These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include <traceevent/event-parse.h>
16
17 #include "builtin.h"
18
19 #include "util/util.h"
20
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40 #include "util/debug.h"
41
42 #define SUPPORT_OLD_POWER_EVENTS 1
43 #define PWR_EVENT_EXIT -1
44
45 struct per_pid;
46 struct power_event;
47 struct wake_event;
48
49 struct timechart {
50         struct perf_tool        tool;
51         struct per_pid          *all_data;
52         struct power_event      *power_events;
53         struct wake_event       *wake_events;
54         int                     proc_num;
55         unsigned int            numcpus;
56         u64                     min_freq,       /* Lowest CPU frequency seen */
57                                 max_freq,       /* Highest CPU frequency seen */
58                                 turbo_frequency,
59                                 first_time, last_time;
60         bool                    power_only,
61                                 tasks_only,
62                                 with_backtrace,
63                                 topology;
64         bool                    force;
65         /* IO related settings */
66         bool                    io_only,
67                                 skip_eagain;
68         u64                     io_events;
69         u64                     min_time,
70                                 merge_dist;
71 };
72
73 struct per_pidcomm;
74 struct cpu_sample;
75 struct io_sample;
76
77 /*
78  * Datastructure layout:
79  * We keep an list of "pid"s, matching the kernels notion of a task struct.
80  * Each "pid" entry, has a list of "comm"s.
81  *      this is because we want to track different programs different, while
82  *      exec will reuse the original pid (by design).
83  * Each comm has a list of samples that will be used to draw
84  * final graph.
85  */
86
87 struct per_pid {
88         struct per_pid *next;
89
90         int             pid;
91         int             ppid;
92
93         u64             start_time;
94         u64             end_time;
95         u64             total_time;
96         u64             total_bytes;
97         int             display;
98
99         struct per_pidcomm *all;
100         struct per_pidcomm *current;
101 };
102
103
104 struct per_pidcomm {
105         struct per_pidcomm *next;
106
107         u64             start_time;
108         u64             end_time;
109         u64             total_time;
110         u64             max_bytes;
111         u64             total_bytes;
112
113         int             Y;
114         int             display;
115
116         long            state;
117         u64             state_since;
118
119         char            *comm;
120
121         struct cpu_sample *samples;
122         struct io_sample  *io_samples;
123 };
124
125 struct sample_wrapper {
126         struct sample_wrapper *next;
127
128         u64             timestamp;
129         unsigned char   data[0];
130 };
131
132 #define TYPE_NONE       0
133 #define TYPE_RUNNING    1
134 #define TYPE_WAITING    2
135 #define TYPE_BLOCKED    3
136
137 struct cpu_sample {
138         struct cpu_sample *next;
139
140         u64 start_time;
141         u64 end_time;
142         int type;
143         int cpu;
144         const char *backtrace;
145 };
146
147 enum {
148         IOTYPE_READ,
149         IOTYPE_WRITE,
150         IOTYPE_SYNC,
151         IOTYPE_TX,
152         IOTYPE_RX,
153         IOTYPE_POLL,
154 };
155
156 struct io_sample {
157         struct io_sample *next;
158
159         u64 start_time;
160         u64 end_time;
161         u64 bytes;
162         int type;
163         int fd;
164         int err;
165         int merges;
166 };
167
168 #define CSTATE 1
169 #define PSTATE 2
170
171 struct power_event {
172         struct power_event *next;
173         int type;
174         int state;
175         u64 start_time;
176         u64 end_time;
177         int cpu;
178 };
179
180 struct wake_event {
181         struct wake_event *next;
182         int waker;
183         int wakee;
184         u64 time;
185         const char *backtrace;
186 };
187
188 struct process_filter {
189         char                    *name;
190         int                     pid;
191         struct process_filter   *next;
192 };
193
194 static struct process_filter *process_filter;
195
196
197 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
198 {
199         struct per_pid *cursor = tchart->all_data;
200
201         while (cursor) {
202                 if (cursor->pid == pid)
203                         return cursor;
204                 cursor = cursor->next;
205         }
206         cursor = zalloc(sizeof(*cursor));
207         assert(cursor != NULL);
208         cursor->pid = pid;
209         cursor->next = tchart->all_data;
210         tchart->all_data = cursor;
211         return cursor;
212 }
213
214 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
215 {
216         struct per_pid *p;
217         struct per_pidcomm *c;
218         p = find_create_pid(tchart, pid);
219         c = p->all;
220         while (c) {
221                 if (c->comm && strcmp(c->comm, comm) == 0) {
222                         p->current = c;
223                         return;
224                 }
225                 if (!c->comm) {
226                         c->comm = strdup(comm);
227                         p->current = c;
228                         return;
229                 }
230                 c = c->next;
231         }
232         c = zalloc(sizeof(*c));
233         assert(c != NULL);
234         c->comm = strdup(comm);
235         p->current = c;
236         c->next = p->all;
237         p->all = c;
238 }
239
240 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
241 {
242         struct per_pid *p, *pp;
243         p = find_create_pid(tchart, pid);
244         pp = find_create_pid(tchart, ppid);
245         p->ppid = ppid;
246         if (pp->current && pp->current->comm && !p->current)
247                 pid_set_comm(tchart, pid, pp->current->comm);
248
249         p->start_time = timestamp;
250         if (p->current && !p->current->start_time) {
251                 p->current->start_time = timestamp;
252                 p->current->state_since = timestamp;
253         }
254 }
255
256 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
257 {
258         struct per_pid *p;
259         p = find_create_pid(tchart, pid);
260         p->end_time = timestamp;
261         if (p->current)
262                 p->current->end_time = timestamp;
263 }
264
265 static void pid_put_sample(struct timechart *tchart, int pid, int type,
266                            unsigned int cpu, u64 start, u64 end,
267                            const char *backtrace)
268 {
269         struct per_pid *p;
270         struct per_pidcomm *c;
271         struct cpu_sample *sample;
272
273         p = find_create_pid(tchart, pid);
274         c = p->current;
275         if (!c) {
276                 c = zalloc(sizeof(*c));
277                 assert(c != NULL);
278                 p->current = c;
279                 c->next = p->all;
280                 p->all = c;
281         }
282
283         sample = zalloc(sizeof(*sample));
284         assert(sample != NULL);
285         sample->start_time = start;
286         sample->end_time = end;
287         sample->type = type;
288         sample->next = c->samples;
289         sample->cpu = cpu;
290         sample->backtrace = backtrace;
291         c->samples = sample;
292
293         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
294                 c->total_time += (end-start);
295                 p->total_time += (end-start);
296         }
297
298         if (c->start_time == 0 || c->start_time > start)
299                 c->start_time = start;
300         if (p->start_time == 0 || p->start_time > start)
301                 p->start_time = start;
302 }
303
304 #define MAX_CPUS 4096
305
306 static u64 cpus_cstate_start_times[MAX_CPUS];
307 static int cpus_cstate_state[MAX_CPUS];
308 static u64 cpus_pstate_start_times[MAX_CPUS];
