Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "callchain.h"
19 #include "cgroup.h"
20 #include "evsel.h"
21 #include "evlist.h"
22 #include "util.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 #include "target.h"
26 #include "perf_regs.h"
27 #include "debug.h"
28 #include "trace-event.h"
29
30 static struct {
31         bool sample_id_all;
32         bool exclude_guest;
33         bool mmap2;
34         bool cloexec;
35         bool clockid;
36         bool clockid_wrong;
37 } perf_missing_features;
38
39 static clockid_t clockid;
40
41 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
42 {
43         return 0;
44 }
45
46 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
47 {
48 }
49
50 static struct {
51         size_t  size;
52         int     (*init)(struct perf_evsel *evsel);
53         void    (*fini)(struct perf_evsel *evsel);
54 } perf_evsel__object = {
55         .size = sizeof(struct perf_evsel),
56         .init = perf_evsel__no_extra_init,
57         .fini = perf_evsel__no_extra_fini,
58 };
59
60 int perf_evsel__object_config(size_t object_size,
61                               int (*init)(struct perf_evsel *evsel),
62                               void (*fini)(struct perf_evsel *evsel))
63 {
64
65         if (object_size == 0)
66                 goto set_methods;
67
68         if (perf_evsel__object.size > object_size)
69                 return -EINVAL;
70
71         perf_evsel__object.size = object_size;
72
73 set_methods:
74         if (init != NULL)
75                 perf_evsel__object.init = init;
76
77         if (fini != NULL)
78                 perf_evsel__object.fini = fini;
79
80         return 0;
81 }
82
83 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
84
85 int __perf_evsel__sample_size(u64 sample_type)
86 {
87         u64 mask = sample_type & PERF_SAMPLE_MASK;
88         int size = 0;
89         int i;
90
91         for (i = 0; i < 64; i++) {
92                 if (mask & (1ULL << i))
93                         size++;
94         }
95
96         size *= sizeof(u64);
97
98         return size;
99 }
100
101 /**
102  * __perf_evsel__calc_id_pos - calculate id_pos.
103  * @sample_type: sample type
104  *
105  * This function returns the position of the event id (PERF_SAMPLE_ID or
106  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
107  * sample_event.
108  */
109 static int __perf_evsel__calc_id_pos(u64 sample_type)
110 {
111         int idx = 0;
112
113         if (sample_type & PERF_SAMPLE_IDENTIFIER)
114                 return 0;
115
116         if (!(sample_type & PERF_SAMPLE_ID))
117                 return -1;
118
119         if (sample_type & PERF_SAMPLE_IP)
120                 idx += 1;
121
122         if (sample_type & PERF_SAMPLE_TID)
123                 idx += 1;
124
125         if (sample_type & PERF_SAMPLE_TIME)
126                 idx += 1;
127
128         if (sample_type & PERF_SAMPLE_ADDR)
129                 idx += 1;
130
131         return idx;
132 }
133
134 /**
135  * __perf_evsel__calc_is_pos - calculate is_pos.
136  * @sample_type: sample type
137  *
138  * This function returns the position (counting backwards) of the event id
139  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
140  * sample_id_all is used there is an id sample appended to non-sample events.
141  */
142 static int __perf_evsel__calc_is_pos(u64 sample_type)
143 {
144         int idx = 1;
145
146         if (sample_type & PERF_SAMPLE_IDENTIFIER)
147                 return 1;
148
149         if (!(sample_type & PERF_SAMPLE_ID))
150                 return -1;
151
152         if (sample_type & PERF_SAMPLE_CPU)
153                 idx += 1;
154
155         if (sample_type & PERF_SAMPLE_STREAM_ID)
156                 idx += 1;
157
158         return idx;
159 }
160
161 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
162 {
163         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
164         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
165 }
166
167 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
168                                   enum perf_event_sample_format bit)
169 {
170         if (!(evsel->attr.sample_type & bit)) {
171                 evsel->attr.sample_type |= bit;
172                 evsel->sample_size += sizeof(u64);
173                 perf_evsel__calc_id_pos(evsel);
174         }
175 }
176
177 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
178                                     enum perf_event_sample_format bit)
179 {
180         if (evsel->attr.sample_type & bit) {
181                 evsel->attr.sample_type &= ~bit;
182                 evsel->sample_size -= sizeof(u64);
183                 perf_evsel__calc_id_pos(evsel);
184         }
185 }
186
187 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
188                                bool can_sample_identifier)
189 {
190         if (can_sample_identifier) {
191                 perf_evsel__reset_sample_bit(evsel, ID);
192                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
193         } else {
194                 perf_evsel__set_sample_bit(evsel, ID);
195         }
196         evsel->attr.read_format |= PERF_FORMAT_ID;
197 }
198
199 void perf_evsel__init(struct perf_evsel *evsel,
200                       struct perf_event_attr *attr, int idx)
201 {
202         evsel->idx         = idx;
203         evsel->tracking    = !idx;
204         evsel->attr        = *attr;
205         evsel->leader      = evsel;
206         evsel->unit        = "";
207         evsel->scale       = 1.0;
208         INIT_LIST_HEAD(&evsel->node);
209         perf_evsel__object.init(evsel);
210         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
211         perf_evsel__calc_id_pos(evsel);
212 }
213
214 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
215 {
216         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
217
218         if (evsel != NULL)
219                 perf_evsel__init(evsel, attr, idx);
220
221         return evsel;
222 }
223
224 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
225 {
226         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
227
228         if (evsel != NULL) {
229                 struct perf_event_attr attr = {
230                         .type          = PERF_TYPE_TRACEPOINT,
231                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
232                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
233                 };
234
235                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
236                         goto out_free;
237
238                 evsel->tp_format = trace_event__tp_format(sys, name);
239                 if (evsel->tp_format == NULL)
240                         goto out_free;
241
242                 event_attr_init(&attr);
243                 attr.config = evsel->tp_format->id;
244                 attr.sample_period = 1;
245                 perf_evsel__init(evsel, &attr, idx);
246         }
247
248         return evsel;
249
250 out_free:
251         zfree(&evsel->name);
252         free(evsel);
253         return NULL;
254 }
255
256 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
257         "cycles",
258         "instructions",
259         "cache-references",
260         "cache-misses",
261         "branches",
262         "branch-misses",
263         "bus-cycles",
264         "stalled-cycles-frontend",
265         "stalled-cycles-backend",
266         "ref-cycles",
267 };
268
269 static const char *__perf_evsel__hw_name(u64 config)
270 {
271         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
272                 return perf_evsel__hw_names[config];
273
274         return "unknown-hardware";
275 }
276
277 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
278 {
279         int colon = 0, r = 0;
280         struct perf_event_attr *attr = &evsel->attr;
281         bool exclude_guest_default = false;
282
283 #define MOD_PRINT(context, mod) do {                                    \
284                 if (!attr->exclude_##context) {                         \
285                         if (!colon) colon = ++r;                        \
286                         r += scnprintf(bf + r, size - r, "%c", mod);    \
287                 } } while(0)
288
289         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
290                 MOD_PRINT(kernel, 'k');
291                 MOD_PRINT(user, 'u');
292                 MOD_PRINT(hv, 'h');
293                 exclude_guest_default = true;
294         }
295
296         if (attr->precise_ip) {
297                 if (!colon)
298                         colon = ++r;
299                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
300                 exclude_guest_default = true;
301         }
302
303         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
304                 MOD_PRINT(host, 'H');
305                 MOD_PRINT(guest, 'G');
306         }
307 #undef MOD_PRINT
308         if (colon)
309                 bf[colon - 1] = ':';
310         return r;
311 }
312
313 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
314 {
315         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
316         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
317 }
318
319 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
320         "cpu-clock",
321         "task-clock",
322         "page-faults",
323         "context-switches",
324         "cpu-migrations",
325         "minor-faults",
326         "major-faults",
327         "alignment-faults",
328         "emulation-faults",
329         "dummy",
330 };
331
332 static const char *__perf_evsel__sw_name(u64 config)
333 {
334         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
335                 return perf_evsel__sw_names[config];
336         return "unknown-software";
337 }
338
339 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
340 {
341         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
342         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
343 }
344
345 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
346 {
347         int r;
348
349         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
350
351         if (type & HW_BREAKPOINT_R)
352                 r += scnprintf(bf + r, size - r, "r");
353
354         if (type & HW_BREAKPOINT_W)
355                 r += scnprintf(bf + r, size - r, "w");
356
357         if (type & HW_BREAKPOINT_X)
358                 r += scnprintf(bf + r, size - r, "x");
359
360         return r;
