Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34 #include <trace/events/kvm.h>
35 #include <asm/kvm.h>
36 #include <kvm/iodev.h>
37
38 /*
39  * How the whole thing works (courtesy of Christoffer Dall):
40  *
41  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
42  *   something is pending on the CPU interface.
43  * - Interrupts that are pending on the distributor are stored on the
44  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
45  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
46  *   arch. timers).
47  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
48  *   recalculated
49  * - To calculate the oracle, we need info for each cpu from
50  *   compute_pending_for_cpu, which considers:
51  *   - PPI: dist->irq_pending & dist->irq_enable
52  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
53  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
54  *     registers, stored on each vcpu. We only keep one bit of
55  *     information per interrupt, making sure that only one vcpu can
56  *     accept the interrupt.
57  * - If any of the above state changes, we must recalculate the oracle.
58  * - The same is true when injecting an interrupt, except that we only
59  *   consider a single interrupt at a time. The irq_spi_cpu array
60  *   contains the target CPU for each SPI.
61  *
62  * The handling of level interrupts adds some extra complexity. We
63  * need to track when the interrupt has been EOIed, so we can sample
64  * the 'line' again. This is achieved as such:
65  *
66  * - When a level interrupt is moved onto a vcpu, the corresponding
67  *   bit in irq_queued is set. As long as this bit is set, the line
68  *   will be ignored for further interrupts. The interrupt is injected
69  *   into the vcpu with the GICH_LR_EOI bit set (generate a
70  *   maintenance interrupt on EOI).
71  * - When the interrupt is EOIed, the maintenance interrupt fires,
72  *   and clears the corresponding bit in irq_queued. This allows the
73  *   interrupt line to be sampled again.
74  * - Note that level-triggered interrupts can also be set to pending from
75  *   writes to GICD_ISPENDRn and lowering the external input line does not
76  *   cause the interrupt to become inactive in such a situation.
77  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
78  *   inactive as long as the external input line is held high.
79  */
80
81 #include "vgic.h"
82
83 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
84 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
85 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
86 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
87
88 static const struct vgic_ops *vgic_ops;
89 static const struct vgic_params *vgic;
90
91 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
92 {
93         vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
94 }
95
96 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
97 {
98         return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
99 }
100
101 int kvm_vgic_map_resources(struct kvm *kvm)
102 {
103         return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
104 }
105
106 /*
107  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
108  * extracts u32s out of them.
109  *
110  * This does not work on 64-bit BE systems, because the bitmap access
111  * will store two consecutive 32-bit words with the higher-addressed
112  * register's bits at the lower index and the lower-addressed register's
113  * bits at the higher index.
114  *
115  * Therefore, swizzle the register index when accessing the 32-bit word
116  * registers to access the right register's value.
117  */
118 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
119 #define REG_OFFSET_SWIZZLE      1
120 #else
121 #define REG_OFFSET_SWIZZLE      0
122 #endif
123
124 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
125 {
126         int nr_longs;
127
128         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
129
130         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
131         if (!b->private)
132                 return -ENOMEM;
133
134         b->shared = b->private + nr_cpus;
135
136         return 0;
137 }
138
139 static void vgic_free_bitmap(struct vgic_bitmap *b)
140 {
141         kfree(b->private);
142         b->private = NULL;
143         b->shared = NULL;
144 }
145
146 /*
147  * Call this function to convert a u64 value to an unsigned long * bitmask
148  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
149  *
150  * Warning: Calling this function may modify *val.
151  */
152 static unsigned long *u64_to_bitmask(u64 *val)
153 {
154 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
155         *val = (*val >> 32) | (*val << 32);
156 #endif
157         return (unsigned long *)val;
158 }
159
160 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
161 {
162         offset >>= 2;
163         if (!offset)
164                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
165         else
166                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
167 }
168
169 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
170                                    int cpuid, int irq)
171 {
172         if (irq < VGIC_NR_PRIVATE_IRQS)
173                 return test_bit(irq, x->private + cpuid);
174
175         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
176 }
177
178 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
179                              int irq, int val)
180 {
181         unsigned long *reg;
182
183         if (irq < VGIC_NR_PRIVATE_IRQS) {
184                 reg = x->private + cpuid;
185         } else {
186                 reg = x->shared;
187                 irq -= VGIC_NR_PRIVATE_IRQS;
188         }
189
190         if (val)
191                 set_bit(irq, reg);
192         else
193                 clear_bit(irq, reg);
194 }
195
196 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
197 {
198         return x->private + cpuid;
199 }
200
201 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
202 {
203         return x->shared;
204 }
205
206 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
207 {
208         int size;
209
210         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
211         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
212
213         x->private = kzalloc(size, GFP_KERNEL);
214         if (!x->private)
215                 return -ENOMEM;
216
217         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
218         return 0;
219 }
220
221 static void vgic_free_bytemap(struct vgic_bytemap *b)
222 {
223         kfree(b->private);
224         b->private = NULL;
225         b->shared = NULL;
226 }
227
228 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
229 {
230         u32 *reg;
231
232         if (offset < VGIC_NR_PRIVATE_IRQS) {
233                 reg = x->private;
234                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
235         } else {
236                 reg = x->shared;
237                 offset -= VGIC_NR_PRIVATE_IRQS;
238         }
239
240         return reg + (offset / sizeof(u32));
241 }
242
243 #define VGIC_CFG_LEVEL  0
244 #define VGIC_CFG_EDGE   1
245
246 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
247 {
248         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
249         int irq_val;
250
251         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
252         return irq_val == VGIC_CFG_EDGE;
253 }
254
255 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
256 {
257         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
258
259         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
260 }
261
262 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
263 {
264         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
265
266         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
267 }
268
269 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
270 {
271         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
272
273         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
274 }
275
276 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
277 {
278         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
279
280         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
281 }
282
283 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
284 {
285         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
286
287         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
288 }
289
290 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
291 {
292         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
293
294         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
295 }
296
297 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
298 {
299         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
300
301         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
302 }
303
304 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
305 {
306         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
307
308         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
309 }
310
311 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
312 {
313         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
314
315         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
316 }
317
318 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
319 {
320         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
321
322         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
323 }
324
325 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
326 {
327         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
328
329         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
330 }
331
332 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
333 {
334         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
335
336         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
337 }
338
339 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
340 {
341         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
342
343         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
344 }
345
346 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
347 {
348         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
349
350         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
351 }
352
353 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
354 {
355         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
356
357         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
358 }
359
360 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