309 static u64 cpus_pstate_state[MAX_CPUS];
310
311 static int process_comm_event(struct perf_tool *tool,
312                               union perf_event *event,
313                               struct perf_sample *sample __maybe_unused,
314                               struct machine *machine __maybe_unused)
315 {
316         struct timechart *tchart = container_of(tool, struct timechart, tool);
317         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
318         return 0;
319 }
320
321 static int process_fork_event(struct perf_tool *tool,
322                               union perf_event *event,
323                               struct perf_sample *sample __maybe_unused,
324                               struct machine *machine __maybe_unused)
325 {
326         struct timechart *tchart = container_of(tool, struct timechart, tool);
327         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
328         return 0;
329 }
330
331 static int process_exit_event(struct perf_tool *tool,
332                               union perf_event *event,
333                               struct perf_sample *sample __maybe_unused,
334                               struct machine *machine __maybe_unused)
335 {
336         struct timechart *tchart = container_of(tool, struct timechart, tool);
337         pid_exit(tchart, event->fork.pid, event->fork.time);
338         return 0;
339 }
340
341 #ifdef SUPPORT_OLD_POWER_EVENTS
342 static int use_old_power_events;
343 #endif
344
345 static void c_state_start(int cpu, u64 timestamp, int state)
346 {
347         cpus_cstate_start_times[cpu] = timestamp;
348         cpus_cstate_state[cpu] = state;
349 }
350
351 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
352 {
353         struct power_event *pwr = zalloc(sizeof(*pwr));
354
355         if (!pwr)
356                 return;
357
358         pwr->state = cpus_cstate_state[cpu];
359         pwr->start_time = cpus_cstate_start_times[cpu];
360         pwr->end_time = timestamp;
361         pwr->cpu = cpu;
362         pwr->type = CSTATE;
363         pwr->next = tchart->power_events;
364
365         tchart->power_events = pwr;
366 }
367
368 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
369 {
370         struct power_event *pwr;
371
372         if (new_freq > 8000000) /* detect invalid data */
373                 return;
374
375         pwr = zalloc(sizeof(*pwr));
376         if (!pwr)
377                 return;
378
379         pwr->state = cpus_pstate_state[cpu];
380         pwr->start_time = cpus_pstate_start_times[cpu];
381         pwr->end_time = timestamp;
382         pwr->cpu = cpu;
383         pwr->type = PSTATE;
384         pwr->next = tchart->power_events;
385
386         if (!pwr->start_time)
387                 pwr->start_time = tchart->first_time;
388
389         tchart->power_events = pwr;
390
391         cpus_pstate_state[cpu] = new_freq;
392         cpus_pstate_start_times[cpu] = timestamp;
393
394         if ((u64)new_freq > tchart->max_freq)
395                 tchart->max_freq = new_freq;
396
397         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
398                 tchart->min_freq = new_freq;
399
400         if (new_freq == tchart->max_freq - 1000)
401                 tchart->turbo_frequency = tchart->max_freq;
402 }
403
404 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
405                          int waker, int wakee, u8 flags, const char *backtrace)
406 {
407         struct per_pid *p;
408         struct wake_event *we = zalloc(sizeof(*we));
409
410         if (!we)
411                 return;
412
413         we->time = timestamp;
414         we->waker = waker;
415         we->backtrace = backtrace;
416
417         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
418                 we->waker = -1;
419
420         we->wakee = wakee;
421         we->next = tchart->wake_events;
422         tchart->wake_events = we;
423         p = find_create_pid(tchart, we->wakee);
424
425         if (p && p->current && p->current->state == TYPE_NONE) {
426                 p->current->state_since = timestamp;
427                 p->current->state = TYPE_WAITING;
428         }
429         if (p && p->current && p->current->state == TYPE_BLOCKED) {
430                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
431                                p->current->state_since, timestamp, NULL);
432                 p->current->state_since = timestamp;
433                 p->current->state = TYPE_WAITING;
434         }
435 }
436
437 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
438                          int prev_pid, int next_pid, u64 prev_state,
439                          const char *backtrace)
440 {
441         struct per_pid *p = NULL, *prev_p;
442
443         prev_p = find_create_pid(tchart, prev_pid);
444
445         p = find_create_pid(tchart, next_pid);
446
447         if (prev_p->current && prev_p->current->state != TYPE_NONE)
448                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
449                                prev_p->current->state_since, timestamp,
450                                backtrace);
451         if (p && p->current) {
452                 if (p->current->state != TYPE_NONE)
453                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
454                                        p->current->state_since, timestamp,
455                                        backtrace);
456
457                 p->current->state_since = timestamp;
458                 p->current->state = TYPE_RUNNING;
459         }
460
461         if (prev_p->current) {
462                 prev_p->current->state = TYPE_NONE;
463                 prev_p->current->state_since = timestamp;
464                 if (prev_state & 2)
465                         prev_p->current->state = TYPE_BLOCKED;
466                 if (prev_state == 0)
467                         prev_p->current->state = TYPE_WAITING;
468         }
469 }
470
471 static const char *cat_backtrace(union perf_event *event,
472                                  struct perf_sample *sample,
473                                  struct machine *machine)
474 {
475         struct addr_location al;
476         unsigned int i;
477         char *p = NULL;
478         size_t p_len;
479         u8 cpumode = PERF_RECORD_MISC_USER;
480         struct addr_location tal;
481         struct ip_callchain *chain = sample->callchain;
482         FILE *f = open_memstream(&p, &p_len);
483
484         if (!f) {
485                 perror("open_memstream error");
486                 return NULL;
487         }
488
489         if (!chain)
490                 goto exit;
491
492         if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
493                 fprintf(stderr, "problem processing %d event, skipping it.\n",
494                         event->header.type);
495                 goto exit;
496         }
497
498         for (i = 0; i < chain->nr; i++) {
499                 u64 ip;
500
501                 if (callchain_param.order == ORDER_CALLEE)
502                         ip = chain->ips[i];
503                 else
504                         ip = chain->ips[chain->nr - i - 1];
505
506                 if (ip >= PERF_CONTEXT_MAX) {
507                         switch (ip) {
508                         case PERF_CONTEXT_HV:
509                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
510                                 break;
511                         case PERF_CONTEXT_KERNEL:
512                                 cpumode = PERF_RECORD_MISC_KERNEL;
513                                 break;
514                         case PERF_CONTEXT_USER:
515                                 cpumode = PERF_RECORD_MISC_USER;
516                                 break;
517                         default:
518                                 pr_debug("invalid callchain context: "
519                                          "%"PRId64"\n", (s64) ip);
520
521                                 /*
522                                  * It seems the callchain is corrupted.
523                                  * Discard all.