361 }
362
363 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
364 {
365         struct perf_event_attr *attr = &evsel->attr;
366         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
367         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
368 }
369
370 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
371                                 [PERF_EVSEL__MAX_ALIASES] = {
372  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
373  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
374  { "LLC",       "L2",                                                   },
375  { "dTLB",      "d-tlb",        "Data-TLB",                             },
376  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
377  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
378  { "node",                                                              },
379 };
380
381 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
382                                    [PERF_EVSEL__MAX_ALIASES] = {
383  { "load",      "loads",        "read",                                 },
384  { "store",     "stores",       "write",                                },
385  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
386 };
387
388 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
389                                        [PERF_EVSEL__MAX_ALIASES] = {
390  { "refs",      "Reference",    "ops",          "access",               },
391  { "misses",    "miss",                                                 },
392 };
393
394 #define C(x)            PERF_COUNT_HW_CACHE_##x
395 #define CACHE_READ      (1 << C(OP_READ))
396 #define CACHE_WRITE     (1 << C(OP_WRITE))
397 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
398 #define COP(x)          (1 << x)
399
400 /*
401  * cache operartion stat
402  * L1I : Read and prefetch only
403  * ITLB and BPU : Read-only
404  */
405 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
406  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
408  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
410  [C(ITLB)]      = (CACHE_READ),
411  [C(BPU)]       = (CACHE_READ),
412  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
413 };
414
415 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
416 {
417         if (perf_evsel__hw_cache_stat[type] & COP(op))
418                 return true;    /* valid */
419         else
420                 return false;   /* invalid */
421 }
422
423 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
424                                             char *bf, size_t size)
425 {
426         if (result) {
427                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
428                                  perf_evsel__hw_cache_op[op][0],
429                                  perf_evsel__hw_cache_result[result][0]);
430         }
431
432         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
433                          perf_evsel__hw_cache_op[op][1]);
434 }
435
436 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
437 {
438         u8 op, result, type = (config >>  0) & 0xff;
439         const char *err = "unknown-ext-hardware-cache-type";
440
441         if (type > PERF_COUNT_HW_CACHE_MAX)
442                 goto out_err;
443
444         op = (config >>  8) & 0xff;
445         err = "unknown-ext-hardware-cache-op";
446         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
447                 goto out_err;
448
449         result = (config >> 16) & 0xff;
450         err = "unknown-ext-hardware-cache-result";
451         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
452                 goto out_err;
453
454         err = "invalid-cache";
455         if (!perf_evsel__is_cache_op_valid(type, op))
456                 goto out_err;
457
458         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
459 out_err:
460         return scnprintf(bf, size, "%s", err);
461 }
462
463 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
464 {
465         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
466         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
467 }
468
469 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
470 {
471         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
472         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
473 }
474
475 const char *perf_evsel__name(struct perf_evsel *evsel)
476 {
477         char bf[128];
478
479         if (evsel->name)
480                 return evsel->name;
481
482         switch (evsel->attr.type) {
483         case PERF_TYPE_RAW:
484                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
485                 break;
486
487         case PERF_TYPE_HARDWARE:
488                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
489                 break;
490
491         case PERF_TYPE_HW_CACHE:
492                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
493                 break;
494
495         case PERF_TYPE_SOFTWARE:
496                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
497                 break;
498
499         case PERF_TYPE_TRACEPOINT:
500                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
501                 break;
502
503         case PERF_TYPE_BREAKPOINT:
504                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
505                 break;
506
507         default:
508                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
509                           evsel->attr.type);
510                 break;
511         }
512
513         evsel->name = strdup(bf);
514
515         return evsel->name ?: "unknown";
516 }
517
518 const char *perf_evsel__group_name(struct perf_evsel *evsel)
519 {
520         return evsel->group_name ?: "anon group";
521 }
522
523 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
524 {
525         int ret;
526         struct perf_evsel *pos;
527         const char *group_name = perf_evsel__group_name(evsel);
528
529         ret = scnprintf(buf, size, "%s", group_name);
530
531         ret += scnprintf(buf + ret, size - ret, " { %s",
532                          perf_evsel__name(evsel));
533
534         for_each_group_member(pos, evsel)
535                 ret += scnprintf(buf + ret, size - ret, ", %s",
536                                  perf_evsel__name(pos));
537
538         ret += scnprintf(buf + ret, size - ret, " }");
539
540         return ret;
541 }
542
543 static void
544 perf_evsel__config_callgraph(struct perf_evsel *evsel,
545                              struct record_opts *opts)
546 {
547         bool function = perf_evsel__is_function_event(evsel);
548         struct perf_event_attr *attr = &evsel->attr;
549
550         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
551
552         if (callchain_param.record_mode == CALLCHAIN_LBR) {
553                 if (!opts->branch_stack) {
554                         if (attr->exclude_user) {
555                                 pr_warning("LBR callstack option is only available "
556                                            "to get user callchain information. "
557                                            "Falling back to framepointers.\n");
558                         } else {
559                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
560                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
561                                                         PERF_SAMPLE_BRANCH_CALL_STACK;
562                         }
563                 } else
564                          pr_warning("Cannot use LBR callstack with branch stack. "
565                                     "Falling back to framepointers.\n");
566         }
567
568         if (callchain_param.record_mode == CALLCHAIN_DWARF) {
569                 if (!function) {
570                         perf_evsel__set_sample_bit(evsel, REGS_USER);
571                         perf_evsel__set_sample_bit(evsel, STACK_USER);
572                         attr->sample_regs_user = PERF_REGS_MASK;
573                         attr->sample_stack_user = callchain_param.dump_size;
574                         attr->exclude_callchain_user = 1;
575                 } else {
576                         pr_info("Cannot use DWARF unwind for function trace event,"
577                                 " falling back to framepointers.\n");
578                 }
579         }
580
581         if (function) {
582                 pr_info("Disabling user space callchains for function trace event.\n");
583                 attr->exclude_callchain_user = 1;
584         }
585 }
586
587 /*
588  * The enable_on_exec/disabled value strategy:
589  *
590  *  1) For any type of traced program:
591  *    - all independent events and group leaders are disabled
592  *    - all group members are enabled
593  *
594  *     Group members are ruled by group leaders. They need to
595  *     be enabled, because the group scheduling relies on that.
596  *
597  *  2) For traced programs executed by perf:
598  *     - all independent events and group leaders have
599  *       enable_on_exec set
600  *     - we don't specifically enable or disable any event during
601  *       the record command
602  *
603  *     Independent events and group leaders are initially disabled
604  *     and get enabled by exec. Group members are ruled by group
605  *     leaders as stated in 1).
606  *
607  *  3) For traced programs attached by perf (pid/tid):
608  *     - we specifically enable or disable all events during
609  *       the record command
610  *
611  *     When attaching events to already running traced we
612  *     enable/disable events specifically, as there's no
613  *     initial traced exec call.
614  */
615 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
616 {
617         struct perf_evsel *leader = evsel->leader;
618         struct perf_event_attr *attr = &evsel->attr;
619         int track = evsel->tracking;
620         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
621
622         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
623         attr->inherit       = !opts->no_inherit;
624
625         perf_evsel__set_sample_bit(evsel, IP);
626         perf_evsel__set_sample_bit(evsel, TID);
627
628         if (evsel->sample_read) {
629                 perf_evsel__set_sample_bit(evsel, READ);
630
631                 /*
632                  * We need ID even in case of single event, because
633                  * PERF_SAMPLE_READ process ID specific data.