361 {
362         if (irq < VGIC_NR_PRIVATE_IRQS)
363                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
364         else
365                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
366                         vcpu->arch.vgic_cpu.pending_shared);
367 }
368
369 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
370 {
371         if (irq < VGIC_NR_PRIVATE_IRQS)
372                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
373         else
374                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
375                           vcpu->arch.vgic_cpu.pending_shared);
376 }
377
378 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
379 {
380         return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
381 }
382
383 /**
384  * vgic_reg_access - access vgic register
385  * @mmio:   pointer to the data describing the mmio access
386  * @reg:    pointer to the virtual backing of vgic distributor data
387  * @offset: least significant 2 bits used for word offset
388  * @mode:   ACCESS_ mode (see defines above)
389  *
390  * Helper to make vgic register access easier using one of the access
391  * modes defined for vgic register access
392  * (read,raz,write-ignored,setbit,clearbit,write)
393  */
394 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
395                      phys_addr_t offset, int mode)
396 {
397         int word_offset = (offset & 3) * 8;
398         u32 mask = (1UL << (mmio->len * 8)) - 1;
399         u32 regval;
400
401         /*
402          * Any alignment fault should have been delivered to the guest
403          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
404          */
405
406         if (reg) {
407                 regval = *reg;
408         } else {
409                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
410                 regval = 0;
411         }
412
413         if (mmio->is_write) {
414                 u32 data = mmio_data_read(mmio, mask) << word_offset;
415                 switch (ACCESS_WRITE_MASK(mode)) {
416                 case ACCESS_WRITE_IGNORED:
417                         return;
418
419                 case ACCESS_WRITE_SETBIT:
420                         regval |= data;
421                         break;
422
423                 case ACCESS_WRITE_CLEARBIT:
424                         regval &= ~data;
425                         break;
426
427                 case ACCESS_WRITE_VALUE:
428                         regval = (regval & ~(mask << word_offset)) | data;
429                         break;
430                 }
431                 *reg = regval;
432         } else {
433                 switch (ACCESS_READ_MASK(mode)) {
434                 case ACCESS_READ_RAZ:
435                         regval = 0;
436                         /* fall through */
437
438                 case ACCESS_READ_VALUE:
439                         mmio_data_write(mmio, mask, regval >> word_offset);
440                 }
441         }
442 }
443
444 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
445                         phys_addr_t offset)
446 {
447         vgic_reg_access(mmio, NULL, offset,
448                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
449         return false;
450 }
451
452 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
453                             phys_addr_t offset, int vcpu_id, int access)
454 {
455         u32 *reg;
456         int mode = ACCESS_READ_VALUE | access;
457         struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
458
459         reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
460         vgic_reg_access(mmio, reg, offset, mode);
461         if (mmio->is_write) {
462                 if (access & ACCESS_WRITE_CLEARBIT) {
463                         if (offset < 4) /* Force SGI enabled */
464                                 *reg |= 0xffff;
465                         vgic_retire_disabled_irqs(target_vcpu);
466                 }
467                 vgic_update_state(kvm);
468                 return true;
469         }
470
471         return false;
472 }
473
474 bool vgic_handle_set_pending_reg(struct kvm *kvm,
475                                  struct kvm_exit_mmio *mmio,
476                                  phys_addr_t offset, int vcpu_id)
477 {
478         u32 *reg, orig;
479         u32 level_mask;
480         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
481         struct vgic_dist *dist = &kvm->arch.vgic;
482
483         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
484         level_mask = (~(*reg));
485
486         /* Mark both level and edge triggered irqs as pending */
487         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
488         orig = *reg;
489         vgic_reg_access(mmio, reg, offset, mode);
490
491         if (mmio->is_write) {
492                 /* Set the soft-pending flag only for level-triggered irqs */
493                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
494                                           vcpu_id, offset);
495                 vgic_reg_access(mmio, reg, offset, mode);
496                 *reg &= level_mask;
497
498                 /* Ignore writes to SGIs */
499                 if (offset < 2) {
500                         *reg &= ~0xffff;
501                         *reg |= orig & 0xffff;
502                 }
503
504                 vgic_update_state(kvm);
505                 return true;
506         }
507
508         return false;
509 }
510
511 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
512                                    struct kvm_exit_mmio *mmio,
513                                    phys_addr_t offset, int vcpu_id)
514 {
515         u32 *level_active;
516         u32 *reg, orig;
517         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
518         struct vgic_dist *dist = &kvm->arch.vgic;
519
520         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
521         orig = *reg;
522         vgic_reg_access(mmio, reg, offset, mode);
523         if (mmio->is_write) {
524                 /* Re-set level triggered level-active interrupts */
525                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
526                                           vcpu_id, offset);
527                 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
528                 *reg |= *level_active;
529
530                 /* Ignore writes to SGIs */
531                 if (offset < 2) {
532                         *reg &= ~0xffff;
533                         *reg |= orig & 0xffff;
534                 }
535
536                 /* Clear soft-pending flags */
537                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
538                                           vcpu_id, offset);
539                 vgic_reg_access(mmio, reg, offset, mode);
540
541                 vgic_update_state(kvm);
542                 return true;
543         }
544         return false;
545 }
546
547 bool vgic_handle_set_active_reg(struct kvm *kvm,
548                                 struct kvm_exit_mmio *mmio,
549                                 phys_addr_t offset, int vcpu_id)
550 {
551         u32 *reg;
552         struct vgic_dist *dist = &kvm->arch.vgic;
553
554         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
555         vgic_reg_access(mmio, reg, offset,
556                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
557
558         if (mmio->is_write) {
559                 vgic_update_state(kvm);
560                 return true;
561         }
562
563         return false;
564 }
565
566 bool vgic_handle_clear_active_reg(struct kvm *kvm,
567                                   struct kvm_exit_mmio *mmio,
568                                   phys_addr_t offset, int vcpu_id)
569 {
570         u32 *reg;
571         struct vgic_dist *dist = &kvm->arch.vgic;
572
573         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
574         vgic_reg_access(mmio, reg, offset,
575                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
576
577         if (mmio->is_write) {
578                 vgic_update_state(kvm);
579                 return true;
580         }
581
582         return false;
583 }
584
585 static u32 vgic_cfg_expand(u16 val)
586 {
587         u32 res = 0;
588         int i;
589
590         /*
591          * Turn a 16bit value like abcd...mnop into a 32bit word
592          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
593          */
594         for (i = 0; i < 16; i++)
595                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
596
597         return res;
598 }
599
600 static u16 vgic_cfg_compress(u32 val)
601 {
602         u16 res = 0;
603         int i;
604
605         /*
606          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
607          * abcd...mnop which is what we really care about.
608          */
609         for (i = 0; i < 16; i++)
610                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
611
612         return res;
613 }
614
615 /*
616  * The distributor uses 2 bits per IRQ for the CFG register, but the
617  * LSB is always 0. As such, we only keep the upper bit, and use the
618  * two above functions to compress/expand the bits
619  */
620 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
621                          phys_addr_t offset)
622 {
623         u32 val;
624
625         if (offset & 4)
626                 val = *reg >> 16;
627         else
628                 val = *reg & 0xffff;
629
630         val = vgic_cfg_expand(val);
631         vgic_reg_access(mmio, &val, offset,
632                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
633         if (mmio->is_write) {
634                 if (offset < 8) {
635                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
636                         return false;
637                 }
638
639                 val = vgic_cfg_compress(val);
640                 if (offset & 4) {
641                         *reg &= 0xffff;
642                         *reg |= val << 16;
643                 } else {
644                         *reg &= 0xffff << 16;
645                         *reg |= val;
646                 }
647         }
648
649         return false;
650 }
651
652 /**
653  * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
654  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
655  *
656  * Move any IRQs that have already been assigned to LRs back to the
657  * emulated distributor state so that the complete emulated state can be read
658  * from the main emulation structures without investigating the LRs.
