These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 #include <trace/events/kvm.h>
34 #include <asm/kvm.h>
35 #include <kvm/iodev.h>
36
37 #define CREATE_TRACE_POINTS
38 #include "trace.h"
39
40 /*
41  * How the whole thing works (courtesy of Christoffer Dall):
42  *
43  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
44  *   something is pending on the CPU interface.
45  * - Interrupts that are pending on the distributor are stored on the
46  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
47  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
48  *   arch. timers).
49  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
50  *   recalculated
51  * - To calculate the oracle, we need info for each cpu from
52  *   compute_pending_for_cpu, which considers:
53  *   - PPI: dist->irq_pending & dist->irq_enable
54  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
55  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
56  *     registers, stored on each vcpu. We only keep one bit of
57  *     information per interrupt, making sure that only one vcpu can
58  *     accept the interrupt.
59  * - If any of the above state changes, we must recalculate the oracle.
60  * - The same is true when injecting an interrupt, except that we only
61  *   consider a single interrupt at a time. The irq_spi_cpu array
62  *   contains the target CPU for each SPI.
63  *
64  * The handling of level interrupts adds some extra complexity. We
65  * need to track when the interrupt has been EOIed, so we can sample
66  * the 'line' again. This is achieved as such:
67  *
68  * - When a level interrupt is moved onto a vcpu, the corresponding
69  *   bit in irq_queued is set. As long as this bit is set, the line
70  *   will be ignored for further interrupts. The interrupt is injected
71  *   into the vcpu with the GICH_LR_EOI bit set (generate a
72  *   maintenance interrupt on EOI).
73  * - When the interrupt is EOIed, the maintenance interrupt fires,
74  *   and clears the corresponding bit in irq_queued. This allows the
75  *   interrupt line to be sampled again.
76  * - Note that level-triggered interrupts can also be set to pending from
77  *   writes to GICD_ISPENDRn and lowering the external input line does not
78  *   cause the interrupt to become inactive in such a situation.
79  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
80  *   inactive as long as the external input line is held high.
81  *
82  *
83  * Initialization rules: there are multiple stages to the vgic
84  * initialization, both for the distributor and the CPU interfaces.
85  *
86  * Distributor:
87  *
88  * - kvm_vgic_early_init(): initialization of static data that doesn't
89  *   depend on any sizing information or emulation type. No allocation
90  *   is allowed there.
91  *
92  * - vgic_init(): allocation and initialization of the generic data
93  *   structures that depend on sizing information (number of CPUs,
94  *   number of interrupts). Also initializes the vcpu specific data
95  *   structures. Can be executed lazily for GICv2.
96  *   [to be renamed to kvm_vgic_init??]
97  *
98  * CPU Interface:
99  *
100  * - kvm_vgic_cpu_early_init(): initialization of static data that
101  *   doesn't depend on any sizing information or emulation type. No
102  *   allocation is allowed there.
103  */
104
105 #include "vgic.h"
106
107 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
108 static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu);
109 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
110 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
111 static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu);
112 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
113                                                 int virt_irq);
114 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu);
115
116 static const struct vgic_ops *vgic_ops;
117 static const struct vgic_params *vgic;
118
119 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
120 {
121         vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
122 }
123
124 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
125 {
126         return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
127 }
128
129 int kvm_vgic_map_resources(struct kvm *kvm)
130 {
131         return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
132 }
133
134 /*
135  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
136  * extracts u32s out of them.
137  *
138  * This does not work on 64-bit BE systems, because the bitmap access
139  * will store two consecutive 32-bit words with the higher-addressed
140  * register's bits at the lower index and the lower-addressed register's
141  * bits at the higher index.
142  *
143  * Therefore, swizzle the register index when accessing the 32-bit word
144  * registers to access the right register's value.
145  */
146 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
147 #define REG_OFFSET_SWIZZLE      1
148 #else
149 #define REG_OFFSET_SWIZZLE      0
150 #endif
151
152 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
153 {
154         int nr_longs;
155
156         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
157
158         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
159         if (!b->private)
160                 return -ENOMEM;
161
162         b->shared = b->private + nr_cpus;
163
164         return 0;
165 }
166
167 static void vgic_free_bitmap(struct vgic_bitmap *b)
168 {
169         kfree(b->private);
170         b->private = NULL;
171         b->shared = NULL;
172 }
173
174 /*
175  * Call this function to convert a u64 value to an unsigned long * bitmask
176  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
177  *
178  * Warning: Calling this function may modify *val.
179  */
180 static unsigned long *u64_to_bitmask(u64 *val)
181 {
182 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
183         *val = (*val >> 32) | (*val << 32);
184 #endif
185         return (unsigned long *)val;
186 }
187
188 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
189 {
190         offset >>= 2;
191         if (!offset)
192                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
193         else
194                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
195 }
196
197 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
198                                    int cpuid, int irq)
199 {
200         if (irq < VGIC_NR_PRIVATE_IRQS)
201                 return test_bit(irq, x->private + cpuid);
202
203         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
204 }
205
206 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
207                              int irq, int val)
208 {
209         unsigned long *reg;
210
211         if (irq < VGIC_NR_PRIVATE_IRQS) {
212                 reg = x->private + cpuid;
213         } else {
214                 reg = x->shared;
215                 irq -= VGIC_NR_PRIVATE_IRQS;
216         }
217
218         if (val)
219                 set_bit(irq, reg);
220         else
221                 clear_bit(irq, reg);
222 }
223
224 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
225 {
226         return x->private + cpuid;
227 }
228
229 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
230 {
231         return x->shared;
232 }
233
234 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
235 {
236         int size;
237
238         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
239         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
240
241         x->private = kzalloc(size, GFP_KERNEL);
242         if (!x->private)
243                 return -ENOMEM;
244
245         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
246         return 0;
247 }
248
249 static void vgic_free_bytemap(struct vgic_bytemap *b)
250 {
251         kfree(b->private);
252         b->private = NULL;
253         b->shared = NULL;
254 }
255
256 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
257 {
258         u32 *reg;
259
260         if (offset < VGIC_NR_PRIVATE_IRQS) {
261                 reg = x->private;
262                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
263         } else {
264                 reg = x->shared;
265                 offset -= VGIC_NR_PRIVATE_IRQS;
266         }
267
268         return reg + (offset / sizeof(u32));
269 }
270
271 #define VGIC_CFG_LEVEL  0
272 #define VGIC_CFG_EDGE   1
273
274 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
275 {
276         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277         int irq_val;
278
279         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
280         return irq_val == VGIC_CFG_EDGE;
281 }
282
283 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
284 {
285         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
286
287         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
288 }
289
290 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
291 {
292         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
293
294         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
295 }
296
297 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
298 {
299         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
300
301         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
302 }
303
304 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
305 {
306         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
307
308         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
309 }
310
311 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
312 {
313         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
314
315         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
316 }
317
318 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
319 {
320         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
321
322         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
323 }
324
325 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
326 {
327         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
328
329         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
330 }
331
332 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
333 {
334         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
335
336         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
337 }
338
339 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
340 {
341         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
342
343         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
344 }
345
346 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
347 {
348         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
349
350         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
351 }
352
353 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
354 {
355         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
356
357         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
358 }
359
360 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
361 {
362         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
363
364         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
365         if (!vgic_dist_irq_get_level(vcpu, irq)) {
366                 vgic_dist_irq_clear_pending(vcpu, irq);
367                 if (!compute_pending_for_cpu(vcpu))
368                         clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
369         }
370 }
371
372 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
373 {
374         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
375
376         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
377 }
378
379 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
380 {
381         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
382
383         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
384 }
385
386 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
387 {
388         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
389
390         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
391 }
392