634                  */
635                 perf_evsel__set_sample_id(evsel, false);
636
637                 /*
638                  * Apply group format only if we belong to group
639                  * with more than one members.
640                  */
641                 if (leader->nr_members > 1) {
642                         attr->read_format |= PERF_FORMAT_GROUP;
643                         attr->inherit = 0;
644                 }
645         }
646
647         /*
648          * We default some events to have a default interval. But keep
649          * it a weak assumption overridable by the user.
650          */
651         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
652                                      opts->user_interval != ULLONG_MAX)) {
653                 if (opts->freq) {
654                         perf_evsel__set_sample_bit(evsel, PERIOD);
655                         attr->freq              = 1;
656                         attr->sample_freq       = opts->freq;
657                 } else {
658                         attr->sample_period = opts->default_interval;
659                 }
660         }
661
662         /*
663          * Disable sampling for all group members other
664          * than leader in case leader 'leads' the sampling.
665          */
666         if ((leader != evsel) && leader->sample_read) {
667                 attr->sample_freq   = 0;
668                 attr->sample_period = 0;
669         }
670
671         if (opts->no_samples)
672                 attr->sample_freq = 0;
673
674         if (opts->inherit_stat)
675                 attr->inherit_stat = 1;
676
677         if (opts->sample_address) {
678                 perf_evsel__set_sample_bit(evsel, ADDR);
679                 attr->mmap_data = track;
680         }
681
682         /*
683          * We don't allow user space callchains for  function trace
684          * event, due to issues with page faults while tracing page
685          * fault handler and its overall trickiness nature.
686          */
687         if (perf_evsel__is_function_event(evsel))
688                 evsel->attr.exclude_callchain_user = 1;
689
690         if (callchain_param.enabled && !evsel->no_aux_samples)
691                 perf_evsel__config_callgraph(evsel, opts);
692
693         if (opts->sample_intr_regs) {
694                 attr->sample_regs_intr = PERF_REGS_MASK;
695                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
696         }
697
698         if (target__has_cpu(&opts->target))
699                 perf_evsel__set_sample_bit(evsel, CPU);
700
701         if (opts->period)
702                 perf_evsel__set_sample_bit(evsel, PERIOD);
703
704         /*
705          * When the user explicitely disabled time don't force it here.
706          */
707         if (opts->sample_time &&
708             (!perf_missing_features.sample_id_all &&
709             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
710                 perf_evsel__set_sample_bit(evsel, TIME);
711
712         if (opts->raw_samples && !evsel->no_aux_samples) {
713                 perf_evsel__set_sample_bit(evsel, TIME);
714                 perf_evsel__set_sample_bit(evsel, RAW);
715                 perf_evsel__set_sample_bit(evsel, CPU);
716         }
717
718         if (opts->sample_address)
719                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
720
721         if (opts->no_buffering) {
722                 attr->watermark = 0;
723                 attr->wakeup_events = 1;
724         }
725         if (opts->branch_stack && !evsel->no_aux_samples) {
726                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
727                 attr->branch_sample_type = opts->branch_stack;
728         }
729
730         if (opts->sample_weight)
731                 perf_evsel__set_sample_bit(evsel, WEIGHT);
732
733         attr->task  = track;
734         attr->mmap  = track;
735         attr->mmap2 = track && !perf_missing_features.mmap2;
736         attr->comm  = track;
737
738         if (opts->sample_transaction)
739                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
740
741         if (opts->running_time) {
742                 evsel->attr.read_format |=
743                         PERF_FORMAT_TOTAL_TIME_ENABLED |
744                         PERF_FORMAT_TOTAL_TIME_RUNNING;
745         }
746
747         /*
748          * XXX see the function comment above
749          *
750          * Disabling only independent events or group leaders,
751          * keeping group members enabled.
752          */
753         if (perf_evsel__is_group_leader(evsel))
754                 attr->disabled = 1;
755
756         /*
757          * Setting enable_on_exec for independent events and
758          * group leaders for traced executed by perf.
759          */
760         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
761                 !opts->initial_delay)
762                 attr->enable_on_exec = 1;
763
764         if (evsel->immediate) {
765                 attr->disabled = 0;
766                 attr->enable_on_exec = 0;
767         }
768
769         clockid = opts->clockid;
770         if (opts->use_clockid) {
771                 attr->use_clockid = 1;
772                 attr->clockid = opts->clockid;
773         }
774 }
775
776 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
777 {
778         int cpu, thread;
779
780         if (evsel->system_wide)
781                 nthreads = 1;
782
783         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
784
785         if (evsel->fd) {
786                 for (cpu = 0; cpu < ncpus; cpu++) {
787                         for (thread = 0; thread < nthreads; thread++) {
788                                 FD(evsel, cpu, thread) = -1;
789                         }
790                 }
791         }
792
793         return evsel->fd != NULL ? 0 : -ENOMEM;
794 }
795
796 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
797                           int ioc,  void *arg)
798 {
799         int cpu, thread;
800
801         if (evsel->system_wide)
802                 nthreads = 1;
803
804         for (cpu = 0; cpu < ncpus; cpu++) {
805                 for (thread = 0; thread < nthreads; thread++) {
806                         int fd = FD(evsel, cpu, thread),
807                             err = ioctl(fd, ioc, arg);
808
809                         if (err)
810                                 return err;
811                 }
812         }
813
814         return 0;
815 }
816
817 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
818                            const char *filter)
819 {
820         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
821                                      PERF_EVENT_IOC_SET_FILTER,
822                                      (void *)filter);
823 }
824
825 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
826 {
827         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
828                                      PERF_EVENT_IOC_ENABLE,
829                                      0);
830 }
831
832 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
833 {
834         if (ncpus == 0 || nthreads == 0)
835                 return 0;
836
837         if (evsel->system_wide)
838                 nthreads = 1;
839
840         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
841         if (evsel->sample_id == NULL)
842                 return -ENOMEM;
843
844         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
845         if (evsel->id == NULL) {
846                 xyarray__delete(evsel->sample_id);
847                 evsel->sample_id = NULL;
848                 return -ENOMEM;
849         }
850
851         return 0;
852 }
853
854 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
855 {
856         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
857                                  (ncpus * sizeof(struct perf_counts_values))));
858 }
859
860 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
861 {
862         evsel->counts = zalloc((sizeof(*evsel->counts) +
863                                 (ncpus * sizeof(struct perf_counts_values))));
864         return evsel->counts != NULL ? 0 : -ENOMEM;
865 }
866
867 static void perf_evsel__free_fd(struct perf_evsel *evsel)
868 {
869         xyarray__delete(evsel->fd);
870         evsel->fd = NULL;
871 }
872
873 static void perf_evsel__free_id(struct perf_evsel *evsel)
874 {
875         xyarray__delete(evsel->sample_id);
876         evsel->sample_id = NULL;
877         zfree(&evsel->id);
878 }
879
880 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
881 {
882         int cpu, thread;
883
884         if (evsel->system_wide)
885                 nthreads = 1;
886
887         for (cpu = 0; cpu < ncpus; cpu++)
888                 for (thread = 0; thread < nthreads; ++thread) {
889                         close(FD(evsel, cpu, thread));
890                         FD(evsel, cpu, thread) = -1;
891                 }
892 }
893
894 void perf_evsel__free_counts(struct perf_evsel *evsel)
895 {
896         zfree(&evsel->counts);
897 }
898
899 void perf_evsel__exit(struct perf_evsel *evsel)
900 {
901         assert(list_empty(&evsel->node));
902         perf_evsel__free_fd(evsel);
903         perf_evsel__free_id(evsel);
904         close_cgroup(evsel->cgrp);
905         zfree(&evsel->group_name);
906         zfree(&evsel->name);
907         perf_evsel__object.fini(evsel);
908 }
909
910 void perf_evsel__delete(struct perf_evsel *evsel)
911 {
912         perf_evsel__exit(evsel);
913         free(evsel);
914 }
915
916 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu,
917                                 struct perf_counts_values *count)
918 {
919         struct perf_counts_values tmp;
920
921         if (!evsel->prev_raw_counts)
922                 return;
923
924         if (cpu == -1) {
925                 tmp = evsel->prev_raw_counts->aggr;
926                 evsel->prev_raw_counts->aggr = *count;
927         } else {
928                 tmp = evsel->prev_raw_counts->cpu[cpu];
929                 evsel->prev_raw_counts->cpu[cpu] = *count;
930         }
931
932         count->val = count->val - tmp.val;
933         count->ena = count->ena - tmp.ena;
934         count->run = count->run - tmp.run;
935 }
936
937 void perf_counts_values__scale(struct perf_counts_values *count,
938                                bool scale, s8 *pscaled)
939 {
940         s8 scaled = 0;
941