659  */
660 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
661 {
662         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
663         int i;
664
665         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
666                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
667
668                 /*
669                  * There are three options for the state bits:
670                  *
671                  * 01: pending
672                  * 10: active
673                  * 11: pending and active
674                  */
675                 BUG_ON(!(lr.state & LR_STATE_MASK));
676
677                 /* Reestablish SGI source for pending and active IRQs */
678                 if (lr.irq < VGIC_NR_SGIS)
679                         add_sgi_source(vcpu, lr.irq, lr.source);
680
681                 /*
682                  * If the LR holds an active (10) or a pending and active (11)
683                  * interrupt then move the active state to the
684                  * distributor tracking bit.
685                  */
686                 if (lr.state & LR_STATE_ACTIVE) {
687                         vgic_irq_set_active(vcpu, lr.irq);
688                         lr.state &= ~LR_STATE_ACTIVE;
689                 }
690
691                 /*
692                  * Reestablish the pending state on the distributor and the
693                  * CPU interface.  It may have already been pending, but that
694                  * is fine, then we are only setting a few bits that were
695                  * already set.
696                  */
697                 if (lr.state & LR_STATE_PENDING) {
698                         vgic_dist_irq_set_pending(vcpu, lr.irq);
699                         lr.state &= ~LR_STATE_PENDING;
700                 }
701
702                 vgic_set_lr(vcpu, i, lr);
703
704                 /*
705                  * Mark the LR as free for other use.
706                  */
707                 BUG_ON(lr.state & LR_STATE_MASK);
708                 vgic_retire_lr(i, lr.irq, vcpu);
709                 vgic_irq_clear_queued(vcpu, lr.irq);
710
711                 /* Finally update the VGIC state. */
712                 vgic_update_state(vcpu->kvm);
713         }
714 }
715
716 const
717 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
718                                       int len, gpa_t offset)
719 {
720         while (ranges->len) {
721                 if (offset >= ranges->base &&
722                     (offset + len) <= (ranges->base + ranges->len))
723                         return ranges;
724                 ranges++;
725         }
726
727         return NULL;
728 }
729
730 static bool vgic_validate_access(const struct vgic_dist *dist,
731                                  const struct vgic_io_range *range,
732                                  unsigned long offset)
733 {
734         int irq;
735
736         if (!range->bits_per_irq)
737                 return true;    /* Not an irq-based access */
738
739         irq = offset * 8 / range->bits_per_irq;
740         if (irq >= dist->nr_irqs)
741                 return false;
742
743         return true;
744 }
745
746 /*
747  * Call the respective handler function for the given range.
748  * We split up any 64 bit accesses into two consecutive 32 bit
749  * handler calls and merge the result afterwards.
750  * We do this in a little endian fashion regardless of the host's
751  * or guest's endianness, because the GIC is always LE and the rest of
752  * the code (vgic_reg_access) also puts it in a LE fashion already.
753  * At this point we have already identified the handle function, so
754  * range points to that one entry and offset is relative to this.
755  */
756 static bool call_range_handler(struct kvm_vcpu *vcpu,
757                                struct kvm_exit_mmio *mmio,
758                                unsigned long offset,
759                                const struct vgic_io_range *range)
760 {
761         struct kvm_exit_mmio mmio32;
762         bool ret;
763
764         if (likely(mmio->len <= 4))
765                 return range->handle_mmio(vcpu, mmio, offset);
766
767         /*
768          * Any access bigger than 4 bytes (that we currently handle in KVM)
769          * is actually 8 bytes long, caused by a 64-bit access
770          */
771
772         mmio32.len = 4;
773         mmio32.is_write = mmio->is_write;
774         mmio32.private = mmio->private;
775
776         mmio32.phys_addr = mmio->phys_addr + 4;
777         mmio32.data = &((u32 *)mmio->data)[1];
778         ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
779
780         mmio32.phys_addr = mmio->phys_addr;
781         mmio32.data = &((u32 *)mmio->data)[0];
782         ret |= range->handle_mmio(vcpu, &mmio32, offset);
783
784         return ret;
785 }
786
787 /**
788  * vgic_handle_mmio_access - handle an in-kernel MMIO access
789  * This is called by the read/write KVM IO device wrappers below.
790  * @vcpu:       pointer to the vcpu performing the access
791  * @this:       pointer to the KVM IO device in charge
792  * @addr:       guest physical address of the access
793  * @len:        size of the access
794  * @val:        pointer to the data region
795  * @is_write:   read or write access
796  *
797  * returns true if the MMIO access could be performed
798  */
799 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
800                                    struct kvm_io_device *this, gpa_t addr,
801                                    int len, void *val, bool is_write)
802 {
803         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
804         struct vgic_io_device *iodev = container_of(this,
805                                                     struct vgic_io_device, dev);
806         struct kvm_run *run = vcpu->run;
807         const struct vgic_io_range *range;
808         struct kvm_exit_mmio mmio;
809         bool updated_state;
810         gpa_t offset;
811
812         offset = addr - iodev->addr;
813         range = vgic_find_range(iodev->reg_ranges, len, offset);
814         if (unlikely(!range || !range->handle_mmio)) {
815                 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
816                 return -ENXIO;
817         }
818
819         mmio.phys_addr = addr;
820         mmio.len = len;
821         mmio.is_write = is_write;
822         mmio.data = val;
823         mmio.private = iodev->redist_vcpu;
824
825         spin_lock(&dist->lock);
826         offset -= range->base;
827         if (vgic_validate_access(dist, range, offset)) {
828                 updated_state = call_range_handler(vcpu, &mmio, offset, range);
829         } else {
830                 if (!is_write)
831                         memset(val, 0, len);
832                 updated_state = false;
833         }
834         spin_unlock(&dist->lock);
835         run->mmio.is_write      = is_write;
836         run->mmio.len           = len;
837         run->mmio.phys_addr     = addr;
838         memcpy(run->mmio.data, val, len);
839
840         kvm_handle_mmio_return(vcpu, run);
841
842         if (updated_state)
843                 vgic_kick_vcpus(vcpu->kvm);
844
845         return 0;
846 }
847
848 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
849                                  struct kvm_io_device *this,
850                                  gpa_t addr, int len, void *val)
851 {
852         return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
853 }
854
855 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
856                                   struct kvm_io_device *this,
857                                   gpa_t addr, int len, const void *val)
858 {
859         return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
860                                        true);
861 }
862
863 struct kvm_io_device_ops vgic_io_ops = {
864         .read   = vgic_handle_mmio_read,
865         .write  = vgic_handle_mmio_write,
866 };
867
868 /**
869  * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
870  * @kvm:            The VM structure pointer
871  * @base:           The (guest) base address for the register frame
872  * @len:            Length of the register frame window
873  * @ranges:         Describing the handler functions for each register
874  * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
875  * @iodev:          Points to memory to be passed on to the handler
876  *
877  * @iodev stores the parameters of this function to be usable by the handler
878  * respectively the dispatcher function (since the KVM I/O bus framework lacks
879  * an opaque parameter). Initialization is done in this function, but the
880  * reference should be valid and unique for the whole VGIC lifetime.
