group */
112     if (!bs->throttle_state) {
113         return;
114     }
115
116     /* this bs is a part of the same group than the one we want */
117     if (!g_strcmp0(throttle_group_get_name(bs), group)) {
118         return;
119     }
120
121     /* need to change the group this bs belong to */
122     bdrv_io_limits_disable(bs);
123     bdrv_io_limits_enable(bs, group);
124 }
125
126 void bdrv_setup_io_funcs(BlockDriver *bdrv)
127 {
128     /* Block drivers without coroutine functions need emulation */
129     if (!bdrv->bdrv_co_readv) {
130         bdrv->bdrv_co_readv = bdrv_co_readv_em;
131         bdrv->bdrv_co_writev = bdrv_co_writev_em;
132
133         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
134          * the block driver lacks aio we need to emulate that too.
135          */
136         if (!bdrv->bdrv_aio_readv) {
137             /* add AIO emulation layer */
138             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
139             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
140         }
141     }
142 }
143
144 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
145 {
146     BlockDriver *drv = bs->drv;
147     Error *local_err = NULL;
148
149     memset(&bs->bl, 0, sizeof(bs->bl));
150
151     if (!drv) {
152         return;
153     }
154
155     /* Take some limits from the children as a default */
156     if (bs->file) {
157         bdrv_refresh_limits(bs->file->bs, &local_err);
158         if (local_err) {
159             error_propagate(errp, local_err);
160             return;
161         }
162         bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
163         bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
164         bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
165         bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
166         bs->bl.max_iov = bs->file->bs->bl.max_iov;
167     } else {
168         bs->bl.min_mem_alignment = 512;
169         bs->bl.opt_mem_alignment = getpagesize();
170
171         /* Safe default since most protocols use readv()/writev()/etc */
172         bs->bl.max_iov = IOV_MAX;
173     }
174
175     if (bs->backing) {
176         bdrv_refresh_limits(bs->backing->bs, &local_err);
177         if (local_err) {
178             error_propagate(errp, local_err);
179             return;
180         }
181         bs->bl.opt_transfer_length =
182             MAX(bs->bl.opt_transfer_length,
183                 bs->backing->bs->bl.opt_transfer_length);
184         bs->bl.max_transfer_length =
185             MIN_NON_ZERO(bs->bl.max_transfer_length,
186                          bs->backing->bs->bl.max_transfer_length);
187         bs->bl.opt_mem_alignment =
188             MAX(bs->bl.opt_mem_alignment,
189                 bs->backing->bs->bl.opt_mem_alignment);
190         bs->bl.min_mem_alignment =
191             MAX(bs->bl.min_mem_alignment,
192                 bs->backing->bs->bl.min_mem_alignment);
193         bs->bl.max_iov =
194             MIN(bs->bl.max_iov,
195                 bs->backing->bs->bl.max_iov);
196     }
197
198     /* Then let the driver override it */
199     if (drv->bdrv_refresh_limits) {
200         drv->bdrv_refresh_limits(bs, errp);
201     }
202 }
203
204 /**
205  * The copy-on-read flag is actually a reference count so multiple users may
206  * use the feature without worrying about clobbering its previous state.
207  * Copy-on-read stays enabled until all users have called to disable it.
208  */
209 void bdrv_enable_copy_on_read(BlockDriverState *bs)
210 {
211     bs->copy_on_read++;
212 }
213
214 void bdrv_disable_copy_on_read(BlockDriverState *bs)
215 {
216     assert(bs->copy_on_read > 0);
217     bs->copy_on_read--;
218 }
219
220 /* Check if any requests are in-flight (including throttled requests) */
221 bool bdrv_requests_pending(BlockDriverState *bs)
222 {
223     BdrvChild *child;
224
225     if (!QLIST_EMPTY(&bs->tracked_requests)) {
226         return true;
227     }
228     if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
229         return true;
230     }
231     if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
232         return true;
233     }
234
235     QLIST_FOREACH(child, &bs->children, next) {
236         if (bdrv_requests_pending(child->bs)) {
237             return true;
238         }
239     }
240
241     return false;
242 }
243
244 static void bdrv_drain_recurse(BlockDriverState *bs)
245 {
246     BdrvChild *child;
247
248     if (bs->drv && bs->drv->bdrv_drain) {
249         bs->drv->bdrv_drain(bs);
250     }
251     QLIST_FOREACH(child, &bs->children, next) {
252         bdrv_drain_recurse(child->bs);
253     }
254 }
255
256 typedef struct {
257     Coroutine *co;
258     BlockDriverState *bs;
259     QEMUBH *bh;
260     bool done;
261 } BdrvCoDrainData;
262
263 static void bdrv_co_drain_bh_cb(void *opaque)
264 {
265     BdrvCoDrainData *data = opaque;
266     Coroutine *co = data->co;
267
268     qemu_bh_delete(data->bh);
269     bdrv_drain(data->bs);
270     data->done = true;
271     qemu_coroutine_enter(co, NULL);
272 }
273
274 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
275 {
276     BdrvCoDrainData data;
277
278     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
279      * other coroutines run if they were queued from
280      * qemu_co_queue_run_restart(). */
281
282     assert(qemu_in_coroutine());
283     data = (BdrvCoDrainData) {
284         .co = qemu_coroutine_self(),
285         .bs = bs,
286         .done = false,
287         .bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_drain_bh_cb, &data),
288     };
289     qemu_bh_schedule(data.bh);
290
291     qemu_coroutine_yield();
292     /* If we are resumed from some other event (such as an aio completion or a
293      * timer callback), it is a bug in the caller that should be fixed. */
294     assert(data.done);
295 }
296
297 /*
298  * Wait for pending requests to complete on a single BlockDriverState subtree,
299  * and suspend block driver's internal I/O until next request arrives.
300  *
301  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
302  * AioContext.
303  *
304  * Only this BlockDriverState's AioContext is run, so in-flight requests must
305  * not depend on events in other AioContexts.  In that case, use
306  * bdrv_drain_all() instead.
307  */
308 void bdrv_drain(BlockDriverState *bs)
309 {
310     bool busy = true;
311
312     bdrv_drain_recurse(bs);
313     if (qemu_in_coroutine()) {
314         bdrv_co_drain(bs);
315         return;
316     }
317     while (busy) {
318         /* Keep iterating */
319          bdrv_flush_io_queue(bs);
320          busy = bdrv_requests_pending(bs);
321          busy |= aio_poll(bdrv_get_aio_context(bs), busy);
322     }
323 }
324
325 /*
326  * Wait for pending requests to complete across all BlockDriverStates
327  *
328  * This function does not flush data to disk, use bdrv_flush_all() for that
329  * after calling this function.
330  */
331 void bdrv_drain_all(void)
332 {
333     /* Always run first iteration so any pending completion BHs run */
334     bool busy = true;
335     BlockDriverState *bs = NULL;
336     GSList *aio_ctxs = NULL, *ctx;
337
338     while ((bs = bdrv_next(bs))) {
339         AioContext *aio_context = bdrv_get_aio_context(bs);
340
341         aio_context_acquire(aio_context);
342         if (bs->job) {
343             block_job_pause(bs->job);
344         }
345         bdrv_drain_recurse(bs);
346         aio_context_release(aio_context);
347
348         if (!g_slist_find(aio_ctxs, aio_context)) {
349             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
350         }
351     }
352
353     /* Note that completion of an asynchronous I/O operation can trigger any
354      * number of other I/O operations on other devices---for example a
355      * coroutine can submit an I/O request to another device in response to
356      * request completion.  Therefore we must keep looping until there was no
357      * more activity rather than simply draining each device independently.
358      */
359     while (busy) {
360         busy = false;
361
362         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
363             AioContext *aio_context = ctx->data;
364             bs = NULL;
365
366             aio_context_acquire(aio_context);
367             while ((bs = bdrv_next(bs))) {
368                 if (aio_context == bdrv_get_aio_context(bs)) {
369                     bdrv_flush_io_queue(bs);
370                     if (bdrv_requests_pending(bs)) {
371                         busy = true;
372                         aio_poll(aio_context, busy);
373                     }
374                 }
375             }
376             busy |= aio_poll(aio_context, false);
377             aio_context_release(aio_context);
378         }
379     }
380
381     bs = NULL;
382     while ((bs = bdrv_next(bs))) {
383         AioContext *aio_context = bdrv_get_aio_context(bs);
384
385         aio_context_acquire(aio_context);
386         if (bs->job) {
387             block_job_resume(bs->job);
388         }
389         aio_context_release(aio_context);
390     }
391     g_slist_free(aio_ctxs);
392 }
393
394 /**
395  * Remove an active request from the tracked requests list
396  *
397  * This function should be called when a tracked request is completing.