942         if (scale) {
943                 if (count->run == 0) {
944                         scaled = -1;
945                         count->val = 0;
946                 } else if (count->run < count->ena) {
947                         scaled = 1;
948                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
949                 }
950         } else
951                 count->ena = count->run = 0;
952
953         if (pscaled)
954                 *pscaled = scaled;
955 }
956
957 int perf_evsel__read_cb(struct perf_evsel *evsel, int cpu, int thread,
958                         perf_evsel__read_cb_t cb)
959 {
960         struct perf_counts_values count;
961
962         memset(&count, 0, sizeof(count));
963
964         if (FD(evsel, cpu, thread) < 0)
965                 return -EINVAL;
966
967         if (readn(FD(evsel, cpu, thread), &count, sizeof(count)) < 0)
968                 return -errno;
969
970         return cb(evsel, cpu, thread, &count);
971 }
972
973 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
974                               int cpu, int thread, bool scale)
975 {
976         struct perf_counts_values count;
977         size_t nv = scale ? 3 : 1;
978
979         if (FD(evsel, cpu, thread) < 0)
980                 return -EINVAL;
981
982         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
983                 return -ENOMEM;
984
985         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
986                 return -errno;
987
988         perf_evsel__compute_deltas(evsel, cpu, &count);
989         perf_counts_values__scale(&count, scale, NULL);
990         evsel->counts->cpu[cpu] = count;
991         return 0;
992 }
993
994 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
995 {
996         struct perf_evsel *leader = evsel->leader;
997         int fd;
998
999         if (perf_evsel__is_group_leader(evsel))
1000                 return -1;
1001
1002         /*
1003          * Leader must be already processed/open,
1004          * if not it's a bug.
1005          */
1006         BUG_ON(!leader->fd);
1007
1008         fd = FD(leader, cpu, thread);
1009         BUG_ON(fd == -1);
1010
1011         return fd;
1012 }
1013
1014 struct bit_names {
1015         int bit;
1016         const char *name;
1017 };
1018
1019 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1020 {
1021         bool first_bit = true;
1022         int i = 0;
1023
1024         do {
1025                 if (value & bits[i].bit) {
1026                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1027                         first_bit = false;
1028                 }
1029         } while (bits[++i].name != NULL);
1030 }
1031
1032 static void __p_sample_type(char *buf, size_t size, u64 value)
1033 {
1034 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1035         struct bit_names bits[] = {
1036                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1037                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1038                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1039                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1040                 bit_name(IDENTIFIER), bit_name(REGS_INTR),
1041                 { .name = NULL, }
1042         };
1043 #undef bit_name
1044         __p_bits(buf, size, value, bits);
1045 }
1046
1047 static void __p_read_format(char *buf, size_t size, u64 value)
1048 {
1049 #define bit_name(n) { PERF_FORMAT_##n, #n }
1050         struct bit_names bits[] = {
1051                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1052                 bit_name(ID), bit_name(GROUP),
1053                 { .name = NULL, }
1054         };
1055 #undef bit_name
1056         __p_bits(buf, size, value, bits);
1057 }
1058
1059 #define BUF_SIZE                1024
1060
1061 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%"PRIx64, (uint64_t)(val))
1062 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1063 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1064 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1065 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1066
1067 #define PRINT_ATTRn(_n, _f, _p)                         \
1068 do {                                                    \
1069         if (attr->_f) {                                 \
1070                 _p(attr->_f);                           \
1071                 ret += attr__fprintf(fp, _n, buf, priv);\
1072         }                                               \
1073 } while (0)
1074
1075 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1076
1077 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1078                              attr__fprintf_f attr__fprintf, void *priv)
1079 {
1080         char buf[BUF_SIZE];
1081         int ret = 0;
1082
1083         PRINT_ATTRf(type, p_unsigned);
1084         PRINT_ATTRf(size, p_unsigned);
1085         PRINT_ATTRf(config, p_hex);
1086         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1087         PRINT_ATTRf(sample_type, p_sample_type);
1088         PRINT_ATTRf(read_format, p_read_format);
1089
1090         PRINT_ATTRf(disabled, p_unsigned);
1091         PRINT_ATTRf(inherit, p_unsigned);
1092         PRINT_ATTRf(pinned, p_unsigned);
1093         PRINT_ATTRf(exclusive, p_unsigned);
1094         PRINT_ATTRf(exclude_user, p_unsigned);
1095         PRINT_ATTRf(exclude_kernel, p_unsigned);
1096         PRINT_ATTRf(exclude_hv, p_unsigned);
1097         PRINT_ATTRf(exclude_idle, p_unsigned);
1098         PRINT_ATTRf(mmap, p_unsigned);
1099         PRINT_ATTRf(comm, p_unsigned);
1100         PRINT_ATTRf(freq, p_unsigned);
1101         PRINT_ATTRf(inherit_stat, p_unsigned);
1102         PRINT_ATTRf(enable_on_exec, p_unsigned);
1103         PRINT_ATTRf(task, p_unsigned);
1104         PRINT_ATTRf(watermark, p_unsigned);
1105         PRINT_ATTRf(precise_ip, p_unsigned);
1106         PRINT_ATTRf(mmap_data, p_unsigned);
1107         PRINT_ATTRf(sample_id_all, p_unsigned);
1108         PRINT_ATTRf(exclude_host, p_unsigned);
1109         PRINT_ATTRf(exclude_guest, p_unsigned);
1110         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1111         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1112         PRINT_ATTRf(mmap2, p_unsigned);
1113         PRINT_ATTRf(comm_exec, p_unsigned);
1114         PRINT_ATTRf(use_clockid, p_unsigned);
1115
1116         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1117         PRINT_ATTRf(bp_type, p_unsigned);
1118         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1119         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1120         PRINT_ATTRf(sample_regs_user, p_hex);
1121         PRINT_ATTRf(sample_stack_user, p_unsigned);
1122         PRINT_ATTRf(clockid, p_signed);
1123         PRINT_ATTRf(sample_regs_intr, p_hex);
1124
1125         return ret;
1126 }
1127
1128 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1129                                 void *priv __attribute__((unused)))
1130 {
1131         return fprintf(fp, "  %-32s %s\n", name, val);
1132 }
1133
1134 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1135                               struct thread_map *threads)
1136 {
1137         int cpu, thread, nthreads;
1138         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1139         int pid = -1, err;
1140         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1141
1142         if (evsel->system_wide)
1143                 nthreads = 1;
1144         else
1145                 nthreads = threads->nr;
1146
1147         if (evsel->fd == NULL &&
1148             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1149                 return -ENOMEM;
1150
1151         if (evsel->cgrp) {
1152                 flags |= PERF_FLAG_PID_CGROUP;
1153                 pid = evsel->cgrp->fd;
1154         }
1155
1156 fallback_missing_features:
1157         if (perf_missing_features.clockid_wrong)
1158                 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1159         if (perf_missing_features.clockid) {
1160                 evsel->attr.use_clockid = 0;
1161                 evsel->attr.clockid = 0;
1162         }
1163         if (perf_missing_features.cloexec)
1164                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1165         if (perf_missing_features.mmap2)
1166                 evsel->attr.mmap2 = 0;
1167         if (perf_missing_features.exclude_guest)
1168                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1169 retry_sample_id:
1170         if (perf_missing_features.sample_id_all)
1171                 evsel->attr.sample_id_all = 0;
1172
1173         if (verbose >= 2) {
1174                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1175                 fprintf(stderr, "perf_event_attr:\n");
1176                 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1177                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1178         }
1179
1180         for (cpu = 0; cpu < cpus->nr; cpu++) {
1181
1182                 for (thread = 0; thread < nthreads; thread++) {
1183                         int group_fd;
1184
1185                         if (!evsel->cgrp && !evsel->system_wide)
1186                                 pid = threads->map[thread];
1187
1188                         group_fd = get_group_fd(evsel, cpu, thread);
1189 retry_open:
1190                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1191                                   pid, cpus->map[cpu], group_fd, flags);
1192
1193                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1194                                                                      pid,
1195                                                                      cpus->map[cpu],
1196                                                                      group_fd, flags);
1197                         if (FD(evsel, cpu, thread) < 0) {
1198                                 err = -errno;
1199                                 pr_debug2("sys_perf_event_open failed, error %d\n",
1200                                           err);
1201                                 goto try_fallback;
1202                         }
1203                         set_rlimit = NO_CHANGE;
1204
1205                         /*
1206                          * If we succeeded but had to kill clockid, fail and
1207                          * have perf_evsel__open_strerror() print us a nice
1208                          * error.