881  * If the register frame is not mapped for a specific VCPU, pass -1 to
882  * @redist_vcpu_id.
883  */
884 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
885                              const struct vgic_io_range *ranges,
886                              int redist_vcpu_id,
887                              struct vgic_io_device *iodev)
888 {
889         struct kvm_vcpu *vcpu = NULL;
890         int ret;
891
892         if (redist_vcpu_id >= 0)
893                 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
894
895         iodev->addr             = base;
896         iodev->len              = len;
897         iodev->reg_ranges       = ranges;
898         iodev->redist_vcpu      = vcpu;
899
900         kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
901
902         mutex_lock(&kvm->slots_lock);
903
904         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
905                                       &iodev->dev);
906         mutex_unlock(&kvm->slots_lock);
907
908         /* Mark the iodev as invalid if registration fails. */
909         if (ret)
910                 iodev->dev.ops = NULL;
911
912         return ret;
913 }
914
915 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
916 {
917         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
918 }
919
920 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
921 {
922         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
923         unsigned long *active, *enabled, *act_percpu, *act_shared;
924         unsigned long active_private, active_shared;
925         int nr_shared = vgic_nr_shared_irqs(dist);
926         int vcpu_id;
927
928         vcpu_id = vcpu->vcpu_id;
929         act_percpu = vcpu->arch.vgic_cpu.active_percpu;
930         act_shared = vcpu->arch.vgic_cpu.active_shared;
931
932         active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
933         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
934         bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
935
936         active = vgic_bitmap_get_shared_map(&dist->irq_active);
937         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
938         bitmap_and(act_shared, active, enabled, nr_shared);
939         bitmap_and(act_shared, act_shared,
940                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
941                    nr_shared);
942
943         active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
944         active_shared = find_first_bit(act_shared, nr_shared);
945
946         return (active_private < VGIC_NR_PRIVATE_IRQS ||
947                 active_shared < nr_shared);
948 }
949
950 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
951 {
952         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
953         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
954         unsigned long pending_private, pending_shared;
955         int nr_shared = vgic_nr_shared_irqs(dist);
956         int vcpu_id;
957
958         vcpu_id = vcpu->vcpu_id;
959         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
960         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
961
962         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
963         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
964         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
965
966         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
967         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
968         bitmap_and(pend_shared, pending, enabled, nr_shared);
969         bitmap_and(pend_shared, pend_shared,
970                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
971                    nr_shared);
972
973         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
974         pending_shared = find_first_bit(pend_shared, nr_shared);
975         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
976                 pending_shared < vgic_nr_shared_irqs(dist));
977 }
978
979 /*
980  * Update the interrupt state and determine which CPUs have pending
981  * or active interrupts. Must be called with distributor lock held.
982  */
983 void vgic_update_state(struct kvm *kvm)
984 {
985         struct vgic_dist *dist = &kvm->arch.vgic;
986         struct kvm_vcpu *vcpu;
987         int c;
988
989         if (!dist->enabled) {
990                 set_bit(0, dist->irq_pending_on_cpu);
991                 return;
992         }
993
994         kvm_for_each_vcpu(c, vcpu, kvm) {
995                 if (compute_pending_for_cpu(vcpu))
996                         set_bit(c, dist->irq_pending_on_cpu);
997
998                 if (compute_active_for_cpu(vcpu))
999                         set_bit(c, dist->irq_active_on_cpu);
1000                 else
1001                         clear_bit(c, dist->irq_active_on_cpu);
1002         }
1003 }
1004
1005 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1006 {
1007         return vgic_ops->get_lr(vcpu, lr);
1008 }
1009
1010 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1011                                struct vgic_lr vlr)
1012 {
1013         vgic_ops->set_lr(vcpu, lr, vlr);
1014 }
1015
1016 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1017                                struct vgic_lr vlr)
1018 {
1019         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1020 }
1021
1022 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1023 {
1024         return vgic_ops->get_elrsr(vcpu);
1025 }
1026
1027 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1028 {
1029         return vgic_ops->get_eisr(vcpu);
1030 }
1031
1032 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1033 {
1034         vgic_ops->clear_eisr(vcpu);
1035 }
1036
1037 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1038 {
1039         return vgic_ops->get_interrupt_status(vcpu);
1040 }
1041
1042 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1043 {
1044         vgic_ops->enable_underflow(vcpu);
1045 }
1046
1047 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1048 {
1049         vgic_ops->disable_underflow(vcpu);
1050 }
1051
1052 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1053 {
1054         vgic_ops->get_vmcr(vcpu, vmcr);
1055 }
1056
1057 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1058 {
1059         vgic_ops->set_vmcr(vcpu, vmcr);
1060 }
1061
1062 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1063 {
1064         vgic_ops->enable(vcpu);
1065 }
1066
1067 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1068 {
1069         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1070         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1071
1072         vlr.state = 0;
1073         vgic_set_lr(vcpu, lr_nr, vlr);
1074         clear_bit(lr_nr, vgic_cpu->lr_used);
1075         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1076         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1077 }
1078
1079 /*
1080  * An interrupt may have been disabled after being made pending on the
1081  * CPU interface (the classic case is a timer running while we're
1082  * rebooting the guest - the interrupt would kick as soon as the CPU
1083  * interface gets enabled, with deadly consequences).
1084  *
1085  * The solution is to examine already active LRs, and check the
1086  * interrupt is still enabled. If not, just retire it.
1087  */
1088 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1089 {
1090         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1091         int lr;
1092
1093         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1094                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1095
1096                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1097                         vgic_retire_lr(lr, vlr.irq, vcpu);
1098                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1099                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1100                 }
1101         }
1102 }
1103
1104 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1105                                  int lr_nr, struct vgic_lr vlr)
1106 {
1107         if (vgic_irq_is_active(vcpu, irq)) {
1108                 vlr.state |= LR_STATE_ACTIVE;
1109                 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1110                 vgic_irq_clear_active(vcpu, irq);
1111                 vgic_update_state(vcpu->kvm);
1112         } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
1113                 vlr.state |= LR_STATE_PENDING;
1114                 kvm_debug("Set pending: 0x%x\n", vlr.state);
1115         }
1116
1117         if (!vgic_irq_is_edge(vcpu, irq))
1118                 vlr.state |= LR_EOI_INT;
1119
1120         vgic_set_lr(vcpu, lr_nr, vlr);
1121         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1122 }
1123
1124 /*
1125  * Queue an interrupt to a CPU virtual interface. Return true on success,
1126  * or false if it wasn't possible to queue it.
1127  * sgi_source must be zero for any non-SGI interrupts.