524                                  */
525                                 zfree(&p);
526                                 goto exit_put;
527                         }
528                         continue;
529                 }
530
531                 tal.filtered = 0;
532                 thread__find_addr_location(al.thread, cpumode,
533                                            MAP__FUNCTION, ip, &tal);
534
535                 if (tal.sym)
536                         fprintf(f, "..... %016" PRIx64 " %s\n", ip,
537                                 tal.sym->name);
538                 else
539                         fprintf(f, "..... %016" PRIx64 "\n", ip);
540         }
541 exit_put:
542         addr_location__put(&al);
543 exit:
544         fclose(f);
545
546         return p;
547 }
548
549 typedef int (*tracepoint_handler)(struct timechart *tchart,
550                                   struct perf_evsel *evsel,
551                                   struct perf_sample *sample,
552                                   const char *backtrace);
553
554 static int process_sample_event(struct perf_tool *tool,
555                                 union perf_event *event,
556                                 struct perf_sample *sample,
557                                 struct perf_evsel *evsel,
558                                 struct machine *machine)
559 {
560         struct timechart *tchart = container_of(tool, struct timechart, tool);
561
562         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
563                 if (!tchart->first_time || tchart->first_time > sample->time)
564                         tchart->first_time = sample->time;
565                 if (tchart->last_time < sample->time)
566                         tchart->last_time = sample->time;
567         }
568
569         if (evsel->handler != NULL) {
570                 tracepoint_handler f = evsel->handler;
571                 return f(tchart, evsel, sample,
572                          cat_backtrace(event, sample, machine));
573         }
574
575         return 0;
576 }
577
578 static int
579 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
580                         struct perf_evsel *evsel,
581                         struct perf_sample *sample,
582                         const char *backtrace __maybe_unused)
583 {
584         u32 state = perf_evsel__intval(evsel, sample, "state");
585         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
586
587         if (state == (u32)PWR_EVENT_EXIT)
588                 c_state_end(tchart, cpu_id, sample->time);
589         else
590                 c_state_start(cpu_id, sample->time, state);
591         return 0;
592 }
593
594 static int
595 process_sample_cpu_frequency(struct timechart *tchart,
596                              struct perf_evsel *evsel,
597                              struct perf_sample *sample,
598                              const char *backtrace __maybe_unused)
599 {
600         u32 state = perf_evsel__intval(evsel, sample, "state");
601         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
602
603         p_state_change(tchart, cpu_id, sample->time, state);
604         return 0;
605 }
606
607 static int
608 process_sample_sched_wakeup(struct timechart *tchart,
609                             struct perf_evsel *evsel,
610                             struct perf_sample *sample,
611                             const char *backtrace)
612 {
613         u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
614         int waker = perf_evsel__intval(evsel, sample, "common_pid");
615         int wakee = perf_evsel__intval(evsel, sample, "pid");
616
617         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
618         return 0;
619 }
620
621 static int
622 process_sample_sched_switch(struct timechart *tchart,
623                             struct perf_evsel *evsel,
624                             struct perf_sample *sample,
625                             const char *backtrace)
626 {
627         int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
628         int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
629         u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
630
631         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
632                      prev_state, backtrace);
633         return 0;
634 }
635
636 #ifdef SUPPORT_OLD_POWER_EVENTS
637 static int
638 process_sample_power_start(struct timechart *tchart __maybe_unused,
639                            struct perf_evsel *evsel,
640                            struct perf_sample *sample,
641                            const char *backtrace __maybe_unused)
642 {
643         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
644         u64 value = perf_evsel__intval(evsel, sample, "value");
645
646         c_state_start(cpu_id, sample->time, value);
647         return 0;
648 }
649
650 static int
651 process_sample_power_end(struct timechart *tchart,
652                          struct perf_evsel *evsel __maybe_unused,
653                          struct perf_sample *sample,
654                          const char *backtrace __maybe_unused)
655 {
656         c_state_end(tchart, sample->cpu, sample->time);
657         return 0;
658 }
659
660 static int
661 process_sample_power_frequency(struct timechart *tchart,
662                                struct perf_evsel *evsel,
663                                struct perf_sample *sample,
664                                const char *backtrace __maybe_unused)
665 {
666         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
667         u64 value = perf_evsel__intval(evsel, sample, "value");
668
669         p_state_change(tchart, cpu_id, sample->time, value);
670         return 0;
671 }
672 #endif /* SUPPORT_OLD_POWER_EVENTS */
673
674 /*
675  * After the last sample we need to wrap up the current C/P state
676  * and close out each CPU for these.
677  */
678 static void end_sample_processing(struct timechart *tchart)
679 {
680         u64 cpu;
681         struct power_event *pwr;
682
683         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
684                 /* C state */
685 #if 0
686                 pwr = zalloc(sizeof(*pwr));
687                 if (!pwr)
688                         return;
689
690                 pwr->state = cpus_cstate_state[cpu];
691                 pwr->start_time = cpus_cstate_start_times[cpu];
692                 pwr->end_time = tchart->last_time;
693                 pwr->cpu = cpu;
694                 pwr->type = CSTATE;
695                 pwr->next = tchart->power_events;
696
697                 tchart->power_events = pwr;
698 #endif
699                 /* P state */
700
701                 pwr = zalloc(sizeof(*pwr));
702                 if (!pwr)
703                         return;
704
705                 pwr->state = cpus_pstate_state[cpu];
706                 pwr->start_time = cpus_pstate_start_times[cpu];
707                 pwr->end_time = tchart->last_time;
708                 pwr->cpu = cpu;
709                 pwr->type = PSTATE;
710                 pwr->next = tchart->power_events;
711
712                 if (!pwr->start_time)
713                         pwr->start_time = tchart->first_time;
714                 if (!pwr->state)
715                         pwr->state = tchart->min_freq;
716                 tchart->power_events = pwr;
717         }
718 }
719
720 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
721                                u64 start, int fd)
722 {
723         struct per_pid *p = find_create_pid(tchart, pid);
724         struct per_pidcomm *c = p->current;
725         struct io_sample *sample;
726         struct io_sample *prev;
727
728         if (!c) {
729                 c = zalloc(sizeof(*c));
730                 if (!c)
731                         return -ENOMEM;
732                 p->current = c;
733                 c->next = p->all;
734                 p->all = c;
735         }
736
737         prev = c->io_samples;
738
739         if (prev && prev->start_time && !prev->end_time) {
740                 pr_warning("Skip invalid start event: "
741                            "previous event already started!\n");
742
743                 /* remove previous event that has been started,
744                  * we are not sure we will ever get an end for it */
745                 c->io_samples = prev->next;
746                 free(prev);
747                 return 0;
748         }
749
750         sample = zalloc(sizeof(*sample));
751         if (!sample)
752                 return -ENOMEM;
753         sample->start_time = start;
754         sample->type = type;
755         sample->fd = fd;
756         sample->next = c->io_samples;
757         c->io_samples = sample;
758
759         if (c->start_time == 0 || c->start_time > start)
760                 c->start_time = start;
761
762         return 0;
763 }
764
765 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
766                              u64 end, long ret)
767 {
768         struct per_pid *p = find_create_pid(tchart, pid);
769         struct per_pidcomm *c = p->current;
770         struct io_sample *sample, *prev;
771
772         if (!c) {
773                 pr_warning("Invalid pidcomm!\n");
774                 return -1;
775         }
776
777         sample = c->io_samples;
778
779         if (!sample) /* skip partially captured events */
780                 return 0;
781
782         if (sample->end_time) {
783                 pr_warning("Skip invalid end event: "
784                            "previous event already ended!\n");
785                 return 0;
786         }
787
788         if (sample->type != type) {
789                 pr_warning("Skip invalid end event: invalid event type!\n");
790                 return 0;
791         }
792
793         sample->end_time = end;
794         prev = sample->next;
795
796         /* we want to be able to see small and fast transfers, so make them
797          * at least min_time long, but don't overlap them */