398  */
399 static void tracked_request_end(BdrvTrackedRequest *req)
400 {
401     if (req->serialising) {
402         req->bs->serialising_in_flight--;
403     }
404
405     QLIST_REMOVE(req, list);
406     qemu_co_queue_restart_all(&req->wait_queue);
407 }
408
409 /**
410  * Add an active request to the tracked requests list
411  */
412 static void tracked_request_begin(BdrvTrackedRequest *req,
413                                   BlockDriverState *bs,
414                                   int64_t offset,
415                                   unsigned int bytes,
416                                   enum BdrvTrackedRequestType type)
417 {
418     *req = (BdrvTrackedRequest){
419         .bs = bs,
420         .offset         = offset,
421         .bytes          = bytes,
422         .type           = type,
423         .co             = qemu_coroutine_self(),
424         .serialising    = false,
425         .overlap_offset = offset,
426         .overlap_bytes  = bytes,
427     };
428
429     qemu_co_queue_init(&req->wait_queue);
430
431     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
432 }
433
434 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
435 {
436     int64_t overlap_offset = req->offset & ~(align - 1);
437     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
438                                - overlap_offset;
439
440     if (!req->serialising) {
441         req->bs->serialising_in_flight++;
442         req->serialising = true;
443     }
444
445     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
446     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
447 }
448
449 /**
450  * Round a region to cluster boundaries
451  */
452 void bdrv_round_to_clusters(BlockDriverState *bs,
453                             int64_t sector_num, int nb_sectors,
454                             int64_t *cluster_sector_num,
455                             int *cluster_nb_sectors)
456 {
457     BlockDriverInfo bdi;
458
459     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
460         *cluster_sector_num = sector_num;
461         *cluster_nb_sectors = nb_sectors;
462     } else {
463         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
464         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
465         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
466                                             nb_sectors, c);
467     }
468 }
469
470 static int bdrv_get_cluster_size(BlockDriverState *bs)
471 {
472     BlockDriverInfo bdi;
473     int ret;
474
475     ret = bdrv_get_info(bs, &bdi);
476     if (ret < 0 || bdi.cluster_size == 0) {
477         return bs->request_alignment;
478     } else {
479         return bdi.cluster_size;
480     }
481 }
482
483 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
484                                      int64_t offset, unsigned int bytes)
485 {
486     /*        aaaa   bbbb */
487     if (offset >= req->overlap_offset + req->overlap_bytes) {
488         return false;
489     }
490     /* bbbb   aaaa        */
491     if (req->overlap_offset >= offset + bytes) {
492         return false;
493     }
494     return true;
495 }
496
497 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
498 {
499     BlockDriverState *bs = self->bs;
500     BdrvTrackedRequest *req;
501     bool retry;
502     bool waited = false;
503
504     if (!bs->serialising_in_flight) {
505         return false;
506     }
507
508     do {
509         retry = false;
510         QLIST_FOREACH(req, &bs->tracked_requests, list) {
511             if (req == self || (!req->serialising && !self->serialising)) {
512                 continue;
513             }
514             if (tracked_request_overlaps(req, self->overlap_offset,
515                                          self->overlap_bytes))
516             {
517                 /* Hitting this means there was a reentrant request, for
518                  * example, a block driver issuing nested requests.  This must
519                  * never happen since it means deadlock.
520                  */
521                 assert(qemu_coroutine_self() != req->co);
522
523                 /* If the request is already (indirectly) waiting for us, or
524                  * will wait for us as soon as it wakes up, then just go on
525                  * (instead of producing a deadlock in the former case). */
526                 if (!req->waiting_for) {
527                     self->waiting_for = req;
528                     qemu_co_queue_wait(&req->wait_queue);
529                     self->waiting_for = NULL;
530                     retry = true;
531                     waited = true;
532                     break;
533                 }
534             }
535         }
536     } while (retry);
537
538     return waited;
539 }
540
541 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
542                                    size_t size)
543 {
544     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
545         return -EIO;
546     }
547
548     if (!bdrv_is_inserted(bs)) {
549         return -ENOMEDIUM;
550     }
551
552     if (offset < 0) {
553         return -EIO;
554     }
555
556     return 0;
557 }
558
559 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
560                               int nb_sectors)
561 {
562     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
563         return -EIO;
564     }
565
566     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
567                                    nb_sectors * BDRV_SECTOR_SIZE);
568 }
569
570 typedef struct RwCo {
571     BlockDriverState *bs;
572     int64_t offset;
573     QEMUIOVector *qiov;
574     bool is_write;
575     int ret;
576     BdrvRequestFlags flags;
577 } RwCo;
578
579 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
580 {
581     RwCo *rwco = opaque;
582
583     if (!rwco->is_write) {
584         rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
585                                       rwco->qiov->size, rwco->qiov,
586                                       rwco->flags);
587     } else {
588         rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
589                                        rwco->qiov->size, rwco->qiov,
590                                        rwco->flags);
591     }
592 }
593
594 /*
595  * Process a vectored synchronous request using coroutines
596  */
597 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
598                         QEMUIOVector *qiov, bool is_write,
599                         BdrvRequestFlags flags)
600 {
601     Coroutine *co;
602     RwCo rwco = {
603         .bs = bs,
604         .offset = offset,
605         .qiov = qiov,
606         .is_write = is_write,
607         .ret = NOT_DONE,
608         .flags = flags,
609     };
610
611     /**
612      * In sync call context, when the vcpu is blocked, this throttling timer
613      * will not fire; so the I/O throttling function has to be disabled here
614      * if it has been enabled.
615      */
616     if (bs->io_limits_enabled) {
617         fprintf(stderr, "Disabling I/O throttling on '%s' due "
618                         "to synchronous I/O.\n", bdrv_get_device_name(bs));
619         bdrv_io_limits_disable(bs);
620     }
621
622     if (qemu_in_coroutine()) {
623         /* Fast-path if already in coroutine context */
624         bdrv_rw_co_entry(&rwco);
625     } else {
626         AioContext *aio_context = bdrv_get_aio_context(bs);
627
628         co = qemu_coroutine_create(bdrv_rw_co_entry);
629         qemu_coroutine_enter(co, &rwco);
630         while (rwco.ret == NOT_DONE) {
631             aio_poll(aio_context, true);
632         }
633     }
634     return rwco.ret;
635 }
636
637 /*
638  * Process a synchronous request using coroutines
639  */
640 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
641                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
642 {
643     QEMUIOVector qiov;
644     struct iovec iov = {
645         .iov_base = (void *)buf,
646         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
647     };
648
649     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
650         return -EINVAL;
651     }
652
653     qemu_iovec_init_external(&qiov, &iov, 1);
654     return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
655                         &qiov, is_write, flags);
656 }
657
658 /* return < 0 if error. See bdrv_write() for the return codes */
659 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
660               uint8_t *buf, int nb_sectors)
661 {
662     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
663 }
664
665 /* Return < 0 if error. Important errors are:
666   -EIO         generic I/O error (may happen for all errors)
667   -ENOMEDIUM   No media inserted.
668   -EINVAL      Invalid sector number or nb_sectors
669   -EACCES      Trying to write a read-only device
670 */
671 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
672                const uint8_t *buf, int nb_sectors)
673 {
674     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
675 }
676
677 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
678                       int nb_sectors, BdrvRequestFlags flags)
679 {
680     return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
681                       BDRV_REQ_ZERO_WRITE | flags);
682 }
683
684 /*
685  * Completely zero out a block device with the help of bdrv_write_zeroes.
686  * The operation is sped up by checking the block status and only writing
687  * zeroes to the device if they currently do not return zeroes. Optional
688  * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
689  *
690  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
691  */
692 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
693 {
694     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
695     BlockDriverState *file;
696     int n;
697
698     target_sectors = bdrv_nb_sectors(bs);
699     if (target_sectors < 0) {
700         return target_sectors;
701     }
702
703     for (;;) {
704         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
705         if (nb_sectors <= 0) {
706             return 0;
707         }
708         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
709         if (ret < 0) {
710             error_report("error getting block status at sector %" PRId64 ": %s",
711                          sector_num, strerror(-ret));
712             return ret;
713         }
714         if (ret & BDRV_BLOCK_ZERO) {
715             sector_num += n;
716             continue;
717         }
718         ret = bdrv_write_zeroes(bs, sector_num, n, flags);
719         if (ret < 0) {
720             error_report("error writing zeroes at sector %" PRId64 ": %s",
721                          sector_num, strerror(-ret));
722             return ret;
723         }
724         sector_num += n;
725     }
726 }
727
728 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
729 {
730     QEMUIOVector qiov;
731     struct iovec iov = {
732         .iov_base = (void *)buf,
733         .iov_len = bytes,
734     };
735     int ret;
736
737     if (bytes < 0) {
738         return -EINVAL;
739     }
740
741     qemu_iovec_init_external(&qiov, &iov, 1);
742     ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
743     if (ret < 0) {
744         return ret;
745     }
746
747     return bytes;
748 }
749
750 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
751 {
752     int ret;
753
754     ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
755     if (ret < 0) {
756         return ret;
757     }
758
759     return qiov->size;
760 }
761
762 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
763                 const void *buf, int bytes)
764 {
765     QEMUIOVector qiov;
766     struct iovec iov = {
767         .iov_base   = (void *) buf,
768         .iov_len    = bytes,
769     };
770
771     if (bytes < 0) {
772         return -EINVAL;
773     }
774
775     qemu_iovec_init_external(&qiov, &iov, 1);
776     return bdrv_pwritev(bs, offset, &qiov);
777 }
778
779 /*
780  * Writes to the file and ensures that no writes are reordered across this
781  * request (acts as a barrier)
782  *
783  * Returns 0 on success, -errno in error cases.