1128  */
1129 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1130 {
1131         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1132         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1133         struct vgic_lr vlr;
1134         int lr;
1135
1136         /* Sanitize the input... */
1137         BUG_ON(sgi_source_id & ~7);
1138         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1139         BUG_ON(irq >= dist->nr_irqs);
1140
1141         kvm_debug("Queue IRQ%d\n", irq);
1142
1143         lr = vgic_cpu->vgic_irq_lr_map[irq];
1144
1145         /* Do we have an active interrupt for the same CPUID? */
1146         if (lr != LR_EMPTY) {
1147                 vlr = vgic_get_lr(vcpu, lr);
1148                 if (vlr.source == sgi_source_id) {
1149                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1150                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1151                         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1152                         return true;
1153                 }
1154         }
1155
1156         /* Try to use another LR for this interrupt */
1157         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1158                                vgic->nr_lr);
1159         if (lr >= vgic->nr_lr)
1160                 return false;
1161
1162         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1163         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1164         set_bit(lr, vgic_cpu->lr_used);
1165
1166         vlr.irq = irq;
1167         vlr.source = sgi_source_id;
1168         vlr.state = 0;
1169         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1170
1171         return true;
1172 }
1173
1174 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1175 {
1176         if (!vgic_can_sample_irq(vcpu, irq))
1177                 return true; /* level interrupt, already queued */
1178
1179         if (vgic_queue_irq(vcpu, 0, irq)) {
1180                 if (vgic_irq_is_edge(vcpu, irq)) {
1181                         vgic_dist_irq_clear_pending(vcpu, irq);
1182                         vgic_cpu_irq_clear(vcpu, irq);
1183                 } else {
1184                         vgic_irq_set_queued(vcpu, irq);
1185                 }
1186
1187                 return true;
1188         }
1189
1190         return false;
1191 }
1192
1193 /*
1194  * Fill the list registers with pending interrupts before running the
1195  * guest.
1196  */
1197 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1198 {
1199         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1200         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1201         unsigned long *pa_percpu, *pa_shared;
1202         int i, vcpu_id;
1203         int overflow = 0;
1204         int nr_shared = vgic_nr_shared_irqs(dist);
1205
1206         vcpu_id = vcpu->vcpu_id;
1207
1208         pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1209         pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1210
1211         bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1212                   VGIC_NR_PRIVATE_IRQS);
1213         bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1214                   nr_shared);
1215         /*
1216          * We may not have any pending interrupt, or the interrupts
1217          * may have been serviced from another vcpu. In all cases,
1218          * move along.
1219          */
1220         if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1221                 goto epilog;
1222
1223         /* SGIs */
1224         for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1225                 if (!queue_sgi(vcpu, i))
1226                         overflow = 1;
1227         }
1228
1229         /* PPIs */
1230         for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1231                 if (!vgic_queue_hwirq(vcpu, i))
1232                         overflow = 1;
1233         }
1234
1235         /* SPIs */
1236         for_each_set_bit(i, pa_shared, nr_shared) {
1237                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1238                         overflow = 1;
1239         }
1240
1241
1242
1243
1244 epilog:
1245         if (overflow) {
1246                 vgic_enable_underflow(vcpu);
1247         } else {
1248                 vgic_disable_underflow(vcpu);
1249                 /*
1250                  * We're about to run this VCPU, and we've consumed
1251                  * everything the distributor had in store for
1252                  * us. Claim we don't have anything pending. We'll
1253                  * adjust that if needed while exiting.
1254                  */
1255                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1256         }
1257 }
1258
1259 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1260 {
1261         u32 status = vgic_get_interrupt_status(vcpu);
1262         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1263         bool level_pending = false;
1264         struct kvm *kvm = vcpu->kvm;
1265
1266         kvm_debug("STATUS = %08x\n", status);
1267
1268         if (status & INT_STATUS_EOI) {
1269                 /*
1270                  * Some level interrupts have been EOIed. Clear their
1271                  * active bit.
1272                  */
1273                 u64 eisr = vgic_get_eisr(vcpu);
1274                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1275                 int lr;
1276
1277                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1278                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1279                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1280
1281                         spin_lock(&dist->lock);
1282                         vgic_irq_clear_queued(vcpu, vlr.irq);
1283                         WARN_ON(vlr.state & LR_STATE_MASK);
1284                         vlr.state = 0;
1285                         vgic_set_lr(vcpu, lr, vlr);
1286
1287                         /*
1288                          * If the IRQ was EOIed it was also ACKed and we we
1289                          * therefore assume we can clear the soft pending
1290                          * state (should it had been set) for this interrupt.
1291                          *
1292                          * Note: if the IRQ soft pending state was set after
1293                          * the IRQ was acked, it actually shouldn't be
1294                          * cleared, but we have no way of knowing that unless
1295                          * we start trapping ACKs when the soft-pending state
1296                          * is set.
1297                          */
1298                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1299
1300                         /*
1301                          * kvm_notify_acked_irq calls kvm_set_irq()
1302                          * to reset the IRQ level. Need to release the
1303                          * lock for kvm_set_irq to grab it.
1304                          */
1305                         spin_unlock(&dist->lock);
1306
1307                         kvm_notify_acked_irq(kvm, 0,
1308                                              vlr.irq - VGIC_NR_PRIVATE_IRQS);
1309                         spin_lock(&dist->lock);
1310
1311                         /* Any additional pending interrupt? */
1312                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1313                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1314                                 level_pending = true;
1315                         } else {
1316                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1317                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1318                         }
1319
1320                         spin_unlock(&dist->lock);
1321
1322                         /*
1323                          * Despite being EOIed, the LR may not have
1324                          * been marked as empty.
1325                          */
1326                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1327                 }
1328         }
1329
1330         if (status & INT_STATUS_UNDERFLOW)
1331                 vgic_disable_underflow(vcpu);
1332
1333         /*
1334          * In the next iterations of the vcpu loop, if we sync the vgic state
1335          * after flushing it, but before entering the guest (this happens for
1336          * pending signals and vmid rollovers), then make sure we don't pick
1337          * up any old maintenance interrupts here.
1338          */
1339         vgic_clear_eisr(vcpu);
1340
1341         return level_pending;
1342 }
1343
1344 /* Sync back the VGIC state after a guest run */
1345 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1346 {
1347         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1348         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1349         u64 elrsr;
1350         unsigned long *elrsr_ptr;
1351         int lr, pending;
1352         bool level_pending;
1353
1354         level_pending = vgic_process_maintenance(vcpu);
1355         elrsr = vgic_get_elrsr(vcpu);
1356         elrsr_ptr = u64_to_bitmask(&elrsr);
1357
1358         /* Clear mappings for empty LRs */
1359         for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1360                 struct vgic_lr vlr;
1361
1362                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1363                         continue;
1364
1365                 vlr = vgic_get_lr(vcpu, lr);
1366
1367                 BUG_ON(vlr.irq >= dist->nr_irqs);
1368                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1369         }
1370
1371         /* Check if we still have something up our sleeve... */
1372         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1373         if (level_pending || pending < vgic->nr_lr)
1374                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1375 }
1376
1377 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1378 {
1379         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1380
1381         if (!irqchip_in_kernel(vcpu->kvm))
1382                 return;
1383
1384         spin_lock(&dist->lock);
1385         __kvm_vgic_flush_hwstate(vcpu);
1386         spin_unlock(&dist->lock);
1387 }
1388
1389 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1390 {
1391         if (!irqchip_in_kernel(vcpu->kvm))
1392                 return;
1393
1394         __kvm_vgic_sync_hwstate(vcpu);
1395 }
1396
1397 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1398 {
1399         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1400
1401         if (!irqchip_in_kernel(vcpu->kvm))
1402                 return 0;
1403
1404         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1405 }
1406
1407 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1408 {
1409         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1410
1411         if (!irqchip_in_kernel(vcpu->kvm))
1412                 return 0;
1413
1414         return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1415 }
1416
1417
1418 void vgic_kick_vcpus(struct kvm *kvm)
1419 {
1420         struct kvm_vcpu *vcpu;
1421         int c;
1422
1423         /*
1424          * We've injected an interrupt, time to find out who deserves
1425          * a good kick...