393 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
394 {
395         if (irq < VGIC_NR_PRIVATE_IRQS)
396                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
397         else
398                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
399                         vcpu->arch.vgic_cpu.pending_shared);
400 }
401
402 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
403 {
404         if (irq < VGIC_NR_PRIVATE_IRQS)
405                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
406         else
407                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
408                           vcpu->arch.vgic_cpu.pending_shared);
409 }
410
411 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
412 {
413         return !vgic_irq_is_queued(vcpu, irq);
414 }
415
416 /**
417  * vgic_reg_access - access vgic register
418  * @mmio:   pointer to the data describing the mmio access
419  * @reg:    pointer to the virtual backing of vgic distributor data
420  * @offset: least significant 2 bits used for word offset
421  * @mode:   ACCESS_ mode (see defines above)
422  *
423  * Helper to make vgic register access easier using one of the access
424  * modes defined for vgic register access
425  * (read,raz,write-ignored,setbit,clearbit,write)
426  */
427 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
428                      phys_addr_t offset, int mode)
429 {
430         int word_offset = (offset & 3) * 8;
431         u32 mask = (1UL << (mmio->len * 8)) - 1;
432         u32 regval;
433
434         /*
435          * Any alignment fault should have been delivered to the guest
436          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
437          */
438
439         if (reg) {
440                 regval = *reg;
441         } else {
442                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
443                 regval = 0;
444         }
445
446         if (mmio->is_write) {
447                 u32 data = mmio_data_read(mmio, mask) << word_offset;
448                 switch (ACCESS_WRITE_MASK(mode)) {
449                 case ACCESS_WRITE_IGNORED:
450                         return;
451
452                 case ACCESS_WRITE_SETBIT:
453                         regval |= data;
454                         break;
455
456                 case ACCESS_WRITE_CLEARBIT:
457                         regval &= ~data;
458                         break;
459
460                 case ACCESS_WRITE_VALUE:
461                         regval = (regval & ~(mask << word_offset)) | data;
462                         break;
463                 }
464                 *reg = regval;
465         } else {
466                 switch (ACCESS_READ_MASK(mode)) {
467                 case ACCESS_READ_RAZ:
468                         regval = 0;
469                         /* fall through */
470
471                 case ACCESS_READ_VALUE:
472                         mmio_data_write(mmio, mask, regval >> word_offset);
473                 }
474         }
475 }
476
477 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
478                         phys_addr_t offset)
479 {
480         vgic_reg_access(mmio, NULL, offset,
481                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
482         return false;
483 }
484
485 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
486                             phys_addr_t offset, int vcpu_id, int access)
487 {
488         u32 *reg;
489         int mode = ACCESS_READ_VALUE | access;
490         struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
491
492         reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
493         vgic_reg_access(mmio, reg, offset, mode);
494         if (mmio->is_write) {
495                 if (access & ACCESS_WRITE_CLEARBIT) {
496                         if (offset < 4) /* Force SGI enabled */
497                                 *reg |= 0xffff;
498                         vgic_retire_disabled_irqs(target_vcpu);
499                 }
500                 vgic_update_state(kvm);
501                 return true;
502         }
503
504         return false;
505 }
506
507 bool vgic_handle_set_pending_reg(struct kvm *kvm,
508                                  struct kvm_exit_mmio *mmio,
509                                  phys_addr_t offset, int vcpu_id)
510 {
511         u32 *reg, orig;
512         u32 level_mask;
513         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
514         struct vgic_dist *dist = &kvm->arch.vgic;
515
516         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
517         level_mask = (~(*reg));
518
519         /* Mark both level and edge triggered irqs as pending */
520         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
521         orig = *reg;
522         vgic_reg_access(mmio, reg, offset, mode);
523
524         if (mmio->is_write) {
525                 /* Set the soft-pending flag only for level-triggered irqs */
526                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
527                                           vcpu_id, offset);
528                 vgic_reg_access(mmio, reg, offset, mode);
529                 *reg &= level_mask;
530
531                 /* Ignore writes to SGIs */
532                 if (offset < 2) {
533                         *reg &= ~0xffff;
534                         *reg |= orig & 0xffff;
535                 }
536
537                 vgic_update_state(kvm);
538                 return true;
539         }
540
541         return false;
542 }
543
544 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
545                                    struct kvm_exit_mmio *mmio,
546                                    phys_addr_t offset, int vcpu_id)
547 {
548         u32 *level_active;
549         u32 *reg, orig;
550         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
551         struct vgic_dist *dist = &kvm->arch.vgic;
552
553         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
554         orig = *reg;
555         vgic_reg_access(mmio, reg, offset, mode);
556         if (mmio->is_write) {
557                 /* Re-set level triggered level-active interrupts */
558                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
559                                           vcpu_id, offset);
560                 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
561                 *reg |= *level_active;
562
563                 /* Ignore writes to SGIs */
564                 if (offset < 2) {
565                         *reg &= ~0xffff;
566                         *reg |= orig & 0xffff;
567                 }
568
569                 /* Clear soft-pending flags */
570                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
571                                           vcpu_id, offset);
572                 vgic_reg_access(mmio, reg, offset, mode);
573
574                 vgic_update_state(kvm);
575                 return true;
576         }
577         return false;
578 }
579
580 bool vgic_handle_set_active_reg(struct kvm *kvm,
581                                 struct kvm_exit_mmio *mmio,
582                                 phys_addr_t offset, int vcpu_id)
583 {
584         u32 *reg;
585         struct vgic_dist *dist = &kvm->arch.vgic;
586
587         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
588         vgic_reg_access(mmio, reg, offset,
589                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
590
591         if (mmio->is_write) {
592                 vgic_update_state(kvm);
593                 return true;
594         }
595
596         return false;
597 }
598
599 bool vgic_handle_clear_active_reg(struct kvm *kvm,
600                                   struct kvm_exit_mmio *mmio,
601                                   phys_addr_t offset, int vcpu_id)
602 {
603         u32 *reg;
604         struct vgic_dist *dist = &kvm->arch.vgic;
605
606         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
607         vgic_reg_access(mmio, reg, offset,
608                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
609
610         if (mmio->is_write) {
611                 vgic_update_state(kvm);
612                 return true;
613         }
614
615         return false;
616 }
617
618 static u32 vgic_cfg_expand(u16 val)
619 {
620         u32 res = 0;
621         int i;
622
623         /*
624          * Turn a 16bit value like abcd...mnop into a 32bit word
625          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
626          */
627         for (i = 0; i < 16; i++)
628                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
629
630         return res;
631 }
632
633 static u16 vgic_cfg_compress(u32 val)
634 {
635         u16 res = 0;
636         int i;
637
638         /*
639          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
640          * abcd...mnop which is what we really care about.
641          */
642         for (i = 0; i < 16; i++)
643                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
644
645         return res;
646 }
647
648 /*
649  * The distributor uses 2 bits per IRQ for the CFG register, but the
650  * LSB is always 0. As such, we only keep the upper bit, and use the
651  * two above functions to compress/expand the bits
652  */
653 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
654                          phys_addr_t offset)
655 {
656         u32 val;
657
658         if (offset & 4)
659                 val = *reg >> 16;
660         else
661                 val = *reg & 0xffff;
662
663         val = vgic_cfg_expand(val);
664         vgic_reg_access(mmio, &val, offset,
665                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
666         if (mmio->is_write) {
667                 /* Ignore writes to read-only SGI and PPI bits */
668                 if (offset < 8)
669                         return false;
670
671                 val = vgic_cfg_compress(val);
672                 if (offset & 4) {
673                         *reg &= 0xffff;
674                         *reg |= val << 16;
675                 } else {
676                         *reg &= 0xffff << 16;
677                         *reg |= val;
678                 }
679         }
680
681         return false;
682 }
683
684 /**
685  * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
686  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
687  *
688  * Move any IRQs that have already been assigned to LRs back to the
689  * emulated distributor state so that the complete emulated state can be read
690  * from the main emulation structures without investigating the LRs.
691  */
692 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
693 {
694         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
695         u64 elrsr = vgic_get_elrsr(vcpu);
696         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
697         int i;
698
699         for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) {
700                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
701
702                 /*
703                  * There are three options for the state bits:
704                  *
705                  * 01: pending
706                  * 10: active
707                  * 11: pending and active
708                  */
709                 BUG_ON(!(lr.state & LR_STATE_MASK));
710
711                 /* Reestablish SGI source for pending and active IRQs */
712                 if (lr.irq < VGIC_NR_SGIS)
713                         add_sgi_source(vcpu, lr.irq, lr.source);
714
715                 /*
716                  * If the LR holds an active (10) or a pending and active (11)
717                  * interrupt then move the active state to the
718                  * distributor tracking bit.
719                  */
720                 if (lr.state & LR_STATE_ACTIVE)
721                         vgic_irq_set_active(vcpu, lr.irq);
722
723                 /*
724                  * Reestablish the pending state on the distributor and the
725                  * CPU interface and mark the LR as free for other use.