798         if (sample->end_time - sample->start_time < tchart->min_time)
799                 sample->end_time = sample->start_time + tchart->min_time;
800         if (prev && sample->start_time < prev->end_time) {
801                 if (prev->err) /* try to make errors more visible */
802                         sample->start_time = prev->end_time;
803                 else
804                         prev->end_time = sample->start_time;
805         }
806
807         if (ret < 0) {
808                 sample->err = ret;
809         } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
810                    type == IOTYPE_TX || type == IOTYPE_RX) {
811
812                 if ((u64)ret > c->max_bytes)
813                         c->max_bytes = ret;
814
815                 c->total_bytes += ret;
816                 p->total_bytes += ret;
817                 sample->bytes = ret;
818         }
819
820         /* merge two requests to make svg smaller and render-friendly */
821         if (prev &&
822             prev->type == sample->type &&
823             prev->err == sample->err &&
824             prev->fd == sample->fd &&
825             prev->end_time + tchart->merge_dist >= sample->start_time) {
826
827                 sample->bytes += prev->bytes;
828                 sample->merges += prev->merges + 1;
829
830                 sample->start_time = prev->start_time;
831                 sample->next = prev->next;
832                 free(prev);
833
834                 if (!sample->err && sample->bytes > c->max_bytes)
835                         c->max_bytes = sample->bytes;
836         }
837
838         tchart->io_events++;
839
840         return 0;
841 }
842
843 static int
844 process_enter_read(struct timechart *tchart,
845                    struct perf_evsel *evsel,
846                    struct perf_sample *sample)
847 {
848         long fd = perf_evsel__intval(evsel, sample, "fd");
849         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
850                                    sample->time, fd);
851 }
852
853 static int
854 process_exit_read(struct timechart *tchart,
855                   struct perf_evsel *evsel,
856                   struct perf_sample *sample)
857 {
858         long ret = perf_evsel__intval(evsel, sample, "ret");
859         return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
860                                  sample->time, ret);
861 }
862
863 static int
864 process_enter_write(struct timechart *tchart,
865                     struct perf_evsel *evsel,
866                     struct perf_sample *sample)
867 {
868         long fd = perf_evsel__intval(evsel, sample, "fd");
869         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
870                                    sample->time, fd);
871 }
872
873 static int
874 process_exit_write(struct timechart *tchart,
875                    struct perf_evsel *evsel,
876                    struct perf_sample *sample)
877 {
878         long ret = perf_evsel__intval(evsel, sample, "ret");
879         return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
880                                  sample->time, ret);
881 }
882
883 static int
884 process_enter_sync(struct timechart *tchart,
885                    struct perf_evsel *evsel,
886                    struct perf_sample *sample)
887 {
888         long fd = perf_evsel__intval(evsel, sample, "fd");
889         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
890                                    sample->time, fd);
891 }
892
893 static int
894 process_exit_sync(struct timechart *tchart,
895                   struct perf_evsel *evsel,
896                   struct perf_sample *sample)
897 {
898         long ret = perf_evsel__intval(evsel, sample, "ret");
899         return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
900                                  sample->time, ret);
901 }
902
903 static int
904 process_enter_tx(struct timechart *tchart,
905                  struct perf_evsel *evsel,
906                  struct perf_sample *sample)
907 {
908         long fd = perf_evsel__intval(evsel, sample, "fd");
909         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
910                                    sample->time, fd);
911 }
912
913 static int
914 process_exit_tx(struct timechart *tchart,
915                 struct perf_evsel *evsel,
916                 struct perf_sample *sample)
917 {
918         long ret = perf_evsel__intval(evsel, sample, "ret");
919         return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
920                                  sample->time, ret);
921 }
922
923 static int
924 process_enter_rx(struct timechart *tchart,
925                  struct perf_evsel *evsel,
926                  struct perf_sample *sample)
927 {
928         long fd = perf_evsel__intval(evsel, sample, "fd");
929         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
930                                    sample->time, fd);
931 }
932
933 static int
934 process_exit_rx(struct timechart *tchart,
935                 struct perf_evsel *evsel,
936                 struct perf_sample *sample)
937 {
938         long ret = perf_evsel__intval(evsel, sample, "ret");
939         return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
940                                  sample->time, ret);
941 }
942
943 static int
944 process_enter_poll(struct timechart *tchart,
945                    struct perf_evsel *evsel,
946                    struct perf_sample *sample)
947 {
948         long fd = perf_evsel__intval(evsel, sample, "fd");
949         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
950                                    sample->time, fd);
951 }
952
953 static int
954 process_exit_poll(struct timechart *tchart,
955                   struct perf_evsel *evsel,
956                   struct perf_sample *sample)
957 {
958         long ret = perf_evsel__intval(evsel, sample, "ret");
959         return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
960                                  sample->time, ret);
961 }
962
963 /*
964  * Sort the pid datastructure
965  */
966 static void sort_pids(struct timechart *tchart)
967 {
968         struct per_pid *new_list, *p, *cursor, *prev;
969         /* sort by ppid first, then by pid, lowest to highest */
970
971         new_list = NULL;
972
973         while (tchart->all_data) {
974                 p = tchart->all_data;
975                 tchart->all_data = p->next;
976                 p->next = NULL;
977
978                 if (new_list == NULL) {
979                         new_list = p;
980                         p->next = NULL;
981                         continue;
982                 }
983                 prev = NULL;
984                 cursor = new_list;
985                 while (cursor) {
986                         if (cursor->ppid > p->ppid ||
987                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
988                                 /* must insert before */
989                                 if (prev) {
990                                         p->next = prev->next;
991                                         prev->next = p;
992                                         cursor = NULL;
993                                         continue;
994                                 } else {
995                                         p->next = new_list;
996                                         new_list = p;
997                                         cursor = NULL;
998                                         continue;
999                                 }
1000                         }
1001
1002                         prev = cursor;
1003                         cursor = cursor->next;
1004                         if (!cursor)
1005                                 prev->next = p;
1006                 }
1007         }
1008         tchart->all_data = new_list;
1009 }
1010
1011
1012 static void draw_c_p_states(struct timechart *tchart)
1013 {
1014         struct power_event *pwr;
1015         pwr = tchart->power_events;
1016
1017         /*
1018          * two pass drawing so that the P state bars are on top of the C state blocks
1019          */
1020         while (pwr) {
1021                 if (pwr->type == CSTATE)
1022                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1023                 pwr = pwr->next;
1024         }
1025
1026         pwr = tchart->power_events;
1027         while (pwr) {
1028                 if (pwr->type == PSTATE) {
1029                         if (!pwr->state)
1030                                 pwr->state = tchart->min_freq;
1031                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1032                 }
1033                 pwr = pwr->next;
1034         }
1035 }
1036
1037 static void draw_wakeups(struct timechart *tchart)
1038 {
1039         struct wake_event *we;
1040         struct per_pid *p;
1041         struct per_pidcomm *c;
1042
1043         we = tchart->wake_events;
1044         while (we) {
1045                 int from = 0, to = 0;
1046                 char *task_from = NULL, *task_to = NULL;
1047
1048                 /* locate the column of the waker and wakee */
1049                 p = tchart->all_data;
1050                 while (p) {
1051                         if (p->pid == we->waker || p->pid == we->wakee) {
1052                                 c = p->all;
1053                                 while (c) {
1054                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1055                                                 if (p->pid == we->waker && !from) {
1056                                                         from = c->Y;
1057                                                         task_from = strdup(c->comm);
1058                                                 }
1059                                                 if (p->pid == we->wakee && !to) {
1060                                                         to = c->Y;
1061                                                         task_to = strdup(c->comm);