1426          */
1427         kvm_for_each_vcpu(c, vcpu, kvm) {
1428                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1429                         kvm_vcpu_kick(vcpu);
1430         }
1431 }
1432
1433 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1434 {
1435         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1436
1437         /*
1438          * Only inject an interrupt if:
1439          * - edge triggered and we have a rising edge
1440          * - level triggered and we change level
1441          */
1442         if (edge_triggered) {
1443                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1444                 return level > state;
1445         } else {
1446                 int state = vgic_dist_irq_get_level(vcpu, irq);
1447                 return level != state;
1448         }
1449 }
1450
1451 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1452                                   unsigned int irq_num, bool level)
1453 {
1454         struct vgic_dist *dist = &kvm->arch.vgic;
1455         struct kvm_vcpu *vcpu;
1456         int edge_triggered, level_triggered;
1457         int enabled;
1458         bool ret = true, can_inject = true;
1459
1460         spin_lock(&dist->lock);
1461
1462         vcpu = kvm_get_vcpu(kvm, cpuid);
1463         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1464         level_triggered = !edge_triggered;
1465
1466         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1467                 ret = false;
1468                 goto out;
1469         }
1470
1471         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1472                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1473                 if (cpuid == VCPU_NOT_ALLOCATED) {
1474                         /* Pretend we use CPU0, and prevent injection */
1475                         cpuid = 0;
1476                         can_inject = false;
1477                 }
1478                 vcpu = kvm_get_vcpu(kvm, cpuid);
1479         }
1480
1481         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1482
1483         if (level) {
1484                 if (level_triggered)
1485                         vgic_dist_irq_set_level(vcpu, irq_num);
1486                 vgic_dist_irq_set_pending(vcpu, irq_num);
1487         } else {
1488                 if (level_triggered) {
1489                         vgic_dist_irq_clear_level(vcpu, irq_num);
1490                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1491                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1492                 }
1493
1494                 ret = false;
1495                 goto out;
1496         }
1497
1498         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1499
1500         if (!enabled || !can_inject) {
1501                 ret = false;
1502                 goto out;
1503         }
1504
1505         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1506                 /*
1507                  * Level interrupt in progress, will be picked up
1508                  * when EOId.
1509                  */
1510                 ret = false;
1511                 goto out;
1512         }
1513
1514         if (level) {
1515                 vgic_cpu_irq_set(vcpu, irq_num);
1516                 set_bit(cpuid, dist->irq_pending_on_cpu);
1517         }
1518
1519 out:
1520         spin_unlock(&dist->lock);
1521
1522         return ret ? cpuid : -EINVAL;
1523 }
1524
1525 /**
1526  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1527  * @kvm:     The VM structure pointer
1528  * @cpuid:   The CPU for PPIs
1529  * @irq_num: The IRQ number that is assigned to the device
1530  * @level:   Edge-triggered:  true:  to trigger the interrupt
1531  *                            false: to ignore the call
1532  *           Level-sensitive  true:  activates an interrupt
1533  *                            false: deactivates an interrupt
1534  *
1535  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1536  * level-sensitive interrupts.  You can think of the level parameter as 1
1537  * being HIGH and 0 being LOW and all devices being active-HIGH.
1538  */
1539 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1540                         bool level)
1541 {
1542         int ret = 0;
1543         int vcpu_id;
1544
1545         if (unlikely(!vgic_initialized(kvm))) {
1546                 /*
1547                  * We only provide the automatic initialization of the VGIC
1548                  * for the legacy case of a GICv2. Any other type must
1549                  * be explicitly initialized once setup with the respective
1550                  * KVM device call.
1551                  */
1552                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1553                         ret = -EBUSY;
1554                         goto out;
1555                 }
1556                 mutex_lock(&kvm->lock);
1557                 ret = vgic_init(kvm);
1558                 mutex_unlock(&kvm->lock);
1559
1560                 if (ret)
1561                         goto out;
1562         }
1563
1564         if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1565                 return -EINVAL;
1566
1567         vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1568         if (vcpu_id >= 0) {
1569                 /* kick the specified vcpu */
1570                 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1571         }
1572
1573 out:
1574         return ret;
1575 }
1576
1577 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1578 {
1579         /*
1580          * We cannot rely on the vgic maintenance interrupt to be
1581          * delivered synchronously. This means we can only use it to
1582          * exit the VM, and we perform the handling of EOIed
1583          * interrupts on the exit path (see vgic_process_maintenance).
1584          */
1585         return IRQ_HANDLED;
1586 }
1587
1588 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1589 {
1590         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1591
1592         kfree(vgic_cpu->pending_shared);
1593         kfree(vgic_cpu->active_shared);
1594         kfree(vgic_cpu->pend_act_shared);
1595         kfree(vgic_cpu->vgic_irq_lr_map);
1596         vgic_cpu->pending_shared = NULL;
1597         vgic_cpu->active_shared = NULL;
1598         vgic_cpu->pend_act_shared = NULL;
1599         vgic_cpu->vgic_irq_lr_map = NULL;
1600 }
1601
1602 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1603 {
1604         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1605
1606         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1607         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1608         vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1609         vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1610         vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1611
1612         if (!vgic_cpu->pending_shared
1613                 || !vgic_cpu->active_shared
1614                 || !vgic_cpu->pend_act_shared
1615                 || !vgic_cpu->vgic_irq_lr_map) {
1616                 kvm_vgic_vcpu_destroy(vcpu);
1617                 return -ENOMEM;
1618         }
1619
1620         memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1621
1622         /*
1623          * Store the number of LRs per vcpu, so we don't have to go
1624          * all the way to the distributor structure to find out. Only
1625          * assembly code should use this one.
1626          */
1627         vgic_cpu->nr_lr = vgic->nr_lr;
1628
1629         return 0;
1630 }
1631
1632 /**
1633  * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1634  *
1635  * The host's GIC naturally limits the maximum amount of VCPUs a guest
1636  * can use.