1209                          */
1210                         if (perf_missing_features.clockid ||
1211                             perf_missing_features.clockid_wrong) {
1212                                 err = -EINVAL;
1213                                 goto out_close;
1214                         }
1215                 }
1216         }
1217
1218         return 0;
1219
1220 try_fallback:
1221         /*
1222          * perf stat needs between 5 and 22 fds per CPU. When we run out
1223          * of them try to increase the limits.
1224          */
1225         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1226                 struct rlimit l;
1227                 int old_errno = errno;
1228
1229                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1230                         if (set_rlimit == NO_CHANGE)
1231                                 l.rlim_cur = l.rlim_max;
1232                         else {
1233                                 l.rlim_cur = l.rlim_max + 1000;
1234                                 l.rlim_max = l.rlim_cur;
1235                         }
1236                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1237                                 set_rlimit++;
1238                                 errno = old_errno;
1239                                 goto retry_open;
1240                         }
1241                 }
1242                 errno = old_errno;
1243         }
1244
1245         if (err != -EINVAL || cpu > 0 || thread > 0)
1246                 goto out_close;
1247
1248         /*
1249          * Must probe features in the order they were added to the
1250          * perf_event_attr interface.
1251          */
1252         if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1253                 perf_missing_features.clockid_wrong = true;
1254                 goto fallback_missing_features;
1255         } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1256                 perf_missing_features.clockid = true;
1257                 goto fallback_missing_features;
1258         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1259                 perf_missing_features.cloexec = true;
1260                 goto fallback_missing_features;
1261         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1262                 perf_missing_features.mmap2 = true;
1263                 goto fallback_missing_features;
1264         } else if (!perf_missing_features.exclude_guest &&
1265                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1266                 perf_missing_features.exclude_guest = true;
1267                 goto fallback_missing_features;
1268         } else if (!perf_missing_features.sample_id_all) {
1269                 perf_missing_features.sample_id_all = true;
1270                 goto retry_sample_id;
1271         }
1272
1273 out_close:
1274         do {
1275                 while (--thread >= 0) {
1276                         close(FD(evsel, cpu, thread));
1277                         FD(evsel, cpu, thread) = -1;
1278                 }
1279                 thread = nthreads;
1280         } while (--cpu >= 0);
1281         return err;
1282 }
1283
1284 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1285 {
1286         if (evsel->fd == NULL)
1287                 return;
1288
1289         perf_evsel__close_fd(evsel, ncpus, nthreads);
1290         perf_evsel__free_fd(evsel);
1291 }
1292
1293 static struct {
1294         struct cpu_map map;
1295         int cpus[1];
1296 } empty_cpu_map = {
1297         .map.nr = 1,
1298         .cpus   = { -1, },
1299 };
1300
1301 static struct {
1302         struct thread_map map;
1303         int threads[1];
1304 } empty_thread_map = {
1305         .map.nr  = 1,
1306         .threads = { -1, },
1307 };
1308
1309 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1310                      struct thread_map *threads)
1311 {
1312         if (cpus == NULL) {
1313                 /* Work around old compiler warnings about strict aliasing */
1314                 cpus = &empty_cpu_map.map;
1315         }
1316
1317         if (threads == NULL)
1318                 threads = &empty_thread_map.map;
1319
1320         return __perf_evsel__open(evsel, cpus, threads);
1321 }
1322
1323 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1324                              struct cpu_map *cpus)
1325 {
1326         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1327 }
1328
1329 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1330                                 struct thread_map *threads)
1331 {
1332         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1333 }
1334
1335 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1336                                        const union perf_event *event,
1337                                        struct perf_sample *sample)
1338 {
1339         u64 type = evsel->attr.sample_type;
1340         const u64 *array = event->sample.array;
1341         bool swapped = evsel->needs_swap;
1342         union u64_swap u;
1343
1344         array += ((event->header.size -
1345                    sizeof(event->header)) / sizeof(u64)) - 1;
1346
1347         if (type & PERF_SAMPLE_IDENTIFIER) {
1348                 sample->id = *array;
1349                 array--;
1350         }
1351
1352         if (type & PERF_SAMPLE_CPU) {
1353                 u.val64 = *array;
1354                 if (swapped) {
1355                         /* undo swap of u64, then swap on individual u32s */
1356                         u.val64 = bswap_64(u.val64);
1357                         u.val32[0] = bswap_32(u.val32[0]);
1358                 }
1359
1360                 sample->cpu = u.val32[0];
1361                 array--;
1362         }
1363
1364         if (type & PERF_SAMPLE_STREAM_ID) {
1365                 sample->stream_id = *array;
1366                 array--;
1367         }
1368
1369         if (type & PERF_SAMPLE_ID) {
1370                 sample->id = *array;
1371                 array--;
1372         }
1373
1374         if (type & PERF_SAMPLE_TIME) {
1375                 sample->time = *array;
1376                 array--;
1377         }
1378
1379         if (type & PERF_SAMPLE_TID) {
1380                 u.val64 = *array;
1381                 if (swapped) {
1382                         /* undo swap of u64, then swap on individual u32s */
1383                         u.val64 = bswap_64(u.val64);
1384                         u.val32[0] = bswap_32(u.val32[0]);
1385                         u.val32[1] = bswap_32(u.val32[1]);
1386                 }
1387
1388                 sample->pid = u.val32[0];
1389                 sample->tid = u.val32[1];
1390                 array--;
1391         }
1392
1393         return 0;
1394 }
1395
1396 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1397                             u64 size)
1398 {
1399         return size > max_size || offset + size > endp;
1400 }
1401
1402 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1403         do {                                                            \
1404                 if (overflow(endp, (max_size), (offset), (size)))       \
1405                         return -EFAULT;                                 \
1406         } while (0)
1407
1408 #define OVERFLOW_CHECK_u64(offset) \
1409         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1410
1411 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1412                              struct perf_sample *data)
1413 {
1414         u64 type = evsel->attr.sample_type;
1415         bool swapped = evsel->needs_swap;
1416         const u64 *array;
1417         u16 max_size = event->header.size;
1418         const void *endp = (void *)event + max_size;
1419         u64 sz;
1420
1421         /*
1422          * used for cross-endian analysis. See git commit 65014ab3
1423          * for why this goofiness is needed.