1062                                                 }
1063                                         }
1064                                         c = c->next;
1065                                 }
1066                                 c = p->all;
1067                                 while (c) {
1068                                         if (p->pid == we->waker && !from) {
1069                                                 from = c->Y;
1070                                                 task_from = strdup(c->comm);
1071                                         }
1072                                         if (p->pid == we->wakee && !to) {
1073                                                 to = c->Y;
1074                                                 task_to = strdup(c->comm);
1075                                         }
1076                                         c = c->next;
1077                                 }
1078                         }
1079                         p = p->next;
1080                 }
1081
1082                 if (!task_from) {
1083                         task_from = malloc(40);
1084                         sprintf(task_from, "[%i]", we->waker);
1085                 }
1086                 if (!task_to) {
1087                         task_to = malloc(40);
1088                         sprintf(task_to, "[%i]", we->wakee);
1089                 }
1090
1091                 if (we->waker == -1)
1092                         svg_interrupt(we->time, to, we->backtrace);
1093                 else if (from && to && abs(from - to) == 1)
1094                         svg_wakeline(we->time, from, to, we->backtrace);
1095                 else
1096                         svg_partial_wakeline(we->time, from, task_from, to,
1097                                              task_to, we->backtrace);
1098                 we = we->next;
1099
1100                 free(task_from);
1101                 free(task_to);
1102         }
1103 }
1104
1105 static void draw_cpu_usage(struct timechart *tchart)
1106 {
1107         struct per_pid *p;
1108         struct per_pidcomm *c;
1109         struct cpu_sample *sample;
1110         p = tchart->all_data;
1111         while (p) {
1112                 c = p->all;
1113                 while (c) {
1114                         sample = c->samples;
1115                         while (sample) {
1116                                 if (sample->type == TYPE_RUNNING) {
1117                                         svg_process(sample->cpu,
1118                                                     sample->start_time,
1119                                                     sample->end_time,
1120                                                     p->pid,
1121                                                     c->comm,
1122                                                     sample->backtrace);
1123                                 }
1124
1125                                 sample = sample->next;
1126                         }
1127                         c = c->next;
1128                 }
1129                 p = p->next;
1130         }
1131 }
1132
1133 static void draw_io_bars(struct timechart *tchart)
1134 {
1135         const char *suf;
1136         double bytes;
1137         char comm[256];
1138         struct per_pid *p;
1139         struct per_pidcomm *c;
1140         struct io_sample *sample;
1141         int Y = 1;
1142
1143         p = tchart->all_data;
1144         while (p) {
1145                 c = p->all;
1146                 while (c) {
1147                         if (!c->display) {
1148                                 c->Y = 0;
1149                                 c = c->next;
1150                                 continue;
1151                         }
1152
1153                         svg_box(Y, c->start_time, c->end_time, "process3");
1154                         sample = c->io_samples;
1155                         for (sample = c->io_samples; sample; sample = sample->next) {
1156                                 double h = (double)sample->bytes / c->max_bytes;
1157
1158                                 if (tchart->skip_eagain &&
1159                                     sample->err == -EAGAIN)
1160                                         continue;
1161
1162                                 if (sample->err)
1163                                         h = 1;
1164
1165                                 if (sample->type == IOTYPE_SYNC)
1166                                         svg_fbox(Y,
1167                                                 sample->start_time,
1168                                                 sample->end_time,
1169                                                 1,
1170                                                 sample->err ? "error" : "sync",
1171                                                 sample->fd,
1172                                                 sample->err,
1173                                                 sample->merges);
1174                                 else if (sample->type == IOTYPE_POLL)
1175                                         svg_fbox(Y,
1176                                                 sample->start_time,
1177                                                 sample->end_time,
1178                                                 1,
1179                                                 sample->err ? "error" : "poll",
1180                                                 sample->fd,
1181                                                 sample->err,
1182                                                 sample->merges);
1183                                 else if (sample->type == IOTYPE_READ)
1184                                         svg_ubox(Y,
1185                                                 sample->start_time,
1186                                                 sample->end_time,
1187                                                 h,
1188                                                 sample->err ? "error" : "disk",
1189                                                 sample->fd,
1190                                                 sample->err,
1191                                                 sample->merges);
1192                                 else if (sample->type == IOTYPE_WRITE)
1193                                         svg_lbox(Y,
1194                                                 sample->start_time,
1195                                                 sample->end_time,
1196                                                 h,
1197                                                 sample->err ? "error" : "disk",
1198                                                 sample->fd,
1199                                                 sample->err,
1200                                                 sample->merges);
1201                                 else if (sample->type == IOTYPE_RX)
1202                                         svg_ubox(Y,
1203                                                 sample->start_time,
1204                                                 sample->end_time,
1205                                                 h,
1206                                                 sample->err ? "error" : "net",
1207                                                 sample->fd,
1208                                                 sample->err,
1209                                                 sample->merges);
1210                                 else if (sample->type == IOTYPE_TX)
1211                                         svg_lbox(Y,
1212                                                 sample->start_time,
1213                                                 sample->end_time,
1214                                                 h,
1215                                                 sample->err ? "error" : "net",
1216                                                 sample->fd,
1217                                                 sample->err,
1218                                                 sample->merges);
1219                         }
1220
1221                         suf = "";
1222                         bytes = c->total_bytes;
1223                         if (bytes > 1024) {
1224                                 bytes = bytes / 1024;
1225                                 suf = "K";
1226                         }
1227                         if (bytes > 1024) {
1228                                 bytes = bytes / 1024;
1229                                 suf = "M";
1230                         }
1231                         if (bytes > 1024) {
1232                                 bytes = bytes / 1024;
1233                                 suf = "G";
1234                         }
1235
1236
1237                         sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1238                         svg_text(Y, c->start_time, comm);
1239
1240                         c->Y = Y;
1241                         Y++;
1242                         c = c->next;
1243                 }
1244                 p = p->next;
1245         }
1246 }
1247
1248 static void draw_process_bars(struct timechart *tchart)
1249 {
1250         struct per_pid *p;
1251         struct per_pidcomm *c;
1252         struct cpu_sample *sample;
1253         int Y = 0;
1254
1255         Y = 2 * tchart->numcpus + 2;
1256
1257         p = tchart->all_data;
1258         while (p) {
1259                 c = p->all;
1260                 while (c) {
1261                         if (!c->display) {
1262                                 c->Y = 0;
1263                                 c = c->next;
1264                                 continue;
1265                         }
1266
1267                         svg_box(Y, c->start_time, c->end_time, "process");
1268                         sample = c->samples;
1269                         while (sample) {
1270                                 if (sample->type == TYPE_RUNNING)
1271                                         svg_running(Y, sample->cpu,