784  */
785 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
786     const void *buf, int count)
787 {
788     int ret;
789
790     ret = bdrv_pwrite(bs, offset, buf, count);
791     if (ret < 0) {
792         return ret;
793     }
794
795     ret = bdrv_flush(bs);
796     if (ret < 0) {
797         return ret;
798     }
799
800     return 0;
801 }
802
803 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
804         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
805 {
806     /* Perform I/O through a temporary buffer so that users who scribble over
807      * their read buffer while the operation is in progress do not end up
808      * modifying the image file.  This is critical for zero-copy guest I/O
809      * where anything might happen inside guest memory.
810      */
811     void *bounce_buffer;
812
813     BlockDriver *drv = bs->drv;
814     struct iovec iov;
815     QEMUIOVector bounce_qiov;
816     int64_t cluster_sector_num;
817     int cluster_nb_sectors;
818     size_t skip_bytes;
819     int ret;
820
821     /* Cover entire cluster so no additional backing file I/O is required when
822      * allocating cluster in the image file.
823      */
824     bdrv_round_to_clusters(bs, sector_num, nb_sectors,
825                            &cluster_sector_num, &cluster_nb_sectors);
826
827     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
828                                    cluster_sector_num, cluster_nb_sectors);
829
830     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
831     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
832     if (bounce_buffer == NULL) {
833         ret = -ENOMEM;
834         goto err;
835     }
836
837     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
838
839     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
840                              &bounce_qiov);
841     if (ret < 0) {
842         goto err;
843     }
844
845     if (drv->bdrv_co_write_zeroes &&
846         buffer_is_zero(bounce_buffer, iov.iov_len)) {
847         ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
848                                       cluster_nb_sectors, 0);
849     } else {
850         /* This does not change the data on the disk, it is not necessary
851          * to flush even in cache=writethrough mode.
852          */
853         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
854                                   &bounce_qiov);
855     }
856
857     if (ret < 0) {
858         /* It might be okay to ignore write errors for guest requests.  If this
859          * is a deliberate copy-on-read then we don't want to ignore the error.
860          * Simply report it in all cases.
861          */
862         goto err;
863     }
864
865     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
866     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
867                         nb_sectors * BDRV_SECTOR_SIZE);
868
869 err:
870     qemu_vfree(bounce_buffer);
871     return ret;
872 }
873
874 /*
875  * Forwards an already correctly aligned request to the BlockDriver. This
876  * handles copy on read and zeroing after EOF; any other features must be
877  * implemented by the caller.
878  */
879 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
880     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
881     int64_t align, QEMUIOVector *qiov, int flags)
882 {
883     BlockDriver *drv = bs->drv;
884     int ret;
885
886     int64_t sector_num = offset >> BDRV_SECTOR_BITS;
887     unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
888
889     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
890     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
891     assert(!qiov || bytes == qiov->size);
892     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
893
894     /* Handle Copy on Read and associated serialisation */
895     if (flags & BDRV_REQ_COPY_ON_READ) {
896         /* If we touch the same cluster it counts as an overlap.  This
897          * guarantees that allocating writes will be serialized and not race
898          * with each other for the same cluster.  For example, in copy-on-read
899          * it ensures that the CoR read and write operations are atomic and
900          * guest writes cannot interleave between them. */
901         mark_request_serialising(req, bdrv_get_cluster_size(bs));
902     }
903
904     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
905         wait_serialising_requests(req);
906     }
907
908     if (flags & BDRV_REQ_COPY_ON_READ) {
909         int pnum;
910
911         ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
912         if (ret < 0) {
913             goto out;
914         }
915
916         if (!ret || pnum != nb_sectors) {
917             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
918             goto out;
919         }
920     }
921
922     /* Forward the request to the BlockDriver */
923     if (!bs->zero_beyond_eof) {
924         ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
925     } else {
926         /* Read zeros after EOF */
927         int64_t total_sectors, max_nb_sectors;
928
929         total_sectors = bdrv_nb_sectors(bs);
930         if (total_sectors < 0) {
931             ret = total_sectors;
932             goto out;
933         }
934
935         max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
936                                   align >> BDRV_SECTOR_BITS);
937         if (nb_sectors < max_nb_sectors) {
938             ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
939         } else if (max_nb_sectors > 0) {
940             QEMUIOVector local_qiov;
941
942             qemu_iovec_init(&local_qiov, qiov->niov);
943             qemu_iovec_concat(&local_qiov, qiov, 0,
944                               max_nb_sectors * BDRV_SECTOR_SIZE);
945
946             ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
947                                      &local_qiov);
948
949             qemu_iovec_destroy(&local_qiov);
950         } else {
951             ret = 0;
952         }
953
954         /* Reading beyond end of file is supposed to produce zeroes */
955         if (ret == 0 && total_sectors < sector_num + nb_sectors) {
956             uint64_t offset = MAX(0, total_sectors - sector_num);
957             uint64_t bytes = (sector_num + nb_sectors - offset) *
958                               BDRV_SECTOR_SIZE;
959             qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
960         }
961     }
962
963 out:
964     return ret;
965 }
966
967 /*
968  * Handle a read request in coroutine context
969  */
970 int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
971     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
972     BdrvRequestFlags flags)
973 {
974     BlockDriver *drv = bs->drv;
975     BdrvTrackedRequest req;
976
977     /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
978     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
979     uint8_t *head_buf = NULL;
980     uint8_t *tail_buf = NULL;
981     QEMUIOVector local_qiov;
982     bool use_local_qiov = false;
983     int ret;
984
985     if (!drv) {
986         return -ENOMEDIUM;
987     }
988
989     ret = bdrv_check_byte_request(bs, offset, bytes);
990     if (ret < 0) {
991         return ret;
992     }
993
994     /* Don't do copy-on-read if we read data before write operation */
995     if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
996         flags |= BDRV_REQ_COPY_ON_READ;
997     }
998
999     /* throttling disk I/O */
1000     if (bs->io_limits_enabled) {
1001         throttle_group_co_io_limits_intercept(bs, bytes, false);
1002     }
1003
1004     /* Align read if necessary by padding qiov */
1005     if (offset & (align - 1)) {
1006         head_buf = qemu_blockalign(bs, align);
1007         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1008         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1009         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1010         use_local_qiov = true;
1011
1012         bytes += offset & (align - 1);
1013         offset = offset & ~(align - 1);
1014     }
1015
1016     if ((offset + bytes) & (align - 1)) {
1017         if (!use_local_qiov) {
1018             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1019             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1020             use_local_qiov = true;
1021         }
1022         tail_buf = qemu_blockalign(bs, align);
1023         qemu_iovec_add(&local_qiov, tail_buf,
1024                        align - ((offset + bytes) & (align - 1)));
1025
1026         bytes = ROUND_UP(bytes, align);
1027     }
1028
1029     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1030     ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1031                               use_local_qiov ? &local_qiov : qiov,
1032                               flags);
1033     tracked_request_end(&req);
1034
1035     if (use_local_qiov) {
1036         qemu_iovec_destroy(&local_qiov);
1037         qemu_vfree(head_buf);
1038         qemu_vfree(tail_buf);
1039     }
1040
1041     return ret;
1042 }
1043
1044 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1045     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1046     BdrvRequestFlags flags)
1047 {
1048     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1049         return -EINVAL;
1050     }
1051
1052     return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1053                              nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1054 }
1055
1056 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1057     int nb_sectors, QEMUIOVector *qiov)
1058 {
1059     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1060
1061     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1062 }
1063
1064 int coroutine_fn bdrv_co_readv_no_serialising(BlockDriverState *bs,
1065     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1066 {
1067     trace_bdrv_co_readv_no_serialising(bs, sector_num, nb_sectors);
1068
1069     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1070                             BDRV_REQ_NO_SERIALISING);
1071 }
1072
1073 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1074     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1075 {
1076     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1077
1078     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1079                             BDRV_REQ_COPY_ON_READ);
1080 }
1081
1082 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1083
1084 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1085     int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1086 {
1087     BlockDriver *drv = bs->drv;
1088     QEMUIOVector qiov;
1089     struct iovec iov = {0};
1090     int ret = 0;
1091
1092     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1093                                         BDRV_REQUEST_MAX_SECTORS);
1094
1095     while (nb_sectors > 0 && !ret) {
1096         int num = nb_sectors;
1097
1098         /* Align request.  Block drivers can expect the "bulk" of the request
1099          * to be aligned.
1100          */
1101         if (bs->bl.write_zeroes_alignment
1102             && num > bs->bl.write_zeroes_alignment) {
1103             if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1104                 /* Make a small request up to the first aligned sector.  */
1105                 num = bs->bl.write_zeroes_alignment;
1106                 num -= sector_num % bs->bl.write_zeroes_alignment;
1107             } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1108                 /* Shorten the request to the last aligned sector.  num cannot
1109                  * underflow because num > bs->bl.write_zeroes_alignment.
1110                  */
1111                 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1112             }
1113         }
1114
1115         /* limit request size */
1116         if (num > max_write_zeroes) {
1117             num = max_write_zeroes;
1118         }
1119
1120         ret = -ENOTSUP;
1121         /* First try the efficient write zeroes operation */
1122         if (drv->bdrv_co_write_zeroes) {
1123             ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1124         }
1125
1126         if (ret == -ENOTSUP) {
1127             /* Fall back to bounce buffer if write zeroes is unsupported */
1128             int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1129                                             MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1130             num = MIN(num, max_xfer_len);
1131             iov.iov_len = num * BDRV_SECTOR_SIZE;
1132             if (iov.iov_base == NULL) {
1133                 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1134                 if (iov.iov_base == NULL) {
1135                     ret = -ENOMEM;
1136                     goto fail;
1137                 }
1138                 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1139             }
1140             qemu_iovec_init_external(&qiov, &iov, 1);
1141
1142             ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1143
1144             /* Keep bounce buffer around if it is big enough for all
1145              * all future requests.