726                  */
727                 vgic_retire_lr(i, vcpu);
728
729                 /* Finally update the VGIC state. */
730                 vgic_update_state(vcpu->kvm);
731         }
732 }
733
734 const
735 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
736                                       int len, gpa_t offset)
737 {
738         while (ranges->len) {
739                 if (offset >= ranges->base &&
740                     (offset + len) <= (ranges->base + ranges->len))
741                         return ranges;
742                 ranges++;
743         }
744
745         return NULL;
746 }
747
748 static bool vgic_validate_access(const struct vgic_dist *dist,
749                                  const struct vgic_io_range *range,
750                                  unsigned long offset)
751 {
752         int irq;
753
754         if (!range->bits_per_irq)
755                 return true;    /* Not an irq-based access */
756
757         irq = offset * 8 / range->bits_per_irq;
758         if (irq >= dist->nr_irqs)
759                 return false;
760
761         return true;
762 }
763
764 /*
765  * Call the respective handler function for the given range.
766  * We split up any 64 bit accesses into two consecutive 32 bit
767  * handler calls and merge the result afterwards.
768  * We do this in a little endian fashion regardless of the host's
769  * or guest's endianness, because the GIC is always LE and the rest of
770  * the code (vgic_reg_access) also puts it in a LE fashion already.
771  * At this point we have already identified the handle function, so
772  * range points to that one entry and offset is relative to this.
773  */
774 static bool call_range_handler(struct kvm_vcpu *vcpu,
775                                struct kvm_exit_mmio *mmio,
776                                unsigned long offset,
777                                const struct vgic_io_range *range)
778 {
779         struct kvm_exit_mmio mmio32;
780         bool ret;
781
782         if (likely(mmio->len <= 4))
783                 return range->handle_mmio(vcpu, mmio, offset);
784
785         /*
786          * Any access bigger than 4 bytes (that we currently handle in KVM)
787          * is actually 8 bytes long, caused by a 64-bit access
788          */
789
790         mmio32.len = 4;
791         mmio32.is_write = mmio->is_write;
792         mmio32.private = mmio->private;
793
794         mmio32.phys_addr = mmio->phys_addr + 4;
795         mmio32.data = &((u32 *)mmio->data)[1];
796         ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
797
798         mmio32.phys_addr = mmio->phys_addr;
799         mmio32.data = &((u32 *)mmio->data)[0];
800         ret |= range->handle_mmio(vcpu, &mmio32, offset);
801
802         return ret;
803 }
804
805 /**
806  * vgic_handle_mmio_access - handle an in-kernel MMIO access
807  * This is called by the read/write KVM IO device wrappers below.
808  * @vcpu:       pointer to the vcpu performing the access
809  * @this:       pointer to the KVM IO device in charge
810  * @addr:       guest physical address of the access
811  * @len:        size of the access
812  * @val:        pointer to the data region
813  * @is_write:   read or write access
814  *
815  * returns true if the MMIO access could be performed
816  */
817 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
818                                    struct kvm_io_device *this, gpa_t addr,
819                                    int len, void *val, bool is_write)
820 {
821         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
822         struct vgic_io_device *iodev = container_of(this,
823                                                     struct vgic_io_device, dev);
824         struct kvm_run *run = vcpu->run;
825         const struct vgic_io_range *range;
826         struct kvm_exit_mmio mmio;
827         bool updated_state;
828         gpa_t offset;
829
830         offset = addr - iodev->addr;
831         range = vgic_find_range(iodev->reg_ranges, len, offset);
832         if (unlikely(!range || !range->handle_mmio)) {
833                 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
834                 return -ENXIO;
835         }
836
837         mmio.phys_addr = addr;
838         mmio.len = len;
839         mmio.is_write = is_write;
840         mmio.data = val;
841         mmio.private = iodev->redist_vcpu;
842
843         spin_lock(&dist->lock);
844         offset -= range->base;
845         if (vgic_validate_access(dist, range, offset)) {
846                 updated_state = call_range_handler(vcpu, &mmio, offset, range);
847         } else {
848                 if (!is_write)
849                         memset(val, 0, len);
850                 updated_state = false;
851         }
852         spin_unlock(&dist->lock);
853         run->mmio.is_write      = is_write;
854         run->mmio.len           = len;
855         run->mmio.phys_addr     = addr;
856         memcpy(run->mmio.data, val, len);
857
858         kvm_handle_mmio_return(vcpu, run);
859
860         if (updated_state)
861                 vgic_kick_vcpus(vcpu->kvm);
862
863         return 0;
864 }
865
866 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
867                                  struct kvm_io_device *this,
868                                  gpa_t addr, int len, void *val)
869 {
870         return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
871 }
872
873 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
874                                   struct kvm_io_device *this,
875                                   gpa_t addr, int len, const void *val)
876 {
877         return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
878                                        true);
879 }
880
881 struct kvm_io_device_ops vgic_io_ops = {
882         .read   = vgic_handle_mmio_read,
883         .write  = vgic_handle_mmio_write,
884 };
885
886 /**
887  * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
888  * @kvm:            The VM structure pointer
889  * @base:           The (guest) base address for the register frame
890  * @len:            Length of the register frame window
891  * @ranges:         Describing the handler functions for each register
892  * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
893  * @iodev:          Points to memory to be passed on to the handler
894  *
895  * @iodev stores the parameters of this function to be usable by the handler
896  * respectively the dispatcher function (since the KVM I/O bus framework lacks
897  * an opaque parameter). Initialization is done in this function, but the
898  * reference should be valid and unique for the whole VGIC lifetime.
899  * If the register frame is not mapped for a specific VCPU, pass -1 to
900  * @redist_vcpu_id.
901  */
902 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
903                              const struct vgic_io_range *ranges,
904                              int redist_vcpu_id,
905                              struct vgic_io_device *iodev)
906 {
907         struct kvm_vcpu *vcpu = NULL;
908         int ret;
909
910         if (redist_vcpu_id >= 0)
911                 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
912
913         iodev->addr             = base;
914         iodev->len              = len;
915         iodev->reg_ranges       = ranges;
916         iodev->redist_vcpu      = vcpu;
917
918         kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
919
920         mutex_lock(&kvm->slots_lock);
921
922         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
923                                       &iodev->dev);
924         mutex_unlock(&kvm->slots_lock);
925
926         /* Mark the iodev as invalid if registration fails. */
927         if (ret)
928                 iodev->dev.ops = NULL;
929
930         return ret;
931 }
932
933 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
934 {
935         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
936 }
937
938 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
939 {
940         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
941         unsigned long *active, *enabled, *act_percpu, *act_shared;
942         unsigned long active_private, active_shared;
943         int nr_shared = vgic_nr_shared_irqs(dist);
944         int vcpu_id;
945
946         vcpu_id = vcpu->vcpu_id;
947         act_percpu = vcpu->arch.vgic_cpu.active_percpu;
948         act_shared = vcpu->arch.vgic_cpu.active_shared;
949
950         active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
951         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
952         bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
953
954         active = vgic_bitmap_get_shared_map(&dist->irq_active);
955         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
956         bitmap_and(act_shared, active, enabled, nr_shared);
957         bitmap_and(act_shared, act_shared,
958                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
959                    nr_shared);
960
961         active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
962         active_shared = find_first_bit(act_shared, nr_shared);
963
964         return (active_private < VGIC_NR_PRIVATE_IRQS ||
965                 active_shared < nr_shared);
966 }
967
968 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
969 {
970         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
971         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
972         unsigned long pending_private, pending_shared;
973         int nr_shared = vgic_nr_shared_irqs(dist);
974         int vcpu_id;
975
976         vcpu_id = vcpu->vcpu_id;
977         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
978         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
979
980         if (!dist->enabled) {
981                 bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
982                 bitmap_zero(pend_shared, nr_shared);
983                 return 0;
984         }
985
986         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
987         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
988         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
989
990         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
991         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
992         bitmap_and(pend_shared, pending, enabled, nr_shared);
993         bitmap_and(pend_shared, pend_shared,
994                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
995                    nr_shared);
996
997         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
998         pending_shared = find_first_bit(pend_shared, nr_shared);
999         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1000                 pending_shared < vgic_nr_shared_irqs(dist));
1001 }
1002
1003 /*
1004  * Update the interrupt state and determine which CPUs have pending
1005  * or active interrupts. Must be called with distributor lock held.