1424          */
1425         union u64_swap u;
1426
1427         memset(data, 0, sizeof(*data));
1428         data->cpu = data->pid = data->tid = -1;
1429         data->stream_id = data->id = data->time = -1ULL;
1430         data->period = evsel->attr.sample_period;
1431         data->weight = 0;
1432
1433         if (event->header.type != PERF_RECORD_SAMPLE) {
1434                 if (!evsel->attr.sample_id_all)
1435                         return 0;
1436                 return perf_evsel__parse_id_sample(evsel, event, data);
1437         }
1438
1439         array = event->sample.array;
1440
1441         /*
1442          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1443          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1444          * check the format does not go past the end of the event.
1445          */
1446         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1447                 return -EFAULT;
1448
1449         data->id = -1ULL;
1450         if (type & PERF_SAMPLE_IDENTIFIER) {
1451                 data->id = *array;
1452                 array++;
1453         }
1454
1455         if (type & PERF_SAMPLE_IP) {
1456                 data->ip = *array;
1457                 array++;
1458         }
1459
1460         if (type & PERF_SAMPLE_TID) {
1461                 u.val64 = *array;
1462                 if (swapped) {
1463                         /* undo swap of u64, then swap on individual u32s */
1464                         u.val64 = bswap_64(u.val64);
1465                         u.val32[0] = bswap_32(u.val32[0]);
1466                         u.val32[1] = bswap_32(u.val32[1]);
1467                 }
1468
1469                 data->pid = u.val32[0];
1470                 data->tid = u.val32[1];
1471                 array++;
1472         }
1473
1474         if (type & PERF_SAMPLE_TIME) {
1475                 data->time = *array;
1476                 array++;
1477         }
1478
1479         data->addr = 0;
1480         if (type & PERF_SAMPLE_ADDR) {
1481                 data->addr = *array;
1482                 array++;
1483         }
1484
1485         if (type & PERF_SAMPLE_ID) {
1486                 data->id = *array;
1487                 array++;
1488         }
1489
1490         if (type & PERF_SAMPLE_STREAM_ID) {
1491                 data->stream_id = *array;
1492                 array++;
1493         }
1494
1495         if (type & PERF_SAMPLE_CPU) {
1496
1497                 u.val64 = *array;
1498                 if (swapped) {
1499                         /* undo swap of u64, then swap on individual u32s */
1500                         u.val64 = bswap_64(u.val64);
1501                         u.val32[0] = bswap_32(u.val32[0]);
1502                 }
1503
1504                 data->cpu = u.val32[0];
1505                 array++;
1506         }
1507
1508         if (type & PERF_SAMPLE_PERIOD) {
1509                 data->period = *array;
1510                 array++;
1511         }
1512
1513         if (type & PERF_SAMPLE_READ) {
1514                 u64 read_format = evsel->attr.read_format;
1515
1516                 OVERFLOW_CHECK_u64(array);
1517                 if (read_format & PERF_FORMAT_GROUP)
1518                         data->read.group.nr = *array;
1519                 else
1520                         data->read.one.value = *array;
1521
1522                 array++;
1523
1524                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1525                         OVERFLOW_CHECK_u64(array);
1526                         data->read.time_enabled = *array;
1527                         array++;
1528                 }
1529
1530                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1531                         OVERFLOW_CHECK_u64(array);
1532                         data->read.time_running = *array;
1533                         array++;
1534                 }
1535
1536                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1537                 if (read_format & PERF_FORMAT_GROUP) {
1538                         const u64 max_group_nr = UINT64_MAX /
1539                                         sizeof(struct sample_read_value);
1540
1541                         if (data->read.group.nr > max_group_nr)
1542                                 return -EFAULT;
1543                         sz = data->read.group.nr *
1544                              sizeof(struct sample_read_value);
1545                         OVERFLOW_CHECK(array, sz, max_size);
1546                         data->read.group.values =
1547                                         (struct sample_read_value *)array;
1548                         array = (void *)array + sz;
1549                 } else {
1550                         OVERFLOW_CHECK_u64(array);
1551                         data->read.one.id = *array;
1552                         array++;
1553                 }
1554         }
1555
1556         if (type & PERF_SAMPLE_CALLCHAIN) {
1557                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1558
1559                 OVERFLOW_CHECK_u64(array);
1560                 data->callchain = (struct ip_callchain *)array++;
1561                 if (data->callchain->nr > max_callchain_nr)
1562                         return -EFAULT;
1563                 sz = data->callchain->nr * sizeof(u64);
1564                 OVERFLOW_CHECK(array, sz, max_size);
1565                 array = (void *)array + sz;
1566         }
1567
1568         if (type & PERF_SAMPLE_RAW) {
1569                 OVERFLOW_CHECK_u64(array);
1570                 u.val64 = *array;
1571                 if (WARN_ONCE(swapped,
1572                               "Endianness of raw data not corrected!\n")) {
1573                         /* undo swap of u64, then swap on individual u32s */
1574                         u.val64 = bswap_64(u.val64);
1575                         u.val32[0] = bswap_32(u.val32[0]);
1576                         u.val32[1] = bswap_32(u.val32[1]);
1577                 }
1578                 data->raw_size = u.val32[0];
1579                 array = (void *)array + sizeof(u32);
1580
1581                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1582                 data->raw_data = (void *)array;
1583                 array = (void *)array + data->raw_size;
1584         }
1585
1586         if (type & PERF_SAMPLE_BRANCH_STACK) {
1587                 const u64 max_branch_nr = UINT64_MAX /
1588                                           sizeof(struct branch_entry);
1589
1590                 OVERFLOW_CHECK_u64(array);
1591                 data->branch_stack = (struct branch_stack *)array++;
1592
1593                 if (data->branch_stack->nr > max_branch_nr)
1594                         return -EFAULT;
1595                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1596                 OVERFLOW_CHECK(array, sz, max_size);
1597                 array = (void *)array + sz;
1598         }
1599
1600         if (type & PERF_SAMPLE_REGS_USER) {
1601                 OVERFLOW_CHECK_u64(array);
1602                 data->user_regs.abi = *array;
1603                 array++;
1604
1605                 if (data->user_regs.abi) {
1606                         u64 mask = evsel->attr.sample_regs_user;
1607
1608                         sz = hweight_long(mask) * sizeof(u64);
1609                         OVERFLOW_CHECK(array, sz, max_size);
1610                         data->user_regs.mask = mask;
1611                         data->user_regs.regs = (u64 *)array;
1612                         array = (void *)array + sz;
1613                 }
1614         }
1615
1616         if (type & PERF_SAMPLE_STACK_USER) {
1617                 OVERFLOW_CHECK_u64(array);
1618                 sz = *array++;
1619
1620                 data->user_stack.offset = ((char *)(array - 1)
1621                                           - (char *) event);
1622
1623                 if (!sz) {
1624                         data->user_stack.size = 0;
1625                 } else {
1626                         OVERFLOW_CHECK(array, sz, max_size);
1627                         data->user_stack.data = (char *)array;
1628                         array = (void *)array + sz;
1629                         OVERFLOW_CHECK_u64(array);
1630                         data->user_stack.size = *array++;
1631                         if (WARN_ONCE(data->user_stack.size > sz,
1632                                       "user stack dump failure\n"))
1633                                 return -EFAULT;
1634                 }
1635         }
1636
1637         data->weight = 0;
1638         if (type & PERF_SAMPLE_WEIGHT) {
1639                 OVERFLOW_CHECK_u64(array);
1640                 data->weight = *array;
1641                 array++;
1642         }
1643
1644         data->data_src = PERF_MEM_DATA_SRC_NONE;
1645         if (type & PERF_SAMPLE_DATA_SRC) {
1646                 OVERFLOW_CHECK_u64(array);
1647                 data->data_src = *array;
1648                 array++;
1649         }
1650
1651         data->transaction = 0;
1652         if (type & PERF_SAMPLE_TRANSACTION) {
1653                 OVERFLOW_CHECK_u64(array);
1654                 data->transaction = *array;
1655                 array++;
1656         }
1657
1658         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1659         if (type & PERF_SAMPLE_REGS_INTR) {
1660                 OVERFLOW_CHECK_u64(array);
1661                 data->intr_regs.abi = *array;
1662                 array++;
1663
1664                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1665                         u64 mask = evsel->attr.sample_regs_intr;
1666
1667                         sz = hweight_long(mask) * sizeof(u64);