1146              */
1147             if (num < max_xfer_len) {
1148                 qemu_vfree(iov.iov_base);
1149                 iov.iov_base = NULL;
1150             }
1151         }
1152
1153         sector_num += num;
1154         nb_sectors -= num;
1155     }
1156
1157 fail:
1158     qemu_vfree(iov.iov_base);
1159     return ret;
1160 }
1161
1162 /*
1163  * Forwards an already correctly aligned write request to the BlockDriver.
1164  */
1165 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1166     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1167     QEMUIOVector *qiov, int flags)
1168 {
1169     BlockDriver *drv = bs->drv;
1170     bool waited;
1171     int ret;
1172
1173     int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1174     unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1175
1176     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1177     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1178     assert(!qiov || bytes == qiov->size);
1179     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1180
1181     waited = wait_serialising_requests(req);
1182     assert(!waited || !req->serialising);
1183     assert(req->overlap_offset <= offset);
1184     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1185
1186     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1187
1188     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1189         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1190         qemu_iovec_is_zero(qiov)) {
1191         flags |= BDRV_REQ_ZERO_WRITE;
1192         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1193             flags |= BDRV_REQ_MAY_UNMAP;
1194         }
1195     }
1196
1197     if (ret < 0) {
1198         /* Do nothing, write notifier decided to fail this request */
1199     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1200         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1201         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1202     } else if (drv->bdrv_co_writev_flags) {
1203         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1204         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
1205                                         flags);
1206     } else {
1207         assert(drv->supported_write_flags == 0);
1208         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1209         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1210     }
1211     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1212
1213     if (ret == 0 && (flags & BDRV_REQ_FUA) &&
1214         !(drv->supported_write_flags & BDRV_REQ_FUA))
1215     {
1216         ret = bdrv_co_flush(bs);
1217     }
1218
1219     bdrv_set_dirty(bs, sector_num, nb_sectors);
1220
1221     if (bs->wr_highest_offset < offset + bytes) {
1222         bs->wr_highest_offset = offset + bytes;
1223     }
1224
1225     if (ret >= 0) {
1226         bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1227     }
1228
1229     return ret;
1230 }
1231
1232 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1233                                                 int64_t offset,
1234                                                 unsigned int bytes,
1235                                                 BdrvRequestFlags flags,
1236                                                 BdrvTrackedRequest *req)
1237 {
1238     uint8_t *buf = NULL;
1239     QEMUIOVector local_qiov;
1240     struct iovec iov;
1241     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1242     unsigned int head_padding_bytes, tail_padding_bytes;
1243     int ret = 0;
1244
1245     head_padding_bytes = offset & (align - 1);
1246     tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1247
1248
1249     assert(flags & BDRV_REQ_ZERO_WRITE);
1250     if (head_padding_bytes || tail_padding_bytes) {
1251         buf = qemu_blockalign(bs, align);
1252         iov = (struct iovec) {
1253             .iov_base   = buf,
1254             .iov_len    = align,
1255         };
1256         qemu_iovec_init_external(&local_qiov, &iov, 1);
1257     }
1258     if (head_padding_bytes) {
1259         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1260
1261         /* RMW the unaligned part before head. */
1262         mark_request_serialising(req, align);
1263         wait_serialising_requests(req);
1264         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1265         ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1266                                   align, &local_qiov, 0);
1267         if (ret < 0) {
1268             goto fail;
1269         }
1270         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1271
1272         memset(buf + head_padding_bytes, 0, zero_bytes);
1273         ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1274                                    &local_qiov,
1275                                    flags & ~BDRV_REQ_ZERO_WRITE);
1276         if (ret < 0) {
1277             goto fail;
1278         }
1279         offset += zero_bytes;
1280         bytes -= zero_bytes;
1281     }
1282
1283     assert(!bytes || (offset & (align - 1)) == 0);
1284     if (bytes >= align) {
1285         /* Write the aligned part in the middle. */
1286         uint64_t aligned_bytes = bytes & ~(align - 1);
1287         ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1288                                    NULL, flags);
1289         if (ret < 0) {
1290             goto fail;
1291         }
1292         bytes -= aligned_bytes;
1293         offset += aligned_bytes;
1294     }
1295
1296     assert(!bytes || (offset & (align - 1)) == 0);
1297     if (bytes) {
1298         assert(align == tail_padding_bytes + bytes);
1299         /* RMW the unaligned part after tail. */
1300         mark_request_serialising(req, align);
1301         wait_serialising_requests(req);
1302         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1303         ret = bdrv_aligned_preadv(bs, req, offset, align,
1304                                   align, &local_qiov, 0);
1305         if (ret < 0) {
1306             goto fail;
1307         }
1308         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1309
1310         memset(buf, 0, bytes);
1311         ret = bdrv_aligned_pwritev(bs, req, offset, align,
1312                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1313     }
1314 fail:
1315     qemu_vfree(buf);
1316     return ret;
1317
1318 }
1319
1320 /*
1321  * Handle a write request in coroutine context
1322  */
1323 int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1324     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1325     BdrvRequestFlags flags)
1326 {
1327     BdrvTrackedRequest req;
1328     /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1329     uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1330     uint8_t *head_buf = NULL;
1331     uint8_t *tail_buf = NULL;
1332     QEMUIOVector local_qiov;
1333     bool use_local_qiov = false;
1334     int ret;
1335
1336     if (!bs->drv) {
1337         return -ENOMEDIUM;
1338     }
1339     if (bs->read_only) {
1340         return -EPERM;
1341     }
1342     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1343
1344     ret = bdrv_check_byte_request(bs, offset, bytes);
1345     if (ret < 0) {
1346         return ret;
1347     }
1348
1349     /* throttling disk I/O */
1350     if (bs->io_limits_enabled) {
1351         throttle_group_co_io_limits_intercept(bs, bytes, true);
1352     }
1353
1354     /*
1355      * Align write if necessary by performing a read-modify-write cycle.
1356      * Pad qiov with the read parts and be sure to have a tracked request not
1357      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1358      */
1359     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1360
1361     if (!qiov) {
1362         ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1363         goto out;
1364     }
1365
1366     if (offset & (align - 1)) {
1367         QEMUIOVector head_qiov;
1368         struct iovec head_iov;
1369
1370         mark_request_serialising(&req, align);
1371         wait_serialising_requests(&req);
1372
1373         head_buf = qemu_blockalign(bs, align);
1374         head_iov = (struct iovec) {
1375             .iov_base   = head_buf,
1376             .iov_len    = align,
1377         };
1378         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1379
1380         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1381         ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1382                                   align, &head_qiov, 0);
1383         if (ret < 0) {
1384             goto fail;
1385         }
1386         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1387
1388         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1389         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1390         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1391         use_local_qiov = true;
1392
1393         bytes += offset & (align - 1);
1394         offset = offset & ~(align - 1);
1395     }
1396
1397     if ((offset + bytes) & (align - 1)) {
1398         QEMUIOVector tail_qiov;
1399         struct iovec tail_iov;
1400         size_t tail_bytes;
1401         bool waited;
1402
1403         mark_request_serialising(&req, align);
1404         waited = wait_serialising_requests(&req);
1405         assert(!waited || !use_local_qiov);
1406
1407         tail_buf = qemu_blockalign(bs, align);
1408         tail_iov = (struct iovec) {
1409             .iov_base   = tail_buf,
1410             .iov_len    = align,
1411         };
1412         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1413
1414         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1415         ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1416                                   align, &tail_qiov, 0);
1417         if (ret < 0) {
1418             goto fail;
1419         }
1420         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1421
1422         if (!use_local_qiov) {
1423             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1424             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1425             use_local_qiov = true;
1426         }
1427
1428         tail_bytes = (offset + bytes) & (align - 1);
1429         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1430
1431         bytes = ROUND_UP(bytes, align);
1432     }
1433
1434     ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1435                                use_local_qiov ? &local_qiov : qiov,
1436                                flags);
1437
1438 fail:
1439
1440     if (use_local_qiov) {
1441         qemu_iovec_destroy(&local_qiov);
1442     }
1443     qemu_vfree(head_buf);
1444     qemu_vfree(tail_buf);
1445 out:
1446     tracked_request_end(&req);
1447     return ret;
1448 }
1449
1450 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1451     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1452     BdrvRequestFlags flags)
1453 {
1454     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1455         return -EINVAL;
1456     }
1457
1458     return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1459                               nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1460 }
1461
1462 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1463     int nb_sectors, QEMUIOVector *qiov)
1464 {
1465     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1466
1467     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1468 }
1469
1470 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1471                                       int64_t sector_num, int nb_sectors,
1472                                       BdrvRequestFlags flags)
1473 {
1474     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1475
1476     if (!(bs->open_flags & BDRV_O_UNMAP)) {
1477         flags &= ~BDRV_REQ_MAY_UNMAP;
1478     }
1479
1480     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1481                              BDRV_REQ_ZERO_WRITE | flags);
1482 }
1483
1484 typedef struct BdrvCoGetBlockStatusData {
1485     BlockDriverState *bs;
1486     BlockDriverState *base;
1487     BlockDriverState **file;
1488     int64_t sector_num;
1489     int nb_sectors;
1490     int *pnum;
1491     int64_t ret;
1492     bool done;
1493 } BdrvCoGetBlockStatusData;
1494
1495 /*
1496  * Returns the allocation status of the specified sectors.