1006  */
1007 void vgic_update_state(struct kvm *kvm)
1008 {
1009         struct vgic_dist *dist = &kvm->arch.vgic;
1010         struct kvm_vcpu *vcpu;
1011         int c;
1012
1013         kvm_for_each_vcpu(c, vcpu, kvm) {
1014                 if (compute_pending_for_cpu(vcpu))
1015                         set_bit(c, dist->irq_pending_on_cpu);
1016
1017                 if (compute_active_for_cpu(vcpu))
1018                         set_bit(c, dist->irq_active_on_cpu);
1019                 else
1020                         clear_bit(c, dist->irq_active_on_cpu);
1021         }
1022 }
1023
1024 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1025 {
1026         return vgic_ops->get_lr(vcpu, lr);
1027 }
1028
1029 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1030                                struct vgic_lr vlr)
1031 {
1032         vgic_ops->set_lr(vcpu, lr, vlr);
1033 }
1034
1035 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1036 {
1037         return vgic_ops->get_elrsr(vcpu);
1038 }
1039
1040 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1041 {
1042         return vgic_ops->get_eisr(vcpu);
1043 }
1044
1045 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1046 {
1047         vgic_ops->clear_eisr(vcpu);
1048 }
1049
1050 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1051 {
1052         return vgic_ops->get_interrupt_status(vcpu);
1053 }
1054
1055 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1056 {
1057         vgic_ops->enable_underflow(vcpu);
1058 }
1059
1060 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1061 {
1062         vgic_ops->disable_underflow(vcpu);
1063 }
1064
1065 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1066 {
1067         vgic_ops->get_vmcr(vcpu, vmcr);
1068 }
1069
1070 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1071 {
1072         vgic_ops->set_vmcr(vcpu, vmcr);
1073 }
1074
1075 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1076 {
1077         vgic_ops->enable(vcpu);
1078 }
1079
1080 static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu)
1081 {
1082         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1083
1084         vgic_irq_clear_queued(vcpu, vlr.irq);
1085
1086         /*
1087          * We must transfer the pending state back to the distributor before
1088          * retiring the LR, otherwise we may loose edge-triggered interrupts.
1089          */
1090         if (vlr.state & LR_STATE_PENDING) {
1091                 vgic_dist_irq_set_pending(vcpu, vlr.irq);
1092                 vlr.hwirq = 0;
1093         }
1094
1095         vlr.state = 0;
1096         vgic_set_lr(vcpu, lr_nr, vlr);
1097 }
1098
1099 static bool dist_active_irq(struct kvm_vcpu *vcpu)
1100 {
1101         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1102
1103         return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1104 }
1105
1106 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1107 {
1108         int i;
1109
1110         for (i = 0; i < vcpu->arch.vgic_cpu.nr_lr; i++) {
1111                 struct vgic_lr vlr = vgic_get_lr(vcpu, i);
1112
1113                 if (vlr.irq == map->virt_irq && vlr.state & LR_STATE_ACTIVE)
1114                         return true;
1115         }
1116
1117         return vgic_irq_is_active(vcpu, map->virt_irq);
1118 }
1119
1120 /*
1121  * An interrupt may have been disabled after being made pending on the
1122  * CPU interface (the classic case is a timer running while we're
1123  * rebooting the guest - the interrupt would kick as soon as the CPU
1124  * interface gets enabled, with deadly consequences).
1125  *
1126  * The solution is to examine already active LRs, and check the
1127  * interrupt is still enabled. If not, just retire it.
1128  */
1129 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1130 {
1131         u64 elrsr = vgic_get_elrsr(vcpu);
1132         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
1133         int lr;
1134
1135         for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
1136                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1137
1138                 if (!vgic_irq_is_enabled(vcpu, vlr.irq))
1139                         vgic_retire_lr(lr, vcpu);
1140         }
1141 }
1142
1143 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1144                                  int lr_nr, struct vgic_lr vlr)
1145 {
1146         if (vgic_irq_is_active(vcpu, irq)) {
1147                 vlr.state |= LR_STATE_ACTIVE;
1148                 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1149                 vgic_irq_clear_active(vcpu, irq);
1150                 vgic_update_state(vcpu->kvm);
1151         } else {
1152                 WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
1153                 vlr.state |= LR_STATE_PENDING;
1154                 kvm_debug("Set pending: 0x%x\n", vlr.state);
1155         }
1156
1157         if (!vgic_irq_is_edge(vcpu, irq))
1158                 vlr.state |= LR_EOI_INT;
1159
1160         if (vlr.irq >= VGIC_NR_SGIS) {
1161                 struct irq_phys_map *map;
1162                 map = vgic_irq_map_search(vcpu, irq);
1163
1164                 if (map) {
1165                         vlr.hwirq = map->phys_irq;
1166                         vlr.state |= LR_HW;
1167                         vlr.state &= ~LR_EOI_INT;
1168
1169                         /*
1170                          * Make sure we're not going to sample this
1171                          * again, as a HW-backed interrupt cannot be
1172                          * in the PENDING_ACTIVE stage.
1173                          */
1174                         vgic_irq_set_queued(vcpu, irq);
1175                 }
1176         }
1177
1178         vgic_set_lr(vcpu, lr_nr, vlr);
1179 }
1180
1181 /*
1182  * Queue an interrupt to a CPU virtual interface. Return true on success,
1183  * or false if it wasn't possible to queue it.
1184  * sgi_source must be zero for any non-SGI interrupts.
1185  */
1186 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1187 {
1188         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1189         u64 elrsr = vgic_get_elrsr(vcpu);
1190         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
1191         struct vgic_lr vlr;
1192         int lr;
1193
1194         /* Sanitize the input... */
1195         BUG_ON(sgi_source_id & ~7);
1196         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1197         BUG_ON(irq >= dist->nr_irqs);
1198
1199         kvm_debug("Queue IRQ%d\n", irq);
1200
1201         /* Do we have an active interrupt for the same CPUID? */
1202         for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
1203                 vlr = vgic_get_lr(vcpu, lr);
1204                 if (vlr.irq == irq && vlr.source == sgi_source_id) {
1205                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1206                         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1207                         return true;
1208                 }
1209         }
1210
1211         /* Try to use another LR for this interrupt */
1212         lr = find_first_bit(elrsr_ptr, vgic->nr_lr);
1213         if (lr >= vgic->nr_lr)
1214                 return false;
1215
1216         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1217
1218         vlr.irq = irq;
1219         vlr.source = sgi_source_id;
1220         vlr.state = 0;
1221         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1222
1223         return true;
1224 }
1225
1226 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1227 {
1228         if (!vgic_can_sample_irq(vcpu, irq))
1229                 return true; /* level interrupt, already queued */
1230
1231         if (vgic_queue_irq(vcpu, 0, irq)) {
1232                 if (vgic_irq_is_edge(vcpu, irq)) {
1233                         vgic_dist_irq_clear_pending(vcpu, irq);
1234                         vgic_cpu_irq_clear(vcpu, irq);
1235                 } else {
1236                         vgic_irq_set_queued(vcpu, irq);
1237                 }
1238
1239                 return true;
1240         }
1241
1242         return false;
1243 }
1244
1245 /*
1246  * Fill the list registers with pending interrupts before running the
1247  * guest.
1248  */
1249 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1250 {
1251         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1252         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1253         unsigned long *pa_percpu, *pa_shared;
1254         int i, vcpu_id;
1255         int overflow = 0;
1256         int nr_shared = vgic_nr_shared_irqs(dist);
1257
1258         vcpu_id = vcpu->vcpu_id;
1259
1260         pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1261         pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1262
1263         bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1264                   VGIC_NR_PRIVATE_IRQS);
1265         bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1266                   nr_shared);
1267         /*
1268          * We may not have any pending interrupt, or the interrupts
1269          * may have been serviced from another vcpu. In all cases,
1270          * move along.
1271          */
1272         if (!kvm_vgic_vcpu_pending_irq(vcpu) && !dist_active_irq(vcpu))
1273                 goto epilog;
1274
1275         /* SGIs */
1276         for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1277                 if (!queue_sgi(vcpu, i))
1278                         overflow = 1;
1279         }
1280
1281         /* PPIs */
1282         for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1283                 if (!vgic_queue_hwirq(vcpu, i))
1284                         overflow = 1;
1285         }
1286
1287         /* SPIs */
1288         for_each_set_bit(i, pa_shared, nr_shared) {
1289                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1290                         overflow = 1;
1291         }
1292
1293
1294
1295
1296 epilog:
1297         if (overflow) {
1298                 vgic_enable_underflow(vcpu);
1299         } else {
1300                 vgic_disable_underflow(vcpu);
1301                 /*
1302                  * We're about to run this VCPU, and we've consumed
1303                  * everything the distributor had in store for
1304                  * us. Claim we don't have anything pending. We'll
1305                  * adjust that if needed while exiting.