1637  */
1638 int kvm_vgic_get_max_vcpus(void)
1639 {
1640         return vgic->max_gic_vcpus;
1641 }
1642
1643 void kvm_vgic_destroy(struct kvm *kvm)
1644 {
1645         struct vgic_dist *dist = &kvm->arch.vgic;
1646         struct kvm_vcpu *vcpu;
1647         int i;
1648
1649         kvm_for_each_vcpu(i, vcpu, kvm)
1650                 kvm_vgic_vcpu_destroy(vcpu);
1651
1652         vgic_free_bitmap(&dist->irq_enabled);
1653         vgic_free_bitmap(&dist->irq_level);
1654         vgic_free_bitmap(&dist->irq_pending);
1655         vgic_free_bitmap(&dist->irq_soft_pend);
1656         vgic_free_bitmap(&dist->irq_queued);
1657         vgic_free_bitmap(&dist->irq_cfg);
1658         vgic_free_bytemap(&dist->irq_priority);
1659         if (dist->irq_spi_target) {
1660                 for (i = 0; i < dist->nr_cpus; i++)
1661                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1662         }
1663         kfree(dist->irq_sgi_sources);
1664         kfree(dist->irq_spi_cpu);
1665         kfree(dist->irq_spi_mpidr);
1666         kfree(dist->irq_spi_target);
1667         kfree(dist->irq_pending_on_cpu);
1668         kfree(dist->irq_active_on_cpu);
1669         dist->irq_sgi_sources = NULL;
1670         dist->irq_spi_cpu = NULL;
1671         dist->irq_spi_target = NULL;
1672         dist->irq_pending_on_cpu = NULL;
1673         dist->irq_active_on_cpu = NULL;
1674         dist->nr_cpus = 0;
1675 }
1676
1677 /*
1678  * Allocate and initialize the various data structures. Must be called
1679  * with kvm->lock held!
1680  */
1681 int vgic_init(struct kvm *kvm)
1682 {
1683         struct vgic_dist *dist = &kvm->arch.vgic;
1684         struct kvm_vcpu *vcpu;
1685         int nr_cpus, nr_irqs;
1686         int ret, i, vcpu_id;
1687
1688         if (vgic_initialized(kvm))
1689                 return 0;
1690
1691         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1692         if (!nr_cpus)           /* No vcpus? Can't be good... */
1693                 return -ENODEV;
1694
1695         /*
1696          * If nobody configured the number of interrupts, use the
1697          * legacy one.
1698          */
1699         if (!dist->nr_irqs)
1700                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1701
1702         nr_irqs = dist->nr_irqs;
1703
1704         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1705         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1706         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1707         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1708         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1709         ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
1710         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1711         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1712
1713         if (ret)
1714                 goto out;
1715
1716         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1717         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1718         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1719                                        GFP_KERNEL);
1720         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1721                                            GFP_KERNEL);
1722         dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1723                                            GFP_KERNEL);
1724         if (!dist->irq_sgi_sources ||
1725             !dist->irq_spi_cpu ||
1726             !dist->irq_spi_target ||
1727             !dist->irq_pending_on_cpu ||
1728             !dist->irq_active_on_cpu) {
1729                 ret = -ENOMEM;
1730                 goto out;
1731         }
1732
1733         for (i = 0; i < nr_cpus; i++)
1734                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1735                                         nr_cpus, nr_irqs);
1736
1737         if (ret)
1738                 goto out;
1739
1740         ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1741         if (ret)
1742                 goto out;
1743
1744         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1745                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1746                 if (ret) {
1747                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
1748                         break;
1749                 }
1750
1751                 for (i = 0; i < dist->nr_irqs; i++) {
1752                         if (i < VGIC_NR_PPIS)
1753                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1754                                                         vcpu->vcpu_id, i, 1);
1755                         if (i < VGIC_NR_PRIVATE_IRQS)
1756                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1757                                                         vcpu->vcpu_id, i,
1758                                                         VGIC_CFG_EDGE);
1759                 }
1760
1761                 vgic_enable(vcpu);
1762         }
1763
1764 out:
1765         if (ret)
1766                 kvm_vgic_destroy(kvm);
1767
1768         return ret;
1769 }
1770
1771 static int init_vgic_model(struct kvm *kvm, int type)
1772 {
1773         switch (type) {
1774         case KVM_DEV_TYPE_ARM_VGIC_V2:
1775                 vgic_v2_init_emulation(kvm);
1776                 break;
1777 #ifdef CONFIG_ARM_GIC_V3
1778         case KVM_DEV_TYPE_ARM_VGIC_V3:
1779                 vgic_v3_init_emulation(kvm);
1780                 break;
1781 #endif
1782         default:
1783                 return -ENODEV;
1784         }
1785
1786         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1787                 return -E2BIG;
1788
1789         return 0;
1790 }
1791
1792 int kvm_vgic_create(struct kvm *kvm, u32 type)
1793 {
1794         int i, vcpu_lock_idx = -1, ret;
1795         struct kvm_vcpu *vcpu;
1796
1797         mutex_lock(&kvm->lock);
1798
1799         if (irqchip_in_kernel(kvm)) {
1800                 ret = -EEXIST;
1801                 goto out;
1802         }
1803
1804         /*
1805          * This function is also called by the KVM_CREATE_IRQCHIP handler,
1806          * which had no chance yet to check the availability of the GICv2
1807          * emulation. So check this here again. KVM_CREATE_DEVICE does
1808          * the proper checks already.
1809          */
1810         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
1811                 ret = -ENODEV;
1812                 goto out;
1813         }
1814
1815         /*
1816          * Any time a vcpu is run, vcpu_load is called which tries to grab the
1817          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1818          * that no other VCPUs are run while we create the vgic.
1819          */
1820         ret = -EBUSY;
1821         kvm_for_each_vcpu(i, vcpu, kvm) {
1822                 if (!mutex_trylock(&vcpu->mutex))
1823                         goto out_unlock;
1824                 vcpu_lock_idx = i;
1825         }
1826
1827         kvm_for_each_vcpu(i, vcpu, kvm) {
1828                 if (vcpu->arch.has_run_once)
1829                         goto out_unlock;
1830         }
1831         ret = 0;
1832
1833         ret = init_vgic_model(kvm, type);
1834         if (ret)
1835                 goto out_unlock;
1836
1837         spin_lock_init(&kvm->arch.vgic.lock);
1838         kvm->arch.vgic.in_kernel = true;
1839         kvm->arch.vgic.vgic_model = type;
1840         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1841         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1842         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1843         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
1844
1845 out_unlock:
1846         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1847                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1848                 mutex_unlock(&vcpu->mutex);
1849         }
1850
1851 out:
1852         mutex_unlock(&kvm->lock);
1853         return ret;
1854 }
1855
1856 static int vgic_ioaddr_overlap(struct kvm *kvm)
1857 {
1858         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1859         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1860
1861         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1862                 return 0;
1863         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1864             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1865                 return -EBUSY;
1866         return 0;
1867 }
1868
1869 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1870                               phys_addr_t addr, phys_addr_t size)
1871 {
1872         int ret;
1873
1874         if (addr & ~KVM_PHYS_MASK)
1875                 return -E2BIG;
1876
1877         if (addr & (SZ_4K - 1))
1878                 return -EINVAL;
1879
1880         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1881                 return -EEXIST;
1882         if (addr + size < addr)
1883                 return -EINVAL;
1884
1885         *ioaddr = addr;
1886         ret = vgic_ioaddr_overlap(kvm);
1887         if (ret)
1888                 *ioaddr = VGIC_ADDR_UNDEF;
1889
1890         return ret;
1891 }
1892
1893 /**
1894  * kvm_vgic_addr - set or get vgic VM base addresses
1895  * @kvm:   pointer to the vm struct
1896  * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
1897  * @addr:  pointer to address value
1898  * @write: if true set the address in the VM address space, if false read the
1899  *          address
1900  *
1901  * Set or get the vgic base addresses for the distributor and the virtual CPU
1902  * interface in the VM physical address space.  These addresses are properties
1903  * of the emulated core/SoC and therefore user space initially knows this
1904  * information.