1497  * Drivers not implementing the functionality are assumed to not support
1498  * backing files, hence all their sectors are reported as allocated.
1499  *
1500  * If 'sector_num' is beyond the end of the disk image the return value is 0
1501  * and 'pnum' is set to 0.
1502  *
1503  * 'pnum' is set to the number of sectors (including and immediately following
1504  * the specified sector) that are known to be in the same
1505  * allocated/unallocated state.
1506  *
1507  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1508  * beyond the end of the disk image it will be clamped.
1509  *
1510  * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1511  * points to the BDS which the sector range is allocated in.
1512  */
1513 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1514                                                      int64_t sector_num,
1515                                                      int nb_sectors, int *pnum,
1516                                                      BlockDriverState **file)
1517 {
1518     int64_t total_sectors;
1519     int64_t n;
1520     int64_t ret, ret2;
1521
1522     total_sectors = bdrv_nb_sectors(bs);
1523     if (total_sectors < 0) {
1524         return total_sectors;
1525     }
1526
1527     if (sector_num >= total_sectors) {
1528         *pnum = 0;
1529         return 0;
1530     }
1531
1532     n = total_sectors - sector_num;
1533     if (n < nb_sectors) {
1534         nb_sectors = n;
1535     }
1536
1537     if (!bs->drv->bdrv_co_get_block_status) {
1538         *pnum = nb_sectors;
1539         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1540         if (bs->drv->protocol_name) {
1541             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1542         }
1543         return ret;
1544     }
1545
1546     *file = NULL;
1547     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1548                                             file);
1549     if (ret < 0) {
1550         *pnum = 0;
1551         return ret;
1552     }
1553
1554     if (ret & BDRV_BLOCK_RAW) {
1555         assert(ret & BDRV_BLOCK_OFFSET_VALID);
1556         return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1557                                      *pnum, pnum, file);
1558     }
1559
1560     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1561         ret |= BDRV_BLOCK_ALLOCATED;
1562     } else {
1563         if (bdrv_unallocated_blocks_are_zero(bs)) {
1564             ret |= BDRV_BLOCK_ZERO;
1565         } else if (bs->backing) {
1566             BlockDriverState *bs2 = bs->backing->bs;
1567             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1568             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1569                 ret |= BDRV_BLOCK_ZERO;
1570             }
1571         }
1572     }
1573
1574     if (*file && *file != bs &&
1575         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1576         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1577         BlockDriverState *file2;
1578         int file_pnum;
1579
1580         ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1581                                         *pnum, &file_pnum, &file2);
1582         if (ret2 >= 0) {
1583             /* Ignore errors.  This is just providing extra information, it
1584              * is useful but not necessary.
1585              */
1586             if (!file_pnum) {
1587                 /* !file_pnum indicates an offset at or beyond the EOF; it is
1588                  * perfectly valid for the format block driver to point to such
1589                  * offsets, so catch it and mark everything as zero */
1590                 ret |= BDRV_BLOCK_ZERO;
1591             } else {
1592                 /* Limit request to the range reported by the protocol driver */
1593                 *pnum = file_pnum;
1594                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1595             }
1596         }
1597     }
1598
1599     return ret;
1600 }
1601
1602 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1603         BlockDriverState *base,
1604         int64_t sector_num,
1605         int nb_sectors,
1606         int *pnum,
1607         BlockDriverState **file)
1608 {
1609     BlockDriverState *p;
1610     int64_t ret = 0;
1611
1612     assert(bs != base);
1613     for (p = bs; p != base; p = backing_bs(p)) {
1614         ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1615         if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1616             break;
1617         }
1618         /* [sector_num, pnum] unallocated on this layer, which could be only
1619          * the first part of [sector_num, nb_sectors].  */
1620         nb_sectors = MIN(nb_sectors, *pnum);
1621     }
1622     return ret;
1623 }
1624
1625 /* Coroutine wrapper for bdrv_get_block_status_above() */
1626 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1627 {
1628     BdrvCoGetBlockStatusData *data = opaque;
1629
1630     data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1631                                                data->sector_num,
1632                                                data->nb_sectors,
1633                                                data->pnum,
1634                                                data->file);
1635     data->done = true;
1636 }
1637
1638 /*
1639  * Synchronous wrapper around bdrv_co_get_block_status_above().
1640  *
1641  * See bdrv_co_get_block_status_above() for details.
1642  */
1643 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1644                                     BlockDriverState *base,
1645                                     int64_t sector_num,
1646                                     int nb_sectors, int *pnum,
1647                                     BlockDriverState **file)
1648 {
1649     Coroutine *co;
1650     BdrvCoGetBlockStatusData data = {
1651         .bs = bs,
1652         .base = base,
1653         .file = file,
1654         .sector_num = sector_num,
1655         .nb_sectors = nb_sectors,
1656         .pnum = pnum,
1657         .done = false,
1658     };
1659
1660     if (qemu_in_coroutine()) {
1661         /* Fast-path if already in coroutine context */
1662         bdrv_get_block_status_above_co_entry(&data);
1663     } else {
1664         AioContext *aio_context = bdrv_get_aio_context(bs);
1665
1666         co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1667         qemu_coroutine_enter(co, &data);
1668         while (!data.done) {
1669             aio_poll(aio_context, true);
1670         }
1671     }
1672     return data.ret;
1673 }
1674
1675 int64_t bdrv_get_block_status(BlockDriverState *bs,
1676                               int64_t sector_num,
1677                               int nb_sectors, int *pnum,
1678                               BlockDriverState **file)
1679 {
1680     return bdrv_get_block_status_above(bs, backing_bs(bs),
1681                                        sector_num, nb_sectors, pnum, file);
1682 }
1683
1684 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1685                                    int nb_sectors, int *pnum)
1686 {
1687     BlockDriverState *file;
1688     int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1689                                         &file);
1690     if (ret < 0) {
1691         return ret;
1692     }
1693     return !!(ret & BDRV_BLOCK_ALLOCATED);
1694 }
1695
1696 /*
1697  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1698  *
1699  * Return true if the given sector is allocated in any image between
1700  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1701  * sector is allocated in any image of the chain.  Return false otherwise.
1702  *
1703  * 'pnum' is set to the number of sectors (including and immediately following
1704  *  the specified sector) that are known to be in the same
1705  *  allocated/unallocated state.
1706  *
1707  */
1708 int bdrv_is_allocated_above(BlockDriverState *top,
1709                             BlockDriverState *base,
1710                             int64_t sector_num,
1711                             int nb_sectors, int *pnum)
1712 {
1713     BlockDriverState *intermediate;
1714     int ret, n = nb_sectors;
1715
1716     intermediate = top;
1717     while (intermediate && intermediate != base) {
1718         int pnum_inter;
1719         ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1720                                 &pnum_inter);
1721         if (ret < 0) {
1722             return ret;
1723         } else if (ret) {
1724             *pnum = pnum_inter;
1725             return 1;
1726         }
1727
1728         /*
1729          * [sector_num, nb_sectors] is unallocated on top but intermediate
1730          * might have
1731          *
1732          * [sector_num+x, nr_sectors] allocated.