1306                  */
1307                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1308         }
1309 }
1310
1311 static int process_queued_irq(struct kvm_vcpu *vcpu,
1312                                    int lr, struct vgic_lr vlr)
1313 {
1314         int pending = 0;
1315
1316         /*
1317          * If the IRQ was EOIed (called from vgic_process_maintenance) or it
1318          * went from active to non-active (called from vgic_sync_hwirq) it was
1319          * also ACKed and we we therefore assume we can clear the soft pending
1320          * state (should it had been set) for this interrupt.
1321          *
1322          * Note: if the IRQ soft pending state was set after the IRQ was
1323          * acked, it actually shouldn't be cleared, but we have no way of
1324          * knowing that unless we start trapping ACKs when the soft-pending
1325          * state is set.
1326          */
1327         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1328
1329         /*
1330          * Tell the gic to start sampling this interrupt again.
1331          */
1332         vgic_irq_clear_queued(vcpu, vlr.irq);
1333
1334         /* Any additional pending interrupt? */
1335         if (vgic_irq_is_edge(vcpu, vlr.irq)) {
1336                 BUG_ON(!(vlr.state & LR_HW));
1337                 pending = vgic_dist_irq_is_pending(vcpu, vlr.irq);
1338         } else {
1339                 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1340                         vgic_cpu_irq_set(vcpu, vlr.irq);
1341                         pending = 1;
1342                 } else {
1343                         vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1344                         vgic_cpu_irq_clear(vcpu, vlr.irq);
1345                 }
1346         }
1347
1348         /*
1349          * Despite being EOIed, the LR may not have
1350          * been marked as empty.
1351          */
1352         vlr.state = 0;
1353         vlr.hwirq = 0;
1354         vgic_set_lr(vcpu, lr, vlr);
1355
1356         return pending;
1357 }
1358
1359 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1360 {
1361         u32 status = vgic_get_interrupt_status(vcpu);
1362         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1363         struct kvm *kvm = vcpu->kvm;
1364         int level_pending = 0;
1365
1366         kvm_debug("STATUS = %08x\n", status);
1367
1368         if (status & INT_STATUS_EOI) {
1369                 /*
1370                  * Some level interrupts have been EOIed. Clear their
1371                  * active bit.
1372                  */
1373                 u64 eisr = vgic_get_eisr(vcpu);
1374                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1375                 int lr;
1376
1377                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1378                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1379
1380                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1381                         WARN_ON(vlr.state & LR_STATE_MASK);
1382
1383
1384                         /*
1385                          * kvm_notify_acked_irq calls kvm_set_irq()
1386                          * to reset the IRQ level, which grabs the dist->lock
1387                          * so we call this before taking the dist->lock.
1388                          */
1389                         kvm_notify_acked_irq(kvm, 0,
1390                                              vlr.irq - VGIC_NR_PRIVATE_IRQS);
1391
1392                         spin_lock(&dist->lock);
1393                         level_pending |= process_queued_irq(vcpu, lr, vlr);
1394                         spin_unlock(&dist->lock);
1395                 }
1396         }
1397
1398         if (status & INT_STATUS_UNDERFLOW)
1399                 vgic_disable_underflow(vcpu);
1400
1401         /*
1402          * In the next iterations of the vcpu loop, if we sync the vgic state
1403          * after flushing it, but before entering the guest (this happens for
1404          * pending signals and vmid rollovers), then make sure we don't pick
1405          * up any old maintenance interrupts here.
1406          */
1407         vgic_clear_eisr(vcpu);
1408
1409         return level_pending;
1410 }
1411
1412 /*
1413  * Save the physical active state, and reset it to inactive.
1414  *
1415  * Return true if there's a pending forwarded interrupt to queue.
1416  */
1417 static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr)
1418 {
1419         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1420         bool level_pending;
1421
1422         if (!(vlr.state & LR_HW))
1423                 return false;
1424
1425         if (vlr.state & LR_STATE_ACTIVE)
1426                 return false;
1427
1428         spin_lock(&dist->lock);
1429         level_pending = process_queued_irq(vcpu, lr, vlr);
1430         spin_unlock(&dist->lock);
1431         return level_pending;
1432 }
1433
1434 /* Sync back the VGIC state after a guest run */
1435 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1436 {
1437         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1438         u64 elrsr;
1439         unsigned long *elrsr_ptr;
1440         int lr, pending;
1441         bool level_pending;
1442
1443         level_pending = vgic_process_maintenance(vcpu);
1444
1445         /* Deal with HW interrupts, and clear mappings for empty LRs */
1446         for (lr = 0; lr < vgic->nr_lr; lr++) {
1447                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1448
1449                 level_pending |= vgic_sync_hwirq(vcpu, lr, vlr);
1450                 BUG_ON(vlr.irq >= dist->nr_irqs);
1451         }
1452
1453         /* Check if we still have something up our sleeve... */
1454         elrsr = vgic_get_elrsr(vcpu);
1455         elrsr_ptr = u64_to_bitmask(&elrsr);
1456         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1457         if (level_pending || pending < vgic->nr_lr)
1458                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1459 }
1460
1461 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1462 {
1463         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1464
1465         if (!irqchip_in_kernel(vcpu->kvm))
1466                 return;
1467
1468         spin_lock(&dist->lock);
1469         __kvm_vgic_flush_hwstate(vcpu);
1470         spin_unlock(&dist->lock);
1471 }
1472
1473 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1474 {
1475         if (!irqchip_in_kernel(vcpu->kvm))
1476                 return;
1477
1478         __kvm_vgic_sync_hwstate(vcpu);
1479 }
1480
1481 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1482 {
1483         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1484
1485         if (!irqchip_in_kernel(vcpu->kvm))
1486                 return 0;
1487
1488         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1489 }
1490
1491 void vgic_kick_vcpus(struct kvm *kvm)
1492 {
1493         struct kvm_vcpu *vcpu;
1494         int c;
1495
1496         /*
1497          * We've injected an interrupt, time to find out who deserves
1498          * a good kick...
1499          */
1500         kvm_for_each_vcpu(c, vcpu, kvm) {
1501                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1502                         kvm_vcpu_kick(vcpu);
1503         }
1504 }
1505
1506 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1507 {
1508         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1509
1510         /*
1511          * Only inject an interrupt if:
1512          * - edge triggered and we have a rising edge
1513          * - level triggered and we change level
1514          */
1515         if (edge_triggered) {
1516                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1517                 return level > state;
1518         } else {
1519                 int state = vgic_dist_irq_get_level(vcpu, irq);
1520                 return level != state;
1521         }
1522 }
1523
1524 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1525                                    struct irq_phys_map *map,
1526                                    unsigned int irq_num, bool level)
1527 {
1528         struct vgic_dist *dist = &kvm->arch.vgic;
1529         struct kvm_vcpu *vcpu;
1530         int edge_triggered, level_triggered;
1531         int enabled;
1532         bool ret = true, can_inject = true;
1533
1534         trace_vgic_update_irq_pending(cpuid, irq_num, level);
1535
1536         if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1537                 return -EINVAL;
1538
1539         spin_lock(&dist->lock);
1540
1541         vcpu = kvm_get_vcpu(kvm, cpuid);
1542         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1543         level_triggered = !edge_triggered;
1544
1545         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1546                 ret = false;
1547                 goto out;
1548         }
1549
1550         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1551                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1552                 if (cpuid == VCPU_NOT_ALLOCATED) {
1553                         /* Pretend we use CPU0, and prevent injection */
1554                         cpuid = 0;
1555                         can_inject = false;
1556                 }
1557                 vcpu = kvm_get_vcpu(kvm, cpuid);
1558         }
1559
1560         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1561
1562         if (level) {
1563                 if (level_triggered)
1564                         vgic_dist_irq_set_level(vcpu, irq_num);
1565                 vgic_dist_irq_set_pending(vcpu, irq_num);
1566         } else {
1567                 if (level_triggered) {
1568                         vgic_dist_irq_clear_level(vcpu, irq_num);
1569                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
1570                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1571                                 vgic_cpu_irq_clear(vcpu, irq_num);
1572                                 if (!compute_pending_for_cpu(vcpu))
1573                                         clear_bit(cpuid, dist->irq_pending_on_cpu);
1574                         }
1575                 }
1576
1577                 ret = false;
1578                 goto out;
1579         }
1580
1581         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1582
1583         if (!enabled || !can_inject) {
1584                 ret = false;
1585                 goto out;
1586         }
1587
1588         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1589                 /*
1590                  * Level interrupt in progress, will be picked up
1591                  * when EOId.