1272                                                     sample->start_time,
1273                                                     sample->end_time,
1274                                                     sample->backtrace);
1275                                 if (sample->type == TYPE_BLOCKED)
1276                                         svg_blocked(Y, sample->cpu,
1277                                                     sample->start_time,
1278                                                     sample->end_time,
1279                                                     sample->backtrace);
1280                                 if (sample->type == TYPE_WAITING)
1281                                         svg_waiting(Y, sample->cpu,
1282                                                     sample->start_time,
1283                                                     sample->end_time,
1284                                                     sample->backtrace);
1285                                 sample = sample->next;
1286                         }
1287
1288                         if (c->comm) {
1289                                 char comm[256];
1290                                 if (c->total_time > 5000000000) /* 5 seconds */
1291                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
1292                                 else
1293                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
1294
1295                                 svg_text(Y, c->start_time, comm);
1296                         }
1297                         c->Y = Y;
1298                         Y++;
1299                         c = c->next;
1300                 }
1301                 p = p->next;
1302         }
1303 }
1304
1305 static void add_process_filter(const char *string)
1306 {
1307         int pid = strtoull(string, NULL, 10);
1308         struct process_filter *filt = malloc(sizeof(*filt));
1309
1310         if (!filt)
1311                 return;
1312
1313         filt->name = strdup(string);
1314         filt->pid  = pid;
1315         filt->next = process_filter;
1316
1317         process_filter = filt;
1318 }
1319
1320 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1321 {
1322         struct process_filter *filt;
1323         if (!process_filter)
1324                 return 1;
1325
1326         filt = process_filter;
1327         while (filt) {
1328                 if (filt->pid && p->pid == filt->pid)
1329                         return 1;
1330                 if (strcmp(filt->name, c->comm) == 0)
1331                         return 1;
1332                 filt = filt->next;
1333         }
1334         return 0;
1335 }
1336
1337 static int determine_display_tasks_filtered(struct timechart *tchart)
1338 {
1339         struct per_pid *p;
1340         struct per_pidcomm *c;
1341         int count = 0;
1342
1343         p = tchart->all_data;
1344         while (p) {
1345                 p->display = 0;
1346                 if (p->start_time == 1)
1347                         p->start_time = tchart->first_time;
1348
1349                 /* no exit marker, task kept running to the end */
1350                 if (p->end_time == 0)
1351                         p->end_time = tchart->last_time;
1352
1353                 c = p->all;
1354
1355                 while (c) {
1356                         c->display = 0;
1357
1358                         if (c->start_time == 1)
1359                                 c->start_time = tchart->first_time;
1360
1361                         if (passes_filter(p, c)) {
1362                                 c->display = 1;
1363                                 p->display = 1;
1364                                 count++;
1365                         }
1366
1367                         if (c->end_time == 0)
1368                                 c->end_time = tchart->last_time;
1369
1370                         c = c->next;
1371                 }
1372                 p = p->next;
1373         }
1374         return count;
1375 }
1376
1377 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1378 {
1379         struct per_pid *p;
1380         struct per_pidcomm *c;
1381         int count = 0;
1382
1383         p = tchart->all_data;
1384         while (p) {
1385                 p->display = 0;
1386                 if (p->start_time == 1)
1387                         p->start_time = tchart->first_time;
1388
1389                 /* no exit marker, task kept running to the end */
1390                 if (p->end_time == 0)
1391                         p->end_time = tchart->last_time;
1392                 if (p->total_time >= threshold)
1393                         p->display = 1;
1394
1395                 c = p->all;
1396
1397                 while (c) {
1398                         c->display = 0;
1399
1400                         if (c->start_time == 1)
1401                                 c->start_time = tchart->first_time;
1402
1403                         if (c->total_time >= threshold) {
1404                                 c->display = 1;
1405                                 count++;
1406                         }
1407
1408                         if (c->end_time == 0)
1409                                 c->end_time = tchart->last_time;
1410
1411                         c = c->next;
1412                 }
1413                 p = p->next;
1414         }
1415         return count;
1416 }
1417
1418 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1419 {
1420         struct per_pid *p;
1421         struct per_pidcomm *c;
1422         int count = 0;
1423
1424         p = timechart->all_data;
1425         while (p) {
1426                 /* no exit marker, task kept running to the end */
1427                 if (p->end_time == 0)
1428                         p->end_time = timechart->last_time;
1429
1430                 c = p->all;
1431
1432                 while (c) {
1433                         c->display = 0;
1434
1435                         if (c->total_bytes >= threshold) {
1436                                 c->display = 1;
1437                                 count++;
1438                         }
1439
1440                         if (c->end_time == 0)
1441                                 c->end_time = timechart->last_time;
1442
1443                         c = c->next;
1444                 }
1445                 p = p->next;
1446         }
1447         return count;
1448 }
1449
1450 #define BYTES_THRESH (1 * 1024 * 1024)
1451 #define TIME_THRESH 10000000
1452
1453 static void write_svg_file(struct timechart *tchart, const char *filename)
1454 {
1455         u64 i;
1456         int count;
1457         int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1458
1459         if (tchart->power_only)
1460                 tchart->proc_num = 0;
1461
1462         /* We'd like to show at least proc_num tasks;
1463          * be less picky if we have fewer */
1464         do {
1465                 if (process_filter)
1466                         count = determine_display_tasks_filtered(tchart);
1467                 else if (tchart->io_events)
1468                         count = determine_display_io_tasks(tchart, thresh);
1469                 else
1470                         count = determine_display_tasks(tchart, thresh);
1471                 thresh /= 10;
1472         } while (!process_filter && thresh && count < tchart->proc_num);
1473
1474         if (!tchart->proc_num)
1475                 count = 0;
1476
1477         if (tchart->io_events) {
1478                 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1479
1480                 svg_time_grid(0.5);
1481                 svg_io_legenda();
1482
1483                 draw_io_bars(tchart);
1484         } else {
1485                 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1486
1487                 svg_time_grid(0);
1488
1489                 svg_legenda();
1490
1491                 for (i = 0; i < tchart->numcpus; i++)
1492                         svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1493
1494                 draw_cpu_usage(tchart);
1495                 if (tchart->proc_num)
1496                         draw_process_bars(tchart);
1497                 if (!tchart->tasks_only)
1498                         draw_c_p_states(tchart);
1499                 if (tchart->proc_num)
1500                         draw_wakeups(tchart);
1501         }
1502
1503         svg_close();
1504 }
1505
1506 static int process_header(struct perf_file_section *section __maybe_unused,
1507                           struct perf_header *ph,
1508                           int feat,
1509                           int fd __maybe_unused,
1510                           void *data)
1511 {
1512         struct timechart *tchart = data;
1513
1514         switch (feat) {
1515         case HEADER_NRCPUS:
1516                 tchart->numcpus = ph->env.nr_cpus_avail;
1517                 break;
1518
1519         case HEADER_CPU_TOPOLOGY:
1520                 if (!tchart->topology)
1521                         break;
1522
1523                 if (svg_build_topology_map(ph->env.sibling_cores,
1524                                            ph->env.nr_sibling_cores,
1525                                            ph->env.sibling_threads,
1526                                            ph->env.nr_sibling_threads))
1527                         fprintf(stderr, "problem building topology\n");
1528                 break;
1529
1530         default:
1531                 break;
1532         }
1533
1534         return 0;
1535 }
1536
1537 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1538 {
1539         const struct perf_evsel_str_handler power_tracepoints[] = {
1540                 { "power:cpu_idle",             process_sample_cpu_idle },
1541                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1542                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1543                 { "sched:sched_switch",         process_sample_sched_switch },
1544 #ifdef SUPPORT_OLD_POWER_EVENTS
1545                 { "power:power_start",          process_sample_power_start },