1733          */
1734         if (n > pnum_inter &&
1735             (intermediate == top ||
1736              sector_num + pnum_inter < intermediate->total_sectors)) {
1737             n = pnum_inter;
1738         }
1739
1740         intermediate = backing_bs(intermediate);
1741     }
1742
1743     *pnum = n;
1744     return 0;
1745 }
1746
1747 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1748                           const uint8_t *buf, int nb_sectors)
1749 {
1750     BlockDriver *drv = bs->drv;
1751     int ret;
1752
1753     if (!drv) {
1754         return -ENOMEDIUM;
1755     }
1756     if (!drv->bdrv_write_compressed) {
1757         return -ENOTSUP;
1758     }
1759     ret = bdrv_check_request(bs, sector_num, nb_sectors);
1760     if (ret < 0) {
1761         return ret;
1762     }
1763
1764     assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1765
1766     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1767 }
1768
1769 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1770                       int64_t pos, int size)
1771 {
1772     QEMUIOVector qiov;
1773     struct iovec iov = {
1774         .iov_base   = (void *) buf,
1775         .iov_len    = size,
1776     };
1777
1778     qemu_iovec_init_external(&qiov, &iov, 1);
1779     return bdrv_writev_vmstate(bs, &qiov, pos);
1780 }
1781
1782 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1783 {
1784     BlockDriver *drv = bs->drv;
1785
1786     if (!drv) {
1787         return -ENOMEDIUM;
1788     } else if (drv->bdrv_save_vmstate) {
1789         return drv->bdrv_save_vmstate(bs, qiov, pos);
1790     } else if (bs->file) {
1791         return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1792     }
1793
1794     return -ENOTSUP;
1795 }
1796
1797 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1798                       int64_t pos, int size)
1799 {
1800     BlockDriver *drv = bs->drv;
1801     if (!drv)
1802         return -ENOMEDIUM;
1803     if (drv->bdrv_load_vmstate)
1804         return drv->bdrv_load_vmstate(bs, buf, pos, size);
1805     if (bs->file)
1806         return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1807     return -ENOTSUP;
1808 }
1809
1810 /**************************************************************/
1811 /* async I/Os */
1812
1813 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1814                            QEMUIOVector *qiov, int nb_sectors,
1815                            BlockCompletionFunc *cb, void *opaque)
1816 {
1817     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1818
1819     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1820                                  cb, opaque, false);
1821 }
1822
1823 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1824                             QEMUIOVector *qiov, int nb_sectors,
1825                             BlockCompletionFunc *cb, void *opaque)
1826 {
1827     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1828
1829     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1830                                  cb, opaque, true);
1831 }
1832
1833 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1834         int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1835         BlockCompletionFunc *cb, void *opaque)
1836 {
1837     trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1838
1839     return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1840                                  BDRV_REQ_ZERO_WRITE | flags,
1841                                  cb, opaque, true);
1842 }
1843
1844
1845 typedef struct MultiwriteCB {
1846     int error;
1847     int num_requests;
1848     int num_callbacks;
1849     struct {
1850         BlockCompletionFunc *cb;
1851         void *opaque;
1852         QEMUIOVector *free_qiov;
1853     } callbacks[];
1854 } MultiwriteCB;
1855
1856 static void multiwrite_user_cb(MultiwriteCB *mcb)
1857 {
1858     int i;
1859
1860     for (i = 0; i < mcb->num_callbacks; i++) {
1861         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1862         if (mcb->callbacks[i].free_qiov) {
1863             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1864         }
1865         g_free(mcb->callbacks[i].free_qiov);
1866     }
1867 }
1868
1869 static void multiwrite_cb(void *opaque, int ret)
1870 {
1871     MultiwriteCB *mcb = opaque;
1872
1873     trace_multiwrite_cb(mcb, ret);
1874
1875     if (ret < 0 && !mcb->error) {
1876         mcb->error = ret;
1877     }
1878
1879     mcb->num_requests--;
1880     if (mcb->num_requests == 0) {
1881         multiwrite_user_cb(mcb);
1882         g_free(mcb);
1883     }
1884 }
1885
1886 static int multiwrite_req_compare(const void *a, const void *b)
1887 {
1888     const BlockRequest *req1 = a, *req2 = b;
1889
1890     /*
1891      * Note that we can't simply subtract req2->sector from req1->sector
1892      * here as that could overflow the return value.
1893      */
1894     if (req1->sector > req2->sector) {
1895         return 1;
1896     } else if (req1->sector < req2->sector) {
1897         return -1;
1898     } else {
1899         return 0;
1900     }
1901 }
1902
1903 /*
1904  * Takes a bunch of requests and tries to merge them. Returns the number of
1905  * requests that remain after merging.
1906  */
1907 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1908     int num_reqs, MultiwriteCB *mcb)
1909 {
1910     int i, outidx;
1911
1912     // Sort requests by start sector
1913     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1914
1915     // Check if adjacent requests touch the same clusters. If so, combine them,
1916     // filling up gaps with zero sectors.
1917     outidx = 0;
1918     for (i = 1; i < num_reqs; i++) {
1919         int merge = 0;
1920         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1921
1922         // Handle exactly sequential writes and overlapping writes.
1923         if (reqs[i].sector <= oldreq_last) {
1924             merge = 1;
1925         }
1926
1927         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 >
1928             bs->bl.max_iov) {
1929             merge = 0;
1930         }
1931
1932         if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1933             reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1934             merge = 0;
1935         }
1936
1937         if (merge) {
1938             size_t size;
1939             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1940             qemu_iovec_init(qiov,
1941                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1942
1943             // Add the first request to the merged one. If the requests are
1944             // overlapping, drop the last sectors of the first request.
1945             size = (reqs[i].sector - reqs[outidx].sector) << 9;
1946             qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1947
1948             // We should need to add any zeros between the two requests
1949             assert (reqs[i].sector <= oldreq_last);
1950
1951             // Add the second request
1952             qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1953
1954             // Add tail of first request, if necessary
1955             if (qiov->size < reqs[outidx].qiov->size) {
1956                 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1957                                   reqs[outidx].qiov->size - qiov->size);
1958             }
1959
1960             reqs[outidx].nb_sectors = qiov->size >> 9;
1961             reqs[outidx].qiov = qiov;
1962
1963             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1964         } else {
1965             outidx++;
1966             reqs[outidx].sector     = reqs[i].sector;
1967             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1968             reqs[outidx].qiov       = reqs[i].qiov;
1969         }
1970     }
1971
1972     if (bs->blk) {
1973         block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE,
1974                               num_reqs - outidx - 1);
1975     }
1976
1977     return outidx + 1;
1978 }
1979
1980 /*
1981  * Submit multiple AIO write requests at once.
1982  *
1983  * On success, the function returns 0 and all requests in the reqs array have
1984  * been submitted. In error case this function returns -1, and any of the
1985  * requests may or may not be submitted yet. In particular, this means that the
1986  * callback will be called for some of the requests, for others it won't. The
1987  * caller must check the error field of the BlockRequest to wait for the right
1988  * callbacks (if error != 0, no callback will be called).
1989  *
1990  * The implementation may modify the contents of the reqs array, e.g. to merge
1991  * requests. However, the fields opaque and error are left unmodified as they
1992  * are used to signal failure for a single request to the caller.
1993  */
1994 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1995 {
1996     MultiwriteCB *mcb;
1997     int i;
1998
1999     /* don't submit writes if we don't have a medium */
2000     if (bs->drv == NULL) {
2001         for (i = 0; i < num_reqs; i++) {
2002             reqs[i].error = -ENOMEDIUM;
2003         }
2004         return -1;
2005     }
2006
2007     if (num_reqs == 0) {
2008         return 0;
2009     }
2010
2011     // Create MultiwriteCB structure
2012     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
2013     mcb->num_requests = 0;
2014     mcb->num_callbacks = num_reqs;
2015
2016     for (i = 0; i < num_reqs; i++) {
2017         mcb->callbacks[i].cb = reqs[i].cb;
2018         mcb->callbacks[i].opaque = reqs[i].opaque;
2019     }
2020
2021     // Check for mergable requests
2022     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
2023
2024     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
2025
2026     /* Run the aio requests. */
2027     mcb->num_requests = num_reqs;
2028     for (i = 0; i < num_reqs; i++) {
2029         bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
2030                               reqs[i].nb_sectors, reqs[i].flags,
2031                               multiwrite_cb, mcb,
2032                               true);
2033     }
2034
2035     return 0;
2036 }
2037
2038 void bdrv_aio_cancel(BlockAIOCB *acb)
2039 {
2040     qemu_aio_ref(acb);
2041     bdrv_aio_cancel_async(acb);
2042     while (acb->refcnt > 1) {
2043         if (acb->aiocb_info->get_aio_context) {
2044             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2045         } else if (acb->bs) {
2046             aio_poll(bdrv_get_aio_context(acb->bs), true);
2047         } else {
2048             abort();
2049         }
2050     }
2051     qemu_aio_unref(acb);
2052 }
2053
2054 /* Async version of aio cancel. The caller is not blocked if the acb implements
2055  * cancel_async, otherwise we do nothing and let the request normally complete.