1592                  */
1593                 ret = false;
1594                 goto out;
1595         }
1596
1597         if (level) {
1598                 vgic_cpu_irq_set(vcpu, irq_num);
1599                 set_bit(cpuid, dist->irq_pending_on_cpu);
1600         }
1601
1602 out:
1603         spin_unlock(&dist->lock);
1604
1605         if (ret) {
1606                 /* kick the specified vcpu */
1607                 kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1608         }
1609
1610         return 0;
1611 }
1612
1613 static int vgic_lazy_init(struct kvm *kvm)
1614 {
1615         int ret = 0;
1616
1617         if (unlikely(!vgic_initialized(kvm))) {
1618                 /*
1619                  * We only provide the automatic initialization of the VGIC
1620                  * for the legacy case of a GICv2. Any other type must
1621                  * be explicitly initialized once setup with the respective
1622                  * KVM device call.
1623                  */
1624                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1625                         return -EBUSY;
1626
1627                 mutex_lock(&kvm->lock);
1628                 ret = vgic_init(kvm);
1629                 mutex_unlock(&kvm->lock);
1630         }
1631
1632         return ret;
1633 }
1634
1635 /**
1636  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1637  * @kvm:     The VM structure pointer
1638  * @cpuid:   The CPU for PPIs
1639  * @irq_num: The IRQ number that is assigned to the device. This IRQ
1640  *           must not be mapped to a HW interrupt.
1641  * @level:   Edge-triggered:  true:  to trigger the interrupt
1642  *                            false: to ignore the call
1643  *           Level-sensitive  true:  raise the input signal
1644  *                            false: lower the input signal
1645  *
1646  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1647  * level-sensitive interrupts.  You can think of the level parameter as 1
1648  * being HIGH and 0 being LOW and all devices being active-HIGH.
1649  */
1650 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1651                         bool level)
1652 {
1653         struct irq_phys_map *map;
1654         int ret;
1655
1656         ret = vgic_lazy_init(kvm);
1657         if (ret)
1658                 return ret;
1659
1660         map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1661         if (map)
1662                 return -EINVAL;
1663
1664         return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1665 }
1666
1667 /**
1668  * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1669  * @kvm:     The VM structure pointer
1670  * @cpuid:   The CPU for PPIs
1671  * @map:     Pointer to a irq_phys_map structure describing the mapping
1672  * @level:   Edge-triggered:  true:  to trigger the interrupt
1673  *                            false: to ignore the call
1674  *           Level-sensitive  true:  raise the input signal
1675  *                            false: lower the input signal
1676  *
1677  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1678  * level-sensitive interrupts.  You can think of the level parameter as 1
1679  * being HIGH and 0 being LOW and all devices being active-HIGH.
1680  */
1681 int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1682                                struct irq_phys_map *map, bool level)
1683 {
1684         int ret;
1685
1686         ret = vgic_lazy_init(kvm);
1687         if (ret)
1688                 return ret;
1689
1690         return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
1691 }
1692
1693 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1694 {
1695         /*
1696          * We cannot rely on the vgic maintenance interrupt to be
1697          * delivered synchronously. This means we can only use it to
1698          * exit the VM, and we perform the handling of EOIed
1699          * interrupts on the exit path (see vgic_process_maintenance).
1700          */
1701         return IRQ_HANDLED;
1702 }
1703
1704 static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1705                                                     int virt_irq)
1706 {
1707         if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1708                 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1709         else
1710                 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1711 }
1712
1713 /**
1714  * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1715  * @vcpu: The VCPU pointer
1716  * @virt_irq: The virtual irq number
1717  * @irq: The Linux IRQ number
1718  *
1719  * Establish a mapping between a guest visible irq (@virt_irq) and a
1720  * Linux irq (@irq). On injection, @virt_irq will be associated with
1721  * the physical interrupt represented by @irq. This mapping can be
1722  * established multiple times as long as the parameters are the same.
1723  *
1724  * Returns a valid pointer on success, and an error pointer otherwise
1725  */
1726 struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1727                                            int virt_irq, int irq)
1728 {
1729         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1730         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1731         struct irq_phys_map *map;
1732         struct irq_phys_map_entry *entry;
1733         struct irq_desc *desc;
1734         struct irq_data *data;
1735         int phys_irq;
1736
1737         desc = irq_to_desc(irq);
1738         if (!desc) {
1739                 kvm_err("%s: no interrupt descriptor\n", __func__);
1740                 return ERR_PTR(-EINVAL);
1741         }
1742
1743         data = irq_desc_get_irq_data(desc);
1744         while (data->parent_data)
1745                 data = data->parent_data;
1746
1747         phys_irq = data->hwirq;
1748
1749         /* Create a new mapping */
1750         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1751         if (!entry)
1752                 return ERR_PTR(-ENOMEM);
1753
1754         spin_lock(&dist->irq_phys_map_lock);
1755
1756         /* Try to match an existing mapping */
1757         map = vgic_irq_map_search(vcpu, virt_irq);
1758         if (map) {
1759                 /* Make sure this mapping matches */
1760                 if (map->phys_irq != phys_irq   ||
1761                     map->irq      != irq)
1762                         map = ERR_PTR(-EINVAL);
1763
1764                 /* Found an existing, valid mapping */
1765                 goto out;
1766         }
1767
1768         map           = &entry->map;
1769         map->virt_irq = virt_irq;
1770         map->phys_irq = phys_irq;
1771         map->irq      = irq;
1772
1773         list_add_tail_rcu(&entry->entry, root);
1774
1775 out:
1776         spin_unlock(&dist->irq_phys_map_lock);
1777         /* If we've found a hit in the existing list, free the useless
1778          * entry */
1779         if (IS_ERR(map) || map != &entry->map)
1780                 kfree(entry);
1781         return map;
1782 }
1783
1784 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1785                                                 int virt_irq)
1786 {
1787         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1788         struct irq_phys_map_entry *entry;
1789         struct irq_phys_map *map;
1790
1791         rcu_read_lock();
1792
1793         list_for_each_entry_rcu(entry, root, entry) {
1794                 map = &entry->map;
1795                 if (map->virt_irq == virt_irq) {
1796                         rcu_read_unlock();
1797                         return map;
1798                 }
1799         }
1800
1801         rcu_read_unlock();
1802
1803         return NULL;
1804 }
1805
1806 static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1807 {
1808         struct irq_phys_map_entry *entry;
1809
1810         entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1811         kfree(entry);
1812 }
1813
1814 /**
1815  * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1816  * @vcpu: The VCPU pointer
1817  * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1818  *
1819  * Remove an existing mapping between virtual and physical interrupts.
1820  */
1821 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1822 {
1823         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1824         struct irq_phys_map_entry *entry;
1825         struct list_head *root;
1826
1827         if (!map)
1828                 return -EINVAL;
1829
1830         root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1831
1832         spin_lock(&dist->irq_phys_map_lock);
1833
1834         list_for_each_entry(entry, root, entry) {
1835                 if (&entry->map == map) {
1836                         list_del_rcu(&entry->entry);
1837                         call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1838                         break;
1839                 }
1840         }
1841
1842         spin_unlock(&dist->irq_phys_map_lock);
1843
1844         return 0;
1845 }
1846
1847 static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1848 {
1849         struct vgic_dist *dist = &kvm->arch.vgic;
1850         struct irq_phys_map_entry *entry;
1851
1852         spin_lock(&dist->irq_phys_map_lock);
1853
1854         list_for_each_entry(entry, root, entry) {
1855                 list_del_rcu(&entry->entry);
1856                 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1857         }
1858
1859         spin_unlock(&dist->irq_phys_map_lock);
1860 }
1861
1862 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1863 {
1864         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1865
1866         kfree(vgic_cpu->pending_shared);
1867         kfree(vgic_cpu->active_shared);
1868         kfree(vgic_cpu->pend_act_shared);
1869         vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
1870         vgic_cpu->pending_shared = NULL;
1871         vgic_cpu->active_shared = NULL;
1872         vgic_cpu->pend_act_shared = NULL;
1873 }
1874
1875 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1876 {
1877         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1878         int nr_longs = BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
1879         int sz = nr_longs * sizeof(unsigned long);
1880         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1881         vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1882         vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1883
1884         if (!vgic_cpu->pending_shared
1885                 || !vgic_cpu->active_shared
1886                 || !vgic_cpu->pend_act_shared) {
1887                 kvm_vgic_vcpu_destroy(vcpu);
1888                 return -ENOMEM;
1889         }
1890
1891         /*
1892          * Store the number of LRs per vcpu, so we don't have to go
1893          * all the way to the distributor structure to find out. Only
1894          * assembly code should use this one.