1668                         OVERFLOW_CHECK(array, sz, max_size);
1669                         data->intr_regs.mask = mask;
1670                         data->intr_regs.regs = (u64 *)array;
1671                         array = (void *)array + sz;
1672                 }
1673         }
1674
1675         return 0;
1676 }
1677
1678 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1679                                      u64 read_format)
1680 {
1681         size_t sz, result = sizeof(struct sample_event);
1682
1683         if (type & PERF_SAMPLE_IDENTIFIER)
1684                 result += sizeof(u64);
1685
1686         if (type & PERF_SAMPLE_IP)
1687                 result += sizeof(u64);
1688
1689         if (type & PERF_SAMPLE_TID)
1690                 result += sizeof(u64);
1691
1692         if (type & PERF_SAMPLE_TIME)
1693                 result += sizeof(u64);
1694
1695         if (type & PERF_SAMPLE_ADDR)
1696                 result += sizeof(u64);
1697
1698         if (type & PERF_SAMPLE_ID)
1699                 result += sizeof(u64);
1700
1701         if (type & PERF_SAMPLE_STREAM_ID)
1702                 result += sizeof(u64);
1703
1704         if (type & PERF_SAMPLE_CPU)
1705                 result += sizeof(u64);
1706
1707         if (type & PERF_SAMPLE_PERIOD)
1708                 result += sizeof(u64);
1709
1710         if (type & PERF_SAMPLE_READ) {
1711                 result += sizeof(u64);
1712                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1713                         result += sizeof(u64);
1714                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1715                         result += sizeof(u64);
1716                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1717                 if (read_format & PERF_FORMAT_GROUP) {
1718                         sz = sample->read.group.nr *
1719                              sizeof(struct sample_read_value);
1720                         result += sz;
1721                 } else {
1722                         result += sizeof(u64);
1723                 }
1724         }
1725
1726         if (type & PERF_SAMPLE_CALLCHAIN) {
1727                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1728                 result += sz;
1729         }
1730
1731         if (type & PERF_SAMPLE_RAW) {
1732                 result += sizeof(u32);
1733                 result += sample->raw_size;
1734         }
1735
1736         if (type & PERF_SAMPLE_BRANCH_STACK) {
1737                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1738                 sz += sizeof(u64);
1739                 result += sz;
1740         }
1741
1742         if (type & PERF_SAMPLE_REGS_USER) {
1743                 if (sample->user_regs.abi) {
1744                         result += sizeof(u64);
1745                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1746                         result += sz;
1747                 } else {
1748                         result += sizeof(u64);
1749                 }
1750         }
1751
1752         if (type & PERF_SAMPLE_STACK_USER) {
1753                 sz = sample->user_stack.size;
1754                 result += sizeof(u64);
1755                 if (sz) {
1756                         result += sz;
1757                         result += sizeof(u64);
1758                 }
1759         }
1760
1761         if (type & PERF_SAMPLE_WEIGHT)
1762                 result += sizeof(u64);
1763
1764         if (type & PERF_SAMPLE_DATA_SRC)
1765                 result += sizeof(u64);
1766
1767         if (type & PERF_SAMPLE_TRANSACTION)
1768                 result += sizeof(u64);
1769
1770         if (type & PERF_SAMPLE_REGS_INTR) {
1771                 if (sample->intr_regs.abi) {
1772                         result += sizeof(u64);
1773                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1774                         result += sz;
1775                 } else {
1776                         result += sizeof(u64);
1777                 }
1778         }
1779
1780         return result;
1781 }
1782
1783 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1784                                   u64 read_format,
1785                                   const struct perf_sample *sample,
1786                                   bool swapped)
1787 {
1788         u64 *array;
1789         size_t sz;
1790         /*
1791          * used for cross-endian analysis. See git commit 65014ab3
1792          * for why this goofiness is needed.
1793          */
1794         union u64_swap u;
1795
1796         array = event->sample.array;
1797
1798         if (type & PERF_SAMPLE_IDENTIFIER) {
1799                 *array = sample->id;
1800                 array++;
1801         }
1802
1803         if (type & PERF_SAMPLE_IP) {
1804                 *array = sample->ip;
1805                 array++;
1806         }
1807
1808         if (type & PERF_SAMPLE_TID) {
1809                 u.val32[0] = sample->pid;
1810                 u.val32[1] = sample->tid;
1811                 if (swapped) {
1812                         /*
1813                          * Inverse of what is done in perf_evsel__parse_sample
1814                          */
1815                         u.val32[0] = bswap_32(u.val32[0]);
1816                         u.val32[1] = bswap_32(u.val32[1]);
1817                         u.val64 = bswap_64(u.val64);
1818                 }
1819
1820                 *array = u.val64;
1821                 array++;
1822         }
1823
1824         if (type & PERF_SAMPLE_TIME) {
1825                 *array = sample->time;
1826                 array++;
1827         }
1828
1829         if (type & PERF_SAMPLE_ADDR) {
1830                 *array = sample->addr;
1831                 array++;
1832         }
1833
1834         if (type & PERF_SAMPLE_ID) {
1835                 *array = sample->id;
1836                 array++;
1837         }
1838
1839         if (type & PERF_SAMPLE_STREAM_ID) {
1840                 *array = sample->stream_id;
1841                 array++;
1842         }
1843
1844         if (type & PERF_SAMPLE_CPU) {
1845                 u.val32[0] = sample->cpu;
1846                 if (swapped) {
1847                         /*
1848                          * Inverse of what is done in perf_evsel__parse_sample
1849                          */
1850                         u.val32[0] = bswap_32(u.val32[0]);
1851                         u.val64 = bswap_64(u.val64);
1852                 }
1853                 *array = u.val64;
1854                 array++;
1855         }
1856
1857         if (type & PERF_SAMPLE_PERIOD) {
1858                 *array = sample->period;
1859                 array++;
1860         }
1861
1862         if (type & PERF_SAMPLE_READ) {
1863                 if (read_format & PERF_FORMAT_GROUP)
1864                         *array = sample->read.group.nr;
1865                 else
1866                         *array = sample->read.one.value;
1867                 array++;
1868
1869                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1870                         *array = sample->read.time_enabled;
1871                         array++;
1872                 }
1873
1874                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1875                         *array = sample->read.time_running;
1876                         array++;
1877                 }
1878
1879                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1880                 if (read_format & PERF_FORMAT_GROUP) {
1881                         sz = sample->read.group.nr *
1882                              sizeof(struct sample_read_value);
1883                         memcpy(array, sample->read.group.values, sz);
1884                         array = (void *)array + sz;
1885                 } else {
1886                         *array = sample->read.one.id;
1887                         array++;
1888                 }
1889         }
1890
1891         if (type & PERF_SAMPLE_CALLCHAIN) {
1892                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1893                 memcpy(array, sample->callchain, sz);
1894                 array = (void *)array + sz;
1895         }
1896
1897         if (type & PERF_SAMPLE_RAW) {
1898                 u.val32[0] = sample->raw_size;
1899                 if (WARN_ONCE(swapped,
1900                               "Endianness of raw data not corrected!\n")) {
1901                         /*
1902                          * Inverse of what is done in perf_evsel__parse_sample
1903                          */
1904                         u.val32[0] = bswap_32(u.val32[0]);
1905                         u.val32[1] = bswap_32(u.val32[1]);
1906                         u.val64 = bswap_64(u.val64);
1907                 }
1908                 *array = u.val64;
1909                 array = (void *)array + sizeof(u32);
1910
1911                 memcpy(array, sample->raw_data, sample->raw_size);
1912                 array = (void *)array + sample->raw_size;
1913         }
1914
1915         if (type & PERF_SAMPLE_BRANCH_STACK) {
1916                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1917                 sz += sizeof(u64);
1918                 memcpy(array, sample->branch_stack, sz);
1919                 array = (void *)array + sz;
1920         }
1921
1922         if (type & PERF_SAMPLE_REGS_USER) {
1923                 if (sample->user_regs.abi) {
1924                         *array++ = sample->user_regs.abi;
1925                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1926                         memcpy(array, sample->user_regs.regs, sz);