2056  * In either case the completion callback must be called. */
2057 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2058 {
2059     if (acb->aiocb_info->cancel_async) {
2060         acb->aiocb_info->cancel_async(acb);
2061     }
2062 }
2063
2064 /**************************************************************/
2065 /* async block device emulation */
2066
2067 typedef struct BlockAIOCBSync {
2068     BlockAIOCB common;
2069     QEMUBH *bh;
2070     int ret;
2071     /* vector translation state */
2072     QEMUIOVector *qiov;
2073     uint8_t *bounce;
2074     int is_write;
2075 } BlockAIOCBSync;
2076
2077 static const AIOCBInfo bdrv_em_aiocb_info = {
2078     .aiocb_size         = sizeof(BlockAIOCBSync),
2079 };
2080
2081 static void bdrv_aio_bh_cb(void *opaque)
2082 {
2083     BlockAIOCBSync *acb = opaque;
2084
2085     if (!acb->is_write && acb->ret >= 0) {
2086         qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2087     }
2088     qemu_vfree(acb->bounce);
2089     acb->common.cb(acb->common.opaque, acb->ret);
2090     qemu_bh_delete(acb->bh);
2091     acb->bh = NULL;
2092     qemu_aio_unref(acb);
2093 }
2094
2095 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2096                                       int64_t sector_num,
2097                                       QEMUIOVector *qiov,
2098                                       int nb_sectors,
2099                                       BlockCompletionFunc *cb,
2100                                       void *opaque,
2101                                       int is_write)
2102
2103 {
2104     BlockAIOCBSync *acb;
2105
2106     acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2107     acb->is_write = is_write;
2108     acb->qiov = qiov;
2109     acb->bounce = qemu_try_blockalign(bs, qiov->size);
2110     acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2111
2112     if (acb->bounce == NULL) {
2113         acb->ret = -ENOMEM;
2114     } else if (is_write) {
2115         qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2116         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2117     } else {
2118         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2119     }
2120
2121     qemu_bh_schedule(acb->bh);
2122
2123     return &acb->common;
2124 }
2125
2126 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2127         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2128         BlockCompletionFunc *cb, void *opaque)
2129 {
2130     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2131 }
2132
2133 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2134         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2135         BlockCompletionFunc *cb, void *opaque)
2136 {
2137     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2138 }
2139
2140
2141 typedef struct BlockAIOCBCoroutine {
2142     BlockAIOCB common;
2143     BlockRequest req;
2144     bool is_write;
2145     bool need_bh;
2146     bool *done;
2147     QEMUBH* bh;
2148 } BlockAIOCBCoroutine;
2149
2150 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2151     .aiocb_size         = sizeof(BlockAIOCBCoroutine),
2152 };
2153
2154 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2155 {
2156     if (!acb->need_bh) {
2157         acb->common.cb(acb->common.opaque, acb->req.error);
2158         qemu_aio_unref(acb);
2159     }
2160 }
2161
2162 static void bdrv_co_em_bh(void *opaque)
2163 {
2164     BlockAIOCBCoroutine *acb = opaque;
2165
2166     assert(!acb->need_bh);
2167     qemu_bh_delete(acb->bh);
2168     bdrv_co_complete(acb);
2169 }
2170
2171 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2172 {
2173     acb->need_bh = false;
2174     if (acb->req.error != -EINPROGRESS) {
2175         BlockDriverState *bs = acb->common.bs;
2176
2177         acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2178         qemu_bh_schedule(acb->bh);
2179     }
2180 }
2181
2182 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2183 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2184 {
2185     BlockAIOCBCoroutine *acb = opaque;
2186     BlockDriverState *bs = acb->common.bs;
2187
2188     if (!acb->is_write) {
2189         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2190             acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2191     } else {
2192         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2193             acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2194     }
2195
2196     bdrv_co_complete(acb);
2197 }
2198
2199 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2200                                          int64_t sector_num,
2201                                          QEMUIOVector *qiov,
2202                                          int nb_sectors,
2203                                          BdrvRequestFlags flags,
2204                                          BlockCompletionFunc *cb,
2205                                          void *opaque,
2206                                          bool is_write)
2207 {
2208     Coroutine *co;
2209     BlockAIOCBCoroutine *acb;
2210
2211     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2212     acb->need_bh = true;
2213     acb->req.error = -EINPROGRESS;
2214     acb->req.sector = sector_num;
2215     acb->req.nb_sectors = nb_sectors;
2216     acb->req.qiov = qiov;
2217     acb->req.flags = flags;
2218     acb->is_write = is_write;
2219
2220     co = qemu_coroutine_create(bdrv_co_do_rw);
2221     qemu_coroutine_enter(co, acb);
2222
2223     bdrv_co_maybe_schedule_bh(acb);
2224     return &acb->common;
2225 }
2226
2227 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2228 {
2229     BlockAIOCBCoroutine *acb = opaque;
2230     BlockDriverState *bs = acb->common.bs;
2231
2232     acb->req.error = bdrv_co_flush(bs);
2233     bdrv_co_complete(acb);
2234 }
2235
2236 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2237         BlockCompletionFunc *cb, void *opaque)
2238 {
2239     trace_bdrv_aio_flush(bs, opaque);
2240
2241     Coroutine *co;
2242     BlockAIOCBCoroutine *acb;
2243
2244     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2245     acb->need_bh = true;
2246     acb->req.error = -EINPROGRESS;
2247
2248     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2249     qemu_coroutine_enter(co, acb);
2250
2251     bdrv_co_maybe_schedule_bh(acb);
2252     return &acb->common;
2253 }
2254
2255 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2256 {
2257     BlockAIOCBCoroutine *acb = opaque;
2258     BlockDriverState *bs = acb->common.bs;
2259
2260     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2261     bdrv_co_complete(acb);
2262 }
2263
2264 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2265         int64_t sector_num, int nb_sectors,
2266         BlockCompletionFunc *cb, void *opaque)
2267 {
2268     Coroutine *co;
2269     BlockAIOCBCoroutine *acb;
2270
2271     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2272
2273     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2274     acb->need_bh = true;
2275     acb->req.error = -EINPROGRESS;
2276     acb->req.sector = sector_num;
2277     acb->req.nb_sectors = nb_sectors;
2278     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2279     qemu_coroutine_enter(co, acb);
2280
2281     bdrv_co_maybe_schedule_bh(acb);
2282     return &acb->common;
2283 }
2284
2285 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2286                    BlockCompletionFunc *cb, void *opaque)
2287 {
2288     BlockAIOCB *acb;
2289
2290     acb = g_malloc(aiocb_info->aiocb_size);
2291     acb->aiocb_info = aiocb_info;
2292     acb->bs = bs;
2293     acb->cb = cb;
2294     acb->opaque = opaque;
2295     acb->refcnt = 1;
2296     return acb;
2297 }
2298
2299 void qemu_aio_ref(void *p)
2300 {
2301     BlockAIOCB *acb = p;
2302     acb->refcnt++;
2303 }
2304
2305 void qemu_aio_unref(void *p)
2306 {
2307     BlockAIOCB *acb = p;
2308     assert(acb->refcnt > 0);
2309     if (--acb->refcnt == 0) {
2310         g_free(acb);
2311     }
2312 }
2313
2314 /**************************************************************/
2315 /* Coroutine block device emulation */
2316
2317 typedef struct CoroutineIOCompletion {
2318     Coroutine *coroutine;
2319     int ret;
2320 } CoroutineIOCompletion;
2321
2322 static void bdrv_co_io_em_complete(void *opaque, int ret)
2323 {
2324     CoroutineIOCompletion *co = opaque;
2325
2326     co->ret = ret;
2327     qemu_coroutine_enter(co->coroutine, NULL);
2328 }
2329
2330 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2331                                       int nb_sectors, QEMUIOVector *iov,
2332                                       bool is_write)
2333 {
2334     CoroutineIOCompletion co = {
2335         .coroutine = qemu_coroutine_self(),
2336     };
2337     BlockAIOCB *acb;
2338
2339     if (is_write) {
2340         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2341                                        bdrv_co_io_em_complete, &co);
2342     } else {
2343         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2344                                       bdrv_co_io_em_complete, &co);
2345     }
2346
2347     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2348     if (!acb) {
2349         return -EIO;
2350     }
2351     qemu_coroutine_yield();
2352
2353     return co.ret;
2354 }
2355
2356 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2357                                          int64_t sector_num, int nb_sectors,
2358                                          QEMUIOVector *iov)
2359 {
2360     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2361 }
2362
2363 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2364                                          int64_t sector_num, int nb_sectors,
2365                                          QEMUIOVector *iov)
2366 {
2367     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2368 }
2369
2370 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2371 {
2372     RwCo *rwco = opaque;
2373
2374     rwco->ret = bdrv_co_flush(rwco->bs);
2375 }
2376
2377 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2378 {
2379     int ret;
2380     BdrvTrackedRequest req;
2381
2382     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2383         bdrv_is_sg(bs)) {
2384         return 0;
2385     }
2386
2387     tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2388
2389     /* Write back all layers by calling one driver function */
2390     if (bs->drv->bdrv_co_flush) {
2391         ret = bs->drv->bdrv_co_flush(bs);
2392         goto out;
2393     }
2394
2395     /* Write back cached data to the OS even with cache=unsafe */
2396     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2397     if (bs->drv->bdrv_co_flush_to_os) {
2398         ret = bs->drv->bdrv_co_flush_to_os(bs);
2399         if (ret < 0) {
2400             goto out;
2401         }
2402     }
2403
2404     /* But don't actually force it to the disk with cache=unsafe */
2405     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2406         goto flush_parent;
2407     }
2408
2409     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2410     if (bs->drv->bdrv_co_flush_to_disk) {
2411         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2412     } else if (bs->drv->bdrv_aio_flush) {
2413         BlockAIOCB *acb;
2414         CoroutineIOCompletion co = {
2415             .coroutine = qemu_coroutine_self(),
2416         };
2417
2418         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2419         if (acb == NULL) {
2420             ret = -EIO;
2421         } else {
2422             qemu_coroutine_yield();
2423             ret = co.ret;
2424         }
2425     } else {
2426         /*
2427          * Some block drivers always operate in either writethrough or unsafe
2428          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2429          * know how the server works (because the behaviour is hardcoded or
2430          * depends on server-side configuration), so we can't ensure that
2431          * everything is safe on disk. Returning an error doesn't work because
2432          * that would break guests even if the server operates in writethrough
2433          * mode.
2434          *
2435          * Let's hope the user knows what he's doing.
2436          */
2437         ret = 0;
2438     }
2439     if (ret < 0) {
2440         goto out;
2441     }
2442
2443     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2444      * in the case of cache=unsafe, so there are no useless flushes.