1905  */
1906 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1907 {
1908         int r = 0;
1909         struct vgic_dist *vgic = &kvm->arch.vgic;
1910         int type_needed;
1911         phys_addr_t *addr_ptr, block_size;
1912         phys_addr_t alignment;
1913
1914         mutex_lock(&kvm->lock);
1915         switch (type) {
1916         case KVM_VGIC_V2_ADDR_TYPE_DIST:
1917                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1918                 addr_ptr = &vgic->vgic_dist_base;
1919                 block_size = KVM_VGIC_V2_DIST_SIZE;
1920                 alignment = SZ_4K;
1921                 break;
1922         case KVM_VGIC_V2_ADDR_TYPE_CPU:
1923                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1924                 addr_ptr = &vgic->vgic_cpu_base;
1925                 block_size = KVM_VGIC_V2_CPU_SIZE;
1926                 alignment = SZ_4K;
1927                 break;
1928 #ifdef CONFIG_ARM_GIC_V3
1929         case KVM_VGIC_V3_ADDR_TYPE_DIST:
1930                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1931                 addr_ptr = &vgic->vgic_dist_base;
1932                 block_size = KVM_VGIC_V3_DIST_SIZE;
1933                 alignment = SZ_64K;
1934                 break;
1935         case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1936                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1937                 addr_ptr = &vgic->vgic_redist_base;
1938                 block_size = KVM_VGIC_V3_REDIST_SIZE;
1939                 alignment = SZ_64K;
1940                 break;
1941 #endif
1942         default:
1943                 r = -ENODEV;
1944                 goto out;
1945         }
1946
1947         if (vgic->vgic_model != type_needed) {
1948                 r = -ENODEV;
1949                 goto out;
1950         }
1951
1952         if (write) {
1953                 if (!IS_ALIGNED(*addr, alignment))
1954                         r = -EINVAL;
1955                 else
1956                         r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1957                                                block_size);
1958         } else {
1959                 *addr = *addr_ptr;
1960         }
1961
1962 out:
1963         mutex_unlock(&kvm->lock);
1964         return r;
1965 }
1966
1967 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1968 {
1969         int r;
1970
1971         switch (attr->group) {
1972         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1973                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1974                 u64 addr;
1975                 unsigned long type = (unsigned long)attr->attr;
1976
1977                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1978                         return -EFAULT;
1979
1980                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1981                 return (r == -ENODEV) ? -ENXIO : r;
1982         }
1983         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1984                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1985                 u32 val;
1986                 int ret = 0;
1987
1988                 if (get_user(val, uaddr))
1989                         return -EFAULT;
1990
1991                 /*
1992                  * We require:
1993                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1994                  * - at most 1024 interrupts
1995                  * - a multiple of 32 interrupts
1996                  */
1997                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1998                     val > VGIC_MAX_IRQS ||
1999                     (val & 31))
2000                         return -EINVAL;
2001
2002                 mutex_lock(&dev->kvm->lock);
2003
2004                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2005                         ret = -EBUSY;
2006                 else
2007                         dev->kvm->arch.vgic.nr_irqs = val;
2008
2009                 mutex_unlock(&dev->kvm->lock);
2010
2011                 return ret;
2012         }
2013         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2014                 switch (attr->attr) {
2015                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2016                         r = vgic_init(dev->kvm);
2017                         return r;
2018                 }
2019                 break;
2020         }
2021         }
2022
2023         return -ENXIO;
2024 }
2025
2026 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2027 {
2028         int r = -ENXIO;
2029
2030         switch (attr->group) {
2031         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2032                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2033                 u64 addr;
2034                 unsigned long type = (unsigned long)attr->attr;
2035
2036                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2037                 if (r)
2038                         return (r == -ENODEV) ? -ENXIO : r;
2039
2040                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2041                         return -EFAULT;
2042                 break;
2043         }
2044         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2045                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2046
2047                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2048                 break;
2049         }
2050
2051         }
2052
2053         return r;
2054 }
2055
2056 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2057 {
2058         if (vgic_find_range(ranges, 4, offset))
2059                 return 0;
2060         else
2061                 return -ENXIO;
2062 }
2063
2064 static void vgic_init_maintenance_interrupt(void *info)
2065 {
2066         enable_percpu_irq(vgic->maint_irq, 0);
2067 }
2068
2069 static int vgic_cpu_notify(struct notifier_block *self,
2070                            unsigned long action, void *cpu)
2071 {
2072         switch (action) {
2073         case CPU_STARTING:
2074         case CPU_STARTING_FROZEN:
2075                 vgic_init_maintenance_interrupt(NULL);
2076                 break;
2077         case CPU_DYING:
2078         case CPU_DYING_FROZEN:
2079                 disable_percpu_irq(vgic->maint_irq);
2080                 break;
2081         }
2082
2083         return NOTIFY_OK;
2084 }
2085
2086 static struct notifier_block vgic_cpu_nb = {
2087         .notifier_call = vgic_cpu_notify,
2088 };
2089
2090 static const struct of_device_id vgic_ids[] = {
2091         { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2092         { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2093         { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2094         { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2095         {},
2096 };
2097
2098 int kvm_vgic_hyp_init(void)
2099 {
2100         const struct of_device_id *matched_id;
2101         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2102                                 const struct vgic_params **);
2103         struct device_node *vgic_node;
2104         int ret;
2105
2106         vgic_node = of_find_matching_node_and_match(NULL,
2107                                                     vgic_ids, &matched_id);
2108         if (!vgic_node) {
2109                 kvm_err("error: no compatible GIC node found\n");
2110                 return -ENODEV;
2111         }
2112
2113         vgic_probe = matched_id->data;
2114         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2115         if (ret)
2116                 return ret;
2117
2118         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2119                                  "vgic", kvm_get_running_vcpus());
2120         if (ret) {
2121                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2122                 return ret;
2123         }
2124
2125         ret = __register_cpu_notifier(&vgic_cpu_nb);
2126         if (ret) {
2127                 kvm_err("Cannot register vgic CPU notifier\n");
2128                 goto out_free_irq;
2129         }
2130
2131         /* Callback into for arch code for setup */
2132         vgic_arch_setup(vgic);
2133
2134         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2135
2136         return 0;
2137
2138 out_free_irq:
2139         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2140         return ret;
2141 }
2142
2143 int kvm_irq_map_gsi(struct kvm *kvm,
2144                     struct kvm_kernel_irq_routing_entry *entries,
2145                     int gsi)
2146 {
2147         return 0;
2148 }
2149
2150 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2151 {
2152         return pin;
2153 }
2154
2155 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2156                 u32 irq, int level, bool line_status)
2157 {
2158         unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2159
2160         trace_kvm_set_irq(irq, level, irq_source_id);
2161
2162         BUG_ON(!vgic_initialized(kvm));
2163
2164         return kvm_vgic_inject_irq(kvm, 0, spi, level);
2165 }
2166
2167 /* MSI not implemented yet */
2168 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2169                 struct kvm *kvm, int irq_source_id,
2170                 int level, bool line_status)
2171 {
2172         return 0;
2173 }