1927                         array = (void *)array + sz;
1928                 } else {
1929                         *array++ = 0;
1930                 }
1931         }
1932
1933         if (type & PERF_SAMPLE_STACK_USER) {
1934                 sz = sample->user_stack.size;
1935                 *array++ = sz;
1936                 if (sz) {
1937                         memcpy(array, sample->user_stack.data, sz);
1938                         array = (void *)array + sz;
1939                         *array++ = sz;
1940                 }
1941         }
1942
1943         if (type & PERF_SAMPLE_WEIGHT) {
1944                 *array = sample->weight;
1945                 array++;
1946         }
1947
1948         if (type & PERF_SAMPLE_DATA_SRC) {
1949                 *array = sample->data_src;
1950                 array++;
1951         }
1952
1953         if (type & PERF_SAMPLE_TRANSACTION) {
1954                 *array = sample->transaction;
1955                 array++;
1956         }
1957
1958         if (type & PERF_SAMPLE_REGS_INTR) {
1959                 if (sample->intr_regs.abi) {
1960                         *array++ = sample->intr_regs.abi;
1961                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1962                         memcpy(array, sample->intr_regs.regs, sz);
1963                         array = (void *)array + sz;
1964                 } else {
1965                         *array++ = 0;
1966                 }
1967         }
1968
1969         return 0;
1970 }
1971
1972 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1973 {
1974         return pevent_find_field(evsel->tp_format, name);
1975 }
1976
1977 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1978                          const char *name)
1979 {
1980         struct format_field *field = perf_evsel__field(evsel, name);
1981         int offset;
1982
1983         if (!field)
1984                 return NULL;
1985
1986         offset = field->offset;
1987
1988         if (field->flags & FIELD_IS_DYNAMIC) {
1989                 offset = *(int *)(sample->raw_data + field->offset);
1990                 offset &= 0xffff;
1991         }
1992
1993         return sample->raw_data + offset;
1994 }
1995
1996 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1997                        const char *name)
1998 {
1999         struct format_field *field = perf_evsel__field(evsel, name);
2000         void *ptr;
2001         u64 value;
2002
2003         if (!field)
2004                 return 0;
2005
2006         ptr = sample->raw_data + field->offset;
2007
2008         switch (field->size) {
2009         case 1:
2010                 return *(u8 *)ptr;
2011         case 2:
2012                 value = *(u16 *)ptr;
2013                 break;
2014         case 4:
2015                 value = *(u32 *)ptr;
2016                 break;
2017         case 8:
2018                 memcpy(&value, ptr, sizeof(u64));
2019                 break;
2020         default:
2021                 return 0;
2022         }
2023
2024         if (!evsel->needs_swap)
2025                 return value;
2026
2027         switch (field->size) {
2028         case 2:
2029                 return bswap_16(value);
2030         case 4:
2031                 return bswap_32(value);
2032         case 8:
2033                 return bswap_64(value);
2034         default:
2035                 return 0;
2036         }
2037
2038         return 0;
2039 }
2040
2041 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2042 {
2043         va_list args;
2044         int ret = 0;
2045
2046         if (!*first) {
2047                 ret += fprintf(fp, ",");
2048         } else {
2049                 ret += fprintf(fp, ":");
2050                 *first = false;
2051         }
2052
2053         va_start(args, fmt);
2054         ret += vfprintf(fp, fmt, args);
2055         va_end(args);
2056         return ret;
2057 }
2058
2059 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2060 {
2061         return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2062 }
2063
2064 int perf_evsel__fprintf(struct perf_evsel *evsel,
2065                         struct perf_attr_details *details, FILE *fp)
2066 {
2067         bool first = true;
2068         int printed = 0;
2069
2070         if (details->event_group) {
2071                 struct perf_evsel *pos;
2072
2073                 if (!perf_evsel__is_group_leader(evsel))
2074                         return 0;
2075
2076                 if (evsel->nr_members > 1)
2077                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2078
2079                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2080                 for_each_group_member(pos, evsel)
2081                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2082
2083                 if (evsel->nr_members > 1)
2084                         printed += fprintf(fp, "}");
2085                 goto out;
2086         }
2087
2088         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2089
2090         if (details->verbose) {
2091                 printed += perf_event_attr__fprintf(fp, &evsel->attr,
2092                                                     __print_attr__fprintf, &first);
2093         } else if (details->freq) {
2094                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
2095                                          (u64)evsel->attr.sample_freq);
2096         }
2097 out:
2098         fputc('\n', fp);
2099         return ++printed;
2100 }
2101
2102 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2103                           char *msg, size_t msgsize)
2104 {
2105         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2106             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2107             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2108                 /*
2109                  * If it's cycles then fall back to hrtimer based
2110                  * cpu-clock-tick sw counter, which is always available even if
2111                  * no PMU support.
2112                  *
2113                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2114                  * b0a873e).
2115                  */
2116                 scnprintf(msg, msgsize, "%s",
2117 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2118
2119                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2120                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2121
2122                 zfree(&evsel->name);
2123                 return true;
2124         }
2125
2126         return false;
2127 }
2128
2129 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2130                               int err, char *msg, size_t size)
2131 {
2132         char sbuf[STRERR_BUFSIZE];
2133
2134         switch (err) {
2135         case EPERM:
2136         case EACCES:
2137                 return scnprintf(msg, size,
2138                  "You may not have permission to collect %sstats.\n"
2139                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2140                  " -1 - Not paranoid at all\n"
2141                  "  0 - Disallow raw tracepoint access for unpriv\n"
2142                  "  1 - Disallow cpu events for unpriv\n"
2143                  "  2 - Disallow kernel profiling for unpriv",
2144                                  target->system_wide ? "system-wide " : "");
2145         case ENOENT:
2146                 return scnprintf(msg, size, "The %s event is not supported.",
2147                                  perf_evsel__name(evsel));
2148         case EMFILE:
2149                 return scnprintf(msg, size, "%s",
2150                          "Too many events are opened.\n"
2151                          "Try again after reducing the number of events.");
2152         case ENODEV:
2153                 if (target->cpu_list)
2154                         return scnprintf(msg, size, "%s",
2155          "No such device - did you specify an out-of-range profile CPU?\n");
2156                 break;
2157         case EOPNOTSUPP:
2158                 if (evsel->attr.precise_ip)
2159                         return scnprintf(msg, size, "%s",
2160         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2161 #if defined(__i386__) || defined(__x86_64__)
2162                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2163                         return scnprintf(msg, size, "%s",
2164         "No hardware sampling interrupt available.\n"
2165         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2166 #endif
2167                 break;
2168         case EBUSY:
2169                 if (find_process("oprofiled"))
2170                         return scnprintf(msg, size,
2171         "The PMU counters are busy/taken by another profiler.\n"
2172         "We found oprofile daemon running, please stop it and try again.");
2173                 break;
2174         case EINVAL:
2175                 if (perf_missing_features.clockid)
2176                         return scnprintf(msg, size, "clockid feature not supported.");
2177                 if (perf_missing_features.clockid_wrong)
2178                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2179                 break;
2180         default:
2181                 break;
2182         }
2183
2184         return scnprintf(msg, size,
2185         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2186         "/bin/dmesg may provide additional information.\n"
2187         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2188                          err, strerror_r(err, sbuf, sizeof(sbuf)),
2189                          perf_evsel__name(evsel));
2190 }