2445      */
2446 flush_parent:
2447     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2448 out:
2449     tracked_request_end(&req);
2450     return ret;
2451 }
2452
2453 int bdrv_flush(BlockDriverState *bs)
2454 {
2455     Coroutine *co;
2456     RwCo rwco = {
2457         .bs = bs,
2458         .ret = NOT_DONE,
2459     };
2460
2461     if (qemu_in_coroutine()) {
2462         /* Fast-path if already in coroutine context */
2463         bdrv_flush_co_entry(&rwco);
2464     } else {
2465         AioContext *aio_context = bdrv_get_aio_context(bs);
2466
2467         co = qemu_coroutine_create(bdrv_flush_co_entry);
2468         qemu_coroutine_enter(co, &rwco);
2469         while (rwco.ret == NOT_DONE) {
2470             aio_poll(aio_context, true);
2471         }
2472     }
2473
2474     return rwco.ret;
2475 }
2476
2477 typedef struct DiscardCo {
2478     BlockDriverState *bs;
2479     int64_t sector_num;
2480     int nb_sectors;
2481     int ret;
2482 } DiscardCo;
2483 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2484 {
2485     DiscardCo *rwco = opaque;
2486
2487     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2488 }
2489
2490 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2491                                  int nb_sectors)
2492 {
2493     BdrvTrackedRequest req;
2494     int max_discard, ret;
2495
2496     if (!bs->drv) {
2497         return -ENOMEDIUM;
2498     }
2499
2500     ret = bdrv_check_request(bs, sector_num, nb_sectors);
2501     if (ret < 0) {
2502         return ret;
2503     } else if (bs->read_only) {
2504         return -EPERM;
2505     }
2506     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2507
2508     /* Do nothing if disabled.  */
2509     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2510         return 0;
2511     }
2512
2513     if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2514         return 0;
2515     }
2516
2517     tracked_request_begin(&req, bs, sector_num, nb_sectors,
2518                           BDRV_TRACKED_DISCARD);
2519     bdrv_set_dirty(bs, sector_num, nb_sectors);
2520
2521     max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2522     while (nb_sectors > 0) {
2523         int ret;
2524         int num = nb_sectors;
2525
2526         /* align request */
2527         if (bs->bl.discard_alignment &&
2528             num >= bs->bl.discard_alignment &&
2529             sector_num % bs->bl.discard_alignment) {
2530             if (num > bs->bl.discard_alignment) {
2531                 num = bs->bl.discard_alignment;
2532             }
2533             num -= sector_num % bs->bl.discard_alignment;
2534         }
2535
2536         /* limit request size */
2537         if (num > max_discard) {
2538             num = max_discard;
2539         }
2540
2541         if (bs->drv->bdrv_co_discard) {
2542             ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2543         } else {
2544             BlockAIOCB *acb;
2545             CoroutineIOCompletion co = {
2546                 .coroutine = qemu_coroutine_self(),
2547             };
2548
2549             acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2550                                             bdrv_co_io_em_complete, &co);
2551             if (acb == NULL) {
2552                 ret = -EIO;
2553                 goto out;
2554             } else {
2555                 qemu_coroutine_yield();
2556                 ret = co.ret;
2557             }
2558         }
2559         if (ret && ret != -ENOTSUP) {
2560             goto out;
2561         }
2562
2563         sector_num += num;
2564         nb_sectors -= num;
2565     }
2566     ret = 0;
2567 out:
2568     tracked_request_end(&req);
2569     return ret;
2570 }
2571
2572 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2573 {
2574     Coroutine *co;
2575     DiscardCo rwco = {
2576         .bs = bs,
2577         .sector_num = sector_num,
2578         .nb_sectors = nb_sectors,
2579         .ret = NOT_DONE,
2580     };
2581
2582     if (qemu_in_coroutine()) {
2583         /* Fast-path if already in coroutine context */
2584         bdrv_discard_co_entry(&rwco);
2585     } else {
2586         AioContext *aio_context = bdrv_get_aio_context(bs);
2587
2588         co = qemu_coroutine_create(bdrv_discard_co_entry);
2589         qemu_coroutine_enter(co, &rwco);
2590         while (rwco.ret == NOT_DONE) {
2591             aio_poll(aio_context, true);
2592         }
2593     }
2594
2595     return rwco.ret;
2596 }
2597
2598 typedef struct {
2599     CoroutineIOCompletion *co;
2600     QEMUBH *bh;
2601 } BdrvIoctlCompletionData;
2602
2603 static void bdrv_ioctl_bh_cb(void *opaque)
2604 {
2605     BdrvIoctlCompletionData *data = opaque;
2606
2607     bdrv_co_io_em_complete(data->co, -ENOTSUP);
2608     qemu_bh_delete(data->bh);
2609 }
2610
2611 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2612 {
2613     BlockDriver *drv = bs->drv;
2614     BdrvTrackedRequest tracked_req;
2615     CoroutineIOCompletion co = {
2616         .coroutine = qemu_coroutine_self(),
2617     };
2618     BlockAIOCB *acb;
2619
2620     tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2621     if (!drv || !drv->bdrv_aio_ioctl) {
2622         co.ret = -ENOTSUP;
2623         goto out;
2624     }
2625
2626     acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2627     if (!acb) {
2628         BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1);
2629         data->bh = aio_bh_new(bdrv_get_aio_context(bs),
2630                                 bdrv_ioctl_bh_cb, data);
2631         data->co = &co;
2632         qemu_bh_schedule(data->bh);
2633     }
2634     qemu_coroutine_yield();
2635 out:
2636     tracked_request_end(&tracked_req);
2637     return co.ret;
2638 }
2639
2640 typedef struct {
2641     BlockDriverState *bs;
2642     int req;
2643     void *buf;
2644     int ret;
2645 } BdrvIoctlCoData;
2646
2647 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2648 {
2649     BdrvIoctlCoData *data = opaque;
2650     data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2651 }
2652
2653 /* needed for generic scsi interface */
2654 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2655 {
2656     BdrvIoctlCoData data = {
2657         .bs = bs,
2658         .req = req,
2659         .buf = buf,
2660         .ret = -EINPROGRESS,
2661     };
2662
2663     if (qemu_in_coroutine()) {
2664         /* Fast-path if already in coroutine context */
2665         bdrv_co_ioctl_entry(&data);
2666     } else {
2667         Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry);
2668
2669         qemu_coroutine_enter(co, &data);
2670         while (data.ret == -EINPROGRESS) {
2671             aio_poll(bdrv_get_aio_context(bs), true);
2672         }
2673     }
2674     return data.ret;
2675 }
2676
2677 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2678 {
2679     BlockAIOCBCoroutine *acb = opaque;
2680     acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2681                                       acb->req.req, acb->req.buf);
2682     bdrv_co_complete(acb);
2683 }
2684
2685 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2686         unsigned long int req, void *buf,
2687         BlockCompletionFunc *cb, void *opaque)
2688 {
2689     BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2690                                             bs, cb, opaque);
2691     Coroutine *co;
2692
2693     acb->need_bh = true;
2694     acb->req.error = -EINPROGRESS;
2695     acb->req.req = req;
2696     acb->req.buf = buf;
2697     co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry);
2698     qemu_coroutine_enter(co, acb);
2699
2700     bdrv_co_maybe_schedule_bh(acb);
2701     return &acb->common;
2702 }
2703
2704 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2705 {
2706     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2707 }
2708
2709 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2710 {
2711     return memset(qemu_blockalign(bs, size), 0, size);
2712 }
2713
2714 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2715 {
2716     size_t align = bdrv_opt_mem_align(bs);
2717
2718     /* Ensure that NULL is never returned on success */
2719     assert(align > 0);
2720     if (size == 0) {
2721         size = align;
2722     }
2723
2724     return qemu_try_memalign(align, size);
2725 }
2726
2727 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2728 {
2729     void *mem = qemu_try_blockalign(bs, size);
2730
2731     if (mem) {
2732         memset(mem, 0, size);
2733     }
2734
2735     return mem;
2736 }
2737
2738 /*
2739  * Check if all memory in this vector is sector aligned.
2740  */
2741 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2742 {
2743     int i;
2744     size_t alignment = bdrv_min_mem_align(bs);
2745
2746     for (i = 0; i < qiov->niov; i++) {
2747         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2748             return false;
2749         }
2750         if (qiov->iov[i].iov_len % alignment) {
2751             return false;
2752         }
2753     }
2754
2755     return true;
2756 }
2757
2758 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2759                                     NotifierWithReturn *notifier)
2760 {
2761     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2762 }
2763
2764 void bdrv_io_plug(BlockDriverState *bs)
2765 {
2766     BlockDriver *drv = bs->drv;
2767     if (drv && drv->bdrv_io_plug) {
2768         drv->bdrv_io_plug(bs);
2769     } else if (bs->file) {
2770         bdrv_io_plug(bs->file->bs);
2771     }
2772 }
2773
2774 void bdrv_io_unplug(BlockDriverState *bs)
2775 {
2776     BlockDriver *drv = bs->drv;
2777     if (drv && drv->bdrv_io_unplug) {
2778         drv->bdrv_io_unplug(bs);
2779     } else if (bs->file) {
2780         bdrv_io_unplug(bs->file->bs);
2781     }
2782 }
2783
2784 void bdrv_flush_io_queue(BlockDriverState *bs)
2785 {
2786     BlockDriver *drv = bs->drv;
2787     if (drv && drv->bdrv_flush_io_queue) {
2788         drv->bdrv_flush_io_queue(bs);
2789     } else if (bs->file) {
2790         bdrv_flush_io_queue(bs->file->bs);
2791     }
2792     bdrv_start_throttled_reqs(bs);
2793 }
2794
2795 void bdrv_drained_begin(BlockDriverState *bs)
2796 {
2797     if (!bs->quiesce_counter++) {
2798         aio_disable_external(bdrv_get_aio_context(bs));
2799     }
2800     bdrv_drain(bs);
2801 }
2802
2803 void bdrv_drained_end(BlockDriverState *bs)
2804 {
2805     assert(bs->quiesce_counter > 0);
2806     if (--bs->quiesce_counter > 0) {
2807         return;
2808     }
2809     aio_enable_external(bdrv_get_aio_context(bs));
2810 }