1895          */
1896         vgic_cpu->nr_lr = vgic->nr_lr;
1897
1898         return 0;
1899 }
1900
1901 /**
1902  * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1903  *
1904  * No memory allocation should be performed here, only static init.
1905  */
1906 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1907 {
1908         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1909         INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1910 }
1911
1912 /**
1913  * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1914  *
1915  * The host's GIC naturally limits the maximum amount of VCPUs a guest
1916  * can use.
1917  */
1918 int kvm_vgic_get_max_vcpus(void)
1919 {
1920         return vgic->max_gic_vcpus;
1921 }
1922
1923 void kvm_vgic_destroy(struct kvm *kvm)
1924 {
1925         struct vgic_dist *dist = &kvm->arch.vgic;
1926         struct kvm_vcpu *vcpu;
1927         int i;
1928
1929         kvm_for_each_vcpu(i, vcpu, kvm)
1930                 kvm_vgic_vcpu_destroy(vcpu);
1931
1932         vgic_free_bitmap(&dist->irq_enabled);
1933         vgic_free_bitmap(&dist->irq_level);
1934         vgic_free_bitmap(&dist->irq_pending);
1935         vgic_free_bitmap(&dist->irq_soft_pend);
1936         vgic_free_bitmap(&dist->irq_queued);
1937         vgic_free_bitmap(&dist->irq_cfg);
1938         vgic_free_bytemap(&dist->irq_priority);
1939         if (dist->irq_spi_target) {
1940                 for (i = 0; i < dist->nr_cpus; i++)
1941                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1942         }
1943         kfree(dist->irq_sgi_sources);
1944         kfree(dist->irq_spi_cpu);
1945         kfree(dist->irq_spi_mpidr);
1946         kfree(dist->irq_spi_target);
1947         kfree(dist->irq_pending_on_cpu);
1948         kfree(dist->irq_active_on_cpu);
1949         vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
1950         dist->irq_sgi_sources = NULL;
1951         dist->irq_spi_cpu = NULL;
1952         dist->irq_spi_target = NULL;
1953         dist->irq_pending_on_cpu = NULL;
1954         dist->irq_active_on_cpu = NULL;
1955         dist->nr_cpus = 0;
1956 }
1957
1958 /*
1959  * Allocate and initialize the various data structures. Must be called
1960  * with kvm->lock held!
1961  */
1962 int vgic_init(struct kvm *kvm)
1963 {
1964         struct vgic_dist *dist = &kvm->arch.vgic;
1965         struct kvm_vcpu *vcpu;
1966         int nr_cpus, nr_irqs;
1967         int ret, i, vcpu_id;
1968
1969         if (vgic_initialized(kvm))
1970                 return 0;
1971
1972         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1973         if (!nr_cpus)           /* No vcpus? Can't be good... */
1974                 return -ENODEV;
1975
1976         /*
1977          * If nobody configured the number of interrupts, use the
1978          * legacy one.
1979          */
1980         if (!dist->nr_irqs)
1981                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1982
1983         nr_irqs = dist->nr_irqs;
1984
1985         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1986         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1987         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1988         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1989         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1990         ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
1991         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1992         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1993
1994         if (ret)
1995                 goto out;
1996
1997         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1998         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1999         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2000                                        GFP_KERNEL);
2001         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2002                                            GFP_KERNEL);
2003         dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2004                                            GFP_KERNEL);
2005         if (!dist->irq_sgi_sources ||
2006             !dist->irq_spi_cpu ||
2007             !dist->irq_spi_target ||
2008             !dist->irq_pending_on_cpu ||
2009             !dist->irq_active_on_cpu) {
2010                 ret = -ENOMEM;
2011                 goto out;
2012         }
2013
2014         for (i = 0; i < nr_cpus; i++)
2015                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2016                                         nr_cpus, nr_irqs);
2017
2018         if (ret)
2019                 goto out;
2020
2021         ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2022         if (ret)
2023                 goto out;
2024
2025         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
2026                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2027                 if (ret) {
2028                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
2029                         break;
2030                 }
2031
2032                 /*
2033                  * Enable and configure all SGIs to be edge-triggere and
2034                  * configure all PPIs as level-triggered.
2035                  */
2036                 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
2037                         if (i < VGIC_NR_SGIS) {
2038                                 /* SGIs */
2039                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2040                                                         vcpu->vcpu_id, i, 1);
2041                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2042                                                         vcpu->vcpu_id, i,
2043                                                         VGIC_CFG_EDGE);
2044                         } else if (i < VGIC_NR_PRIVATE_IRQS) {
2045                                 /* PPIs */
2046                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2047                                                         vcpu->vcpu_id, i,
2048                                                         VGIC_CFG_LEVEL);
2049                         }
2050                 }
2051
2052                 vgic_enable(vcpu);
2053         }
2054
2055 out:
2056         if (ret)
2057                 kvm_vgic_destroy(kvm);
2058
2059         return ret;
2060 }
2061
2062 static int init_vgic_model(struct kvm *kvm, int type)
2063 {
2064         switch (type) {
2065         case KVM_DEV_TYPE_ARM_VGIC_V2:
2066                 vgic_v2_init_emulation(kvm);
2067                 break;
2068 #ifdef CONFIG_KVM_ARM_VGIC_V3
2069         case KVM_DEV_TYPE_ARM_VGIC_V3:
2070                 vgic_v3_init_emulation(kvm);
2071                 break;
2072 #endif
2073         default:
2074                 return -ENODEV;
2075         }
2076
2077         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2078                 return -E2BIG;
2079
2080         return 0;
2081 }
2082
2083 /**
2084  * kvm_vgic_early_init - Earliest possible vgic initialization stage
2085  *
2086  * No memory allocation should be performed here, only static init.
2087  */
2088 void kvm_vgic_early_init(struct kvm *kvm)
2089 {
2090         spin_lock_init(&kvm->arch.vgic.lock);
2091         spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2092         INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2093 }
2094
2095 int kvm_vgic_create(struct kvm *kvm, u32 type)
2096 {
2097         int i, vcpu_lock_idx = -1, ret;
2098         struct kvm_vcpu *vcpu;
2099
2100         mutex_lock(&kvm->lock);
2101
2102         if (irqchip_in_kernel(kvm)) {
2103                 ret = -EEXIST;
2104                 goto out;
2105         }
2106
2107         /*
2108          * This function is also called by the KVM_CREATE_IRQCHIP handler,
2109          * which had no chance yet to check the availability of the GICv2
2110          * emulation. So check this here again. KVM_CREATE_DEVICE does
2111          * the proper checks already.
2112          */
2113         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2114                 ret = -ENODEV;
2115                 goto out;
2116         }
2117
2118         /*
2119          * Any time a vcpu is run, vcpu_load is called which tries to grab the
2120          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
2121          * that no other VCPUs are run while we create the vgic.