1546                 { "power:power_end",            process_sample_power_end },
1547                 { "power:power_frequency",      process_sample_power_frequency },
1548 #endif
1549
1550                 { "syscalls:sys_enter_read",            process_enter_read },
1551                 { "syscalls:sys_enter_pread64",         process_enter_read },
1552                 { "syscalls:sys_enter_readv",           process_enter_read },
1553                 { "syscalls:sys_enter_preadv",          process_enter_read },
1554                 { "syscalls:sys_enter_write",           process_enter_write },
1555                 { "syscalls:sys_enter_pwrite64",        process_enter_write },
1556                 { "syscalls:sys_enter_writev",          process_enter_write },
1557                 { "syscalls:sys_enter_pwritev",         process_enter_write },
1558                 { "syscalls:sys_enter_sync",            process_enter_sync },
1559                 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1560                 { "syscalls:sys_enter_fsync",           process_enter_sync },
1561                 { "syscalls:sys_enter_msync",           process_enter_sync },
1562                 { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1563                 { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1564                 { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1565                 { "syscalls:sys_enter_sendto",          process_enter_tx },
1566                 { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1567                 { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1568                 { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1569                 { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1570                 { "syscalls:sys_enter_poll",            process_enter_poll },
1571                 { "syscalls:sys_enter_ppoll",           process_enter_poll },
1572                 { "syscalls:sys_enter_pselect6",        process_enter_poll },
1573                 { "syscalls:sys_enter_select",          process_enter_poll },
1574
1575                 { "syscalls:sys_exit_read",             process_exit_read },
1576                 { "syscalls:sys_exit_pread64",          process_exit_read },
1577                 { "syscalls:sys_exit_readv",            process_exit_read },
1578                 { "syscalls:sys_exit_preadv",           process_exit_read },
1579                 { "syscalls:sys_exit_write",            process_exit_write },
1580                 { "syscalls:sys_exit_pwrite64",         process_exit_write },
1581                 { "syscalls:sys_exit_writev",           process_exit_write },
1582                 { "syscalls:sys_exit_pwritev",          process_exit_write },
1583                 { "syscalls:sys_exit_sync",             process_exit_sync },
1584                 { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1585                 { "syscalls:sys_exit_fsync",            process_exit_sync },
1586                 { "syscalls:sys_exit_msync",            process_exit_sync },
1587                 { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1588                 { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1589                 { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1590                 { "syscalls:sys_exit_sendto",           process_exit_tx },
1591                 { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1592                 { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1593                 { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1594                 { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1595                 { "syscalls:sys_exit_poll",             process_exit_poll },
1596                 { "syscalls:sys_exit_ppoll",            process_exit_poll },
1597                 { "syscalls:sys_exit_pselect6",         process_exit_poll },
1598                 { "syscalls:sys_exit_select",           process_exit_poll },
1599         };
1600         struct perf_data_file file = {
1601                 .path = input_name,
1602                 .mode = PERF_DATA_MODE_READ,
1603                 .force = tchart->force,
1604         };
1605
1606         struct perf_session *session = perf_session__new(&file, false,
1607                                                          &tchart->tool);
1608         int ret = -EINVAL;
1609
1610         if (session == NULL)
1611                 return -1;
1612
1613         symbol__init(&session->header.env);
1614
1615         (void)perf_header__process_sections(&session->header,
1616                                             perf_data_file__fd(session->file),
1617                                             tchart,
1618                                             process_header);
1619
1620         if (!perf_session__has_traces(session, "timechart record"))
1621                 goto out_delete;
1622
1623         if (perf_session__set_tracepoints_handlers(session,
1624                                                    power_tracepoints)) {
1625                 pr_err("Initializing session tracepoint handlers failed\n");
1626                 goto out_delete;
1627         }
1628
1629         ret = perf_session__process_events(session);
1630         if (ret)
1631                 goto out_delete;
1632
1633         end_sample_processing(tchart);
1634
1635         sort_pids(tchart);
1636
1637         write_svg_file(tchart, output_name);
1638
1639         pr_info("Written %2.1f seconds of trace to %s.\n",
1640                 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1641 out_delete:
1642         perf_session__delete(session);
1643         return ret;
1644 }
1645
1646 static int timechart__io_record(int argc, const char **argv)
1647 {
1648         unsigned int rec_argc, i;
1649         const char **rec_argv;
1650         const char **p;
1651         char *filter = NULL;
1652
1653         const char * const common_args[] = {
1654                 "record", "-a", "-R", "-c", "1",
1655         };
1656         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1657
1658         const char * const disk_events[] = {
1659                 "syscalls:sys_enter_read",
1660                 "syscalls:sys_enter_pread64",
1661                 "syscalls:sys_enter_readv",
1662                 "syscalls:sys_enter_preadv",
1663                 "syscalls:sys_enter_write",
1664                 "syscalls:sys_enter_pwrite64",
1665                 "syscalls:sys_enter_writev",
1666                 "syscalls:sys_enter_pwritev",
1667                 "syscalls:sys_enter_sync",
1668                 "syscalls:sys_enter_sync_file_range",
1669                 "syscalls:sys_enter_fsync",
1670                 "syscalls:sys_enter_msync",
1671
1672                 "syscalls:sys_exit_read",
1673                 "syscalls:sys_exit_pread64",
1674                 "syscalls:sys_exit_readv",
1675                 "syscalls:sys_exit_preadv",
1676                 "syscalls:sys_exit_write",
1677                 "syscalls:sys_exit_pwrite64",
1678                 "syscalls:sys_exit_writev",
1679                 "syscalls:sys_exit_pwritev",
1680                 "syscalls:sys_exit_sync",
1681                 "syscalls:sys_exit_sync_file_range",
1682                 "syscalls:sys_exit_fsync",
1683                 "syscalls:sys_exit_msync",
1684         };
1685         unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1686
1687         const char * const net_events[] = {
1688                 "syscalls:sys_enter_recvfrom",
1689                 "syscalls:sys_enter_recvmmsg",
1690                 "syscalls:sys_enter_recvmsg",
1691                 "syscalls:sys_enter_sendto",
1692                 "syscalls:sys_enter_sendmsg",
1693                 "syscalls:sys_enter_sendmmsg",
1694
1695                 "syscalls:sys_exit_recvfrom",
1696                 "syscalls:sys_exit_recvmmsg",
1697                 "syscalls:sys_exit_recvmsg",
1698                 "syscalls:sys_exit_sendto",
1699                 "syscalls:sys_exit_sendmsg",
1700                 "syscalls:sys_exit_sendmmsg",
1701         };
1702         unsigned int net_events_nr = ARRAY_SIZE(net_events);
1703
1704         const char * const poll_events[] = {
1705                 "syscalls:sys_enter_epoll_pwait",
1706                 "syscalls:sys_enter_epoll_wait",
1707                 "syscalls:sys_enter_poll",
1708                 "syscalls:sys_enter_ppoll",
1709                 "syscalls:sys_enter_pselect6",
1710                 "syscalls:sys_enter_select",
1711
1712                 "syscalls:sys_exit_epoll_pwait",
1713                 "syscalls:sys_exit_epoll_wait",
1714                 "syscalls:sys_exit_poll",
1715                 "syscalls:sys_exit_ppoll",
1716                 "syscalls:sys_exit_pselect6",
1717                 "syscalls:sys_exit_select",
1718         };
1719         unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1720
1721         rec_argc = common_args_nr +
1722                 disk_events_nr * 4 +
1723                 net_events_nr * 4 +
1724                 poll_events_nr * 4 +
1725                 argc;
1726         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1727
1728         if (rec_argv == NULL)
1729                 return -ENOMEM;
1730
1731         if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1732                 return -ENOMEM;
1733
1734         p = rec_argv;
1735         for (i = 0; i < common_args_nr; i++)
1736                 *p++ = strdup(common_args[i]);
1737
1738         for (i = 0; i < disk_events_nr; i++) {
1739                 if (!is_valid_tracepoint(disk_events[i])) {
1740                         rec_argc -= 4;
1741                         continue;
1742                 }
1743
1744                 *p++ = "-e";
1745                 *p++ = strdup(disk_events[i]);
1746                 *p++ = "--filter";
1747                 *p++ = filter;
1748         }
1749         for (i = 0; i < net_events_nr; i++) {
1750                 if (!is_valid_tracepoint(net_events[i])) {