2122          */
2123         ret = -EBUSY;
2124         kvm_for_each_vcpu(i, vcpu, kvm) {
2125                 if (!mutex_trylock(&vcpu->mutex))
2126                         goto out_unlock;
2127                 vcpu_lock_idx = i;
2128         }
2129
2130         kvm_for_each_vcpu(i, vcpu, kvm) {
2131                 if (vcpu->arch.has_run_once)
2132                         goto out_unlock;
2133         }
2134         ret = 0;
2135
2136         ret = init_vgic_model(kvm, type);
2137         if (ret)
2138                 goto out_unlock;
2139
2140         kvm->arch.vgic.in_kernel = true;
2141         kvm->arch.vgic.vgic_model = type;
2142         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2143         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2144         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2145         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
2146
2147 out_unlock:
2148         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2149                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2150                 mutex_unlock(&vcpu->mutex);
2151         }
2152
2153 out:
2154         mutex_unlock(&kvm->lock);
2155         return ret;
2156 }
2157
2158 static int vgic_ioaddr_overlap(struct kvm *kvm)
2159 {
2160         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2161         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2162
2163         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2164                 return 0;
2165         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2166             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2167                 return -EBUSY;
2168         return 0;
2169 }
2170
2171 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2172                               phys_addr_t addr, phys_addr_t size)
2173 {
2174         int ret;
2175
2176         if (addr & ~KVM_PHYS_MASK)
2177                 return -E2BIG;
2178
2179         if (addr & (SZ_4K - 1))
2180                 return -EINVAL;
2181
2182         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2183                 return -EEXIST;
2184         if (addr + size < addr)
2185                 return -EINVAL;
2186
2187         *ioaddr = addr;
2188         ret = vgic_ioaddr_overlap(kvm);
2189         if (ret)
2190                 *ioaddr = VGIC_ADDR_UNDEF;
2191
2192         return ret;
2193 }
2194
2195 /**
2196  * kvm_vgic_addr - set or get vgic VM base addresses
2197  * @kvm:   pointer to the vm struct
2198  * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
2199  * @addr:  pointer to address value
2200  * @write: if true set the address in the VM address space, if false read the
2201  *          address
2202  *
2203  * Set or get the vgic base addresses for the distributor and the virtual CPU
2204  * interface in the VM physical address space.  These addresses are properties
2205  * of the emulated core/SoC and therefore user space initially knows this
2206  * information.
2207  */
2208 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2209 {
2210         int r = 0;
2211         struct vgic_dist *vgic = &kvm->arch.vgic;
2212         int type_needed;
2213         phys_addr_t *addr_ptr, block_size;
2214         phys_addr_t alignment;
2215
2216         mutex_lock(&kvm->lock);
2217         switch (type) {
2218         case KVM_VGIC_V2_ADDR_TYPE_DIST:
2219                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2220                 addr_ptr = &vgic->vgic_dist_base;
2221                 block_size = KVM_VGIC_V2_DIST_SIZE;
2222                 alignment = SZ_4K;
2223                 break;
2224         case KVM_VGIC_V2_ADDR_TYPE_CPU:
2225                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2226                 addr_ptr = &vgic->vgic_cpu_base;
2227                 block_size = KVM_VGIC_V2_CPU_SIZE;
2228                 alignment = SZ_4K;
2229                 break;
2230 #ifdef CONFIG_KVM_ARM_VGIC_V3
2231         case KVM_VGIC_V3_ADDR_TYPE_DIST:
2232                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2233                 addr_ptr = &vgic->vgic_dist_base;
2234                 block_size = KVM_VGIC_V3_DIST_SIZE;
2235                 alignment = SZ_64K;
2236                 break;
2237         case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2238                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2239                 addr_ptr = &vgic->vgic_redist_base;
2240                 block_size = KVM_VGIC_V3_REDIST_SIZE;
2241                 alignment = SZ_64K;
2242                 break;
2243 #endif
2244         default:
2245                 r = -ENODEV;
2246                 goto out;
2247         }
2248
2249         if (vgic->vgic_model != type_needed) {
2250                 r = -ENODEV;
2251                 goto out;
2252         }
2253
2254         if (write) {
2255                 if (!IS_ALIGNED(*addr, alignment))
2256                         r = -EINVAL;
2257                 else
2258                         r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2259                                                block_size);
2260         } else {
2261                 *addr = *addr_ptr;
2262         }
2263
2264 out:
2265         mutex_unlock(&kvm->lock);
2266         return r;
2267 }
2268
2269 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2270 {
2271         int r;
2272
2273         switch (attr->group) {
2274         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2275                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2276                 u64 addr;
2277                 unsigned long type = (unsigned long)attr->attr;
2278
2279                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2280                         return -EFAULT;
2281
2282                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2283                 return (r == -ENODEV) ? -ENXIO : r;
2284         }
2285         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2286                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2287                 u32 val;
2288                 int ret = 0;
2289
2290                 if (get_user(val, uaddr))
2291                         return -EFAULT;
2292
2293                 /*
2294                  * We require:
2295                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2296                  * - at most 1024 interrupts
2297                  * - a multiple of 32 interrupts
2298                  */
2299                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2300                     val > VGIC_MAX_IRQS ||
2301                     (val & 31))
2302                         return -EINVAL;
2303
2304                 mutex_lock(&dev->kvm->lock);
2305
2306                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2307                         ret = -EBUSY;
2308                 else
2309                         dev->kvm->arch.vgic.nr_irqs = val;
2310
2311                 mutex_unlock(&dev->kvm->lock);
2312
2313                 return ret;
2314         }
2315         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2316                 switch (attr->attr) {
2317                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2318                         r = vgic_init(dev->kvm);
2319                         return r;
2320                 }
2321                 break;
2322         }
2323         }
2324
2325         return -ENXIO;
2326 }
2327
2328 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2329 {
2330         int r = -ENXIO;
2331
2332         switch (attr->group) {
2333         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2334                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2335                 u64 addr;
2336                 unsigned long type = (unsigned long)attr->attr;
2337
2338                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2339                 if (r)
2340                         return (r == -ENODEV) ? -ENXIO : r;
2341
2342                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2343                         return -EFAULT;
2344                 break;
2345         }
2346         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2347                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2348
2349                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2350                 break;
2351         }
2352
2353         }
2354
2355         return r;
2356 }
2357
2358 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2359 {
2360         if (vgic_find_range(ranges, 4, offset))
2361                 return 0;
2362         else
2363                 return -ENXIO;
2364 }
2365
2366 static void vgic_init_maintenance_interrupt(void *info)
2367 {
2368         enable_percpu_irq(vgic->maint_irq, 0);
2369 }
2370
2371 static int vgic_cpu_notify(struct notifier_block *self,
2372                            unsigned long action, void *cpu)
2373 {
2374         switch (action) {
2375         case CPU_STARTING:
2376         case CPU_STARTING_FROZEN:
2377                 vgic_init_maintenance_interrupt(NULL);
2378                 break;
2379         case CPU_DYING:
2380         case CPU_DYING_FROZEN:
2381                 disable_percpu_irq(vgic->maint_irq);
2382                 break;
2383         }
2384
2385         return NOTIFY_OK;
2386 }
2387
2388 static struct notifier_block vgic_cpu_nb = {
2389         .notifier_call = vgic_cpu_notify,
2390 };
2391
2392 static const struct of_device_id vgic_ids[] = {
2393         { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2394         { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2395         { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2396         { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2397         {},
2398 };
2399
2400 int kvm_vgic_hyp_init(void)
2401 {
2402         const struct of_device_id *matched_id;
2403         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2404                                 const struct vgic_params **);
2405         struct device_node *vgic_node;
2406         int ret;
2407
2408         vgic_node = of_find_matching_node_and_match(NULL,
2409                                                     vgic_ids, &matched_id);
2410         if (!vgic_node) {
2411                 kvm_err("error: no compatible GIC node found\n");
2412                 return -ENODEV;
2413         }
2414
2415         vgic_probe = matched_id->data;
2416         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2417         if (ret)
2418                 return ret;
2419
2420         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2421                                  "vgic", kvm_get_running_vcpus());
2422         if (ret) {
2423                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2424                 return ret;
2425         }
2426
2427         ret = __register_cpu_notifier(&vgic_cpu_nb);
2428         if (ret) {
2429                 kvm_err("Cannot register vgic CPU notifier\n");
2430                 goto out_free_irq;
2431         }
2432
2433         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2434
2435         return 0;
2436
2437 out_free_irq:
2438         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2439         return ret;
2440 }
2441
2442 int kvm_irq_map_gsi(struct kvm *kvm,
2443                     struct kvm_kernel_irq_routing_entry *entries,
2444                     int gsi)
2445 {
2446         return 0;
2447 }
2448
2449 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2450 {
2451         return pin;
2452 }
2453
2454 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2455                 u32 irq, int level, bool line_status)
2456 {
2457         unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2458
2459         trace_kvm_set_irq(irq, level, irq_source_id);
2460
2461         BUG_ON(!vgic_initialized(kvm));
2462
2463         return kvm_vgic_inject_irq(kvm, 0, spi, level);
2464 }
2465
2466 /* MSI not implemented yet */
2467 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2468                 struct kvm *kvm, int irq_source_id,
2469                 int level, bool line_status)
2470 {
2471         return 0;
2472 }