1751                         rec_argc -= 4;
1752                         continue;
1753                 }
1754
1755                 *p++ = "-e";
1756                 *p++ = strdup(net_events[i]);
1757                 *p++ = "--filter";
1758                 *p++ = filter;
1759         }
1760         for (i = 0; i < poll_events_nr; i++) {
1761                 if (!is_valid_tracepoint(poll_events[i])) {
1762                         rec_argc -= 4;
1763                         continue;
1764                 }
1765
1766                 *p++ = "-e";
1767                 *p++ = strdup(poll_events[i]);
1768                 *p++ = "--filter";
1769                 *p++ = filter;
1770         }
1771
1772         for (i = 0; i < (unsigned int)argc; i++)
1773                 *p++ = argv[i];
1774
1775         return cmd_record(rec_argc, rec_argv, NULL);
1776 }
1777
1778
1779 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1780 {
1781         unsigned int rec_argc, i, j;
1782         const char **rec_argv;
1783         const char **p;
1784         unsigned int record_elems;
1785
1786         const char * const common_args[] = {
1787                 "record", "-a", "-R", "-c", "1",
1788         };
1789         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1790
1791         const char * const backtrace_args[] = {
1792                 "-g",
1793         };
1794         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1795
1796         const char * const power_args[] = {
1797                 "-e", "power:cpu_frequency",
1798                 "-e", "power:cpu_idle",
1799         };
1800         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1801
1802         const char * const old_power_args[] = {
1803 #ifdef SUPPORT_OLD_POWER_EVENTS
1804                 "-e", "power:power_start",
1805                 "-e", "power:power_end",
1806                 "-e", "power:power_frequency",
1807 #endif
1808         };
1809         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1810
1811         const char * const tasks_args[] = {
1812                 "-e", "sched:sched_wakeup",
1813                 "-e", "sched:sched_switch",
1814         };
1815         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1816
1817 #ifdef SUPPORT_OLD_POWER_EVENTS
1818         if (!is_valid_tracepoint("power:cpu_idle") &&
1819             is_valid_tracepoint("power:power_start")) {
1820                 use_old_power_events = 1;
1821                 power_args_nr = 0;
1822         } else {
1823                 old_power_args_nr = 0;
1824         }
1825 #endif
1826
1827         if (tchart->power_only)
1828                 tasks_args_nr = 0;
1829
1830         if (tchart->tasks_only) {
1831                 power_args_nr = 0;
1832                 old_power_args_nr = 0;
1833         }
1834
1835         if (!tchart->with_backtrace)
1836                 backtrace_args_no = 0;
1837
1838         record_elems = common_args_nr + tasks_args_nr +
1839                 power_args_nr + old_power_args_nr + backtrace_args_no;
1840
1841         rec_argc = record_elems + argc;
1842         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1843
1844         if (rec_argv == NULL)
1845                 return -ENOMEM;
1846
1847         p = rec_argv;
1848         for (i = 0; i < common_args_nr; i++)
1849                 *p++ = strdup(common_args[i]);
1850
1851         for (i = 0; i < backtrace_args_no; i++)
1852                 *p++ = strdup(backtrace_args[i]);
1853
1854         for (i = 0; i < tasks_args_nr; i++)
1855                 *p++ = strdup(tasks_args[i]);
1856
1857         for (i = 0; i < power_args_nr; i++)
1858                 *p++ = strdup(power_args[i]);
1859
1860         for (i = 0; i < old_power_args_nr; i++)
1861                 *p++ = strdup(old_power_args[i]);
1862
1863         for (j = 0; j < (unsigned int)argc; j++)
1864                 *p++ = argv[j];
1865
1866         return cmd_record(rec_argc, rec_argv, NULL);
1867 }
1868
1869 static int
1870 parse_process(const struct option *opt __maybe_unused, const char *arg,
1871               int __maybe_unused unset)
1872 {
1873         if (arg)
1874                 add_process_filter(arg);
1875         return 0;
1876 }
1877
1878 static int
1879 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1880                 int __maybe_unused unset)
1881 {
1882         unsigned long duration = strtoul(arg, NULL, 0);
1883
1884         if (svg_highlight || svg_highlight_name)
1885                 return -1;
1886
1887         if (duration)
1888                 svg_highlight = duration;
1889         else
1890                 svg_highlight_name = strdup(arg);
1891
1892         return 0;
1893 }
1894
1895 static int
1896 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1897 {
1898         char unit = 'n';
1899         u64 *value = opt->value;
1900
1901         if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1902                 switch (unit) {
1903                 case 'm':
1904                         *value *= 1000000;
1905                         break;
1906                 case 'u':
1907                         *value *= 1000;
1908                         break;
1909                 case 'n':
1910                         break;
1911                 default:
1912                         return -1;
1913                 }
1914         }
1915
1916         return 0;
1917 }
1918
1919 int cmd_timechart(int argc, const char **argv,
1920                   const char *prefix __maybe_unused)
1921 {
1922         struct timechart tchart = {
1923                 .tool = {
1924                         .comm            = process_comm_event,
1925                         .fork            = process_fork_event,
1926                         .exit            = process_exit_event,
1927                         .sample          = process_sample_event,
1928                         .ordered_events  = true,
1929                 },
1930                 .proc_num = 15,
1931                 .min_time = 1000000,
1932                 .merge_dist = 1000,
1933         };
1934         const char *output_name = "output.svg";
1935         const struct option timechart_options[] = {
1936         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1937         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1938         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1939         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1940                       "highlight tasks. Pass duration in ns or process name.",
1941                        parse_highlight),
1942         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1943         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1944                     "output processes data only"),
1945         OPT_CALLBACK('p', "process", NULL, "process",
1946                       "process selector. Pass a pid or process name.",
1947                        parse_process),
1948         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1949                     "Look for files with symbols relative to this directory"),
1950         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1951                     "min. number of tasks to print"),
1952         OPT_BOOLEAN('t', "topology", &tchart.topology,
1953                     "sort CPUs according to topology"),
1954         OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1955                     "skip EAGAIN errors"),
1956         OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1957                      "all IO faster than min-time will visually appear longer",
1958                      parse_time),
1959         OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1960                      "merge events that are merge-dist us apart",
1961                      parse_time),
1962         OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1963         OPT_END()
1964         };
1965         const char * const timechart_subcommands[] = { "record", NULL };
1966         const char *timechart_usage[] = {
1967                 "perf timechart [<options>] {record}",
1968                 NULL
1969         };
1970
1971         const struct option timechart_record_options[] = {
1972         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1973         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1974                     "output processes data only"),
1975         OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1976                     "record only IO data"),
1977         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1978         OPT_END()
1979         };
1980         const char * const timechart_record_usage[] = {
1981                 "perf timechart record [<options>]",
1982                 NULL
1983         };
1984         argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1985                         timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1986
1987         if (tchart.power_only && tchart.tasks_only) {
1988                 pr_err("-P and -T options cannot be used at the same time.\n");
1989                 return -1;
1990         }
1991
1992         if (argc && !strncmp(argv[0], "rec", 3)) {
1993                 argc = parse_options(argc, argv, timechart_record_options,
1994                                      timechart_record_usage,
1995                                      PARSE_OPT_STOP_AT_NON_OPTION);
1996
1997                 if (tchart.power_only && tchart.tasks_only) {
1998                         pr_err("-P and -T options cannot be used at the same time.\n");
1999                         return -1;
2000                 }
2001
2002                 if (tchart.io_only)
2003                         return timechart__io_record(argc, argv);
2004                 else
2005                         return timechart__record(&tchart, argc, argv);
2006         } else if (argc)
2007                 usage_with_options(timechart_usage, timechart_options);
2008
2009         setup_pager();
2010
2011         return __cmd_timechart(&tchart, output_name);
2012 }