Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / tools / perf / bench / numa.c
1 /*
2  * numa.c
3  *
4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5  */
6
7 #include "../perf.h"
8 #include "../builtin.h"
9 #include "../util/util.h"
10 #include "../util/parse-options.h"
11
12 #include "bench.h"
13
14 #include <errno.h>
15 #include <sched.h>
16 #include <stdio.h>
17 #include <assert.h>
18 #include <malloc.h>
19 #include <signal.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <unistd.h>
23 #include <pthread.h>
24 #include <sys/mman.h>
25 #include <sys/time.h>
26 #include <sys/wait.h>
27 #include <sys/prctl.h>
28 #include <sys/types.h>
29
30 #include <numa.h>
31 #include <numaif.h>
32
33 /*
34  * Regular printout to the terminal, supressed if -q is specified:
35  */
36 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
37
38 /*
39  * Debug printf:
40  */
41 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
42
43 struct thread_data {
44         int                     curr_cpu;
45         cpu_set_t               bind_cpumask;
46         int                     bind_node;
47         u8                      *process_data;
48         int                     process_nr;
49         int                     thread_nr;
50         int                     task_nr;
51         unsigned int            loops_done;
52         u64                     val;
53         u64                     runtime_ns;
54         pthread_mutex_t         *process_lock;
55 };
56
57 /* Parameters set by options: */
58
59 struct params {
60         /* Startup synchronization: */
61         bool                    serialize_startup;
62
63         /* Task hierarchy: */
64         int                     nr_proc;
65         int                     nr_threads;
66
67         /* Working set sizes: */
68         const char              *mb_global_str;
69         const char              *mb_proc_str;
70         const char              *mb_proc_locked_str;
71         const char              *mb_thread_str;
72
73         double                  mb_global;
74         double                  mb_proc;
75         double                  mb_proc_locked;
76         double                  mb_thread;
77
78         /* Access patterns to the working set: */
79         bool                    data_reads;
80         bool                    data_writes;
81         bool                    data_backwards;
82         bool                    data_zero_memset;
83         bool                    data_rand_walk;
84         u32                     nr_loops;
85         u32                     nr_secs;
86         u32                     sleep_usecs;
87
88         /* Working set initialization: */
89         bool                    init_zero;
90         bool                    init_random;
91         bool                    init_cpu0;
92
93         /* Misc options: */
94         int                     show_details;
95         int                     run_all;
96         int                     thp;
97
98         long                    bytes_global;
99         long                    bytes_process;
100         long                    bytes_process_locked;
101         long                    bytes_thread;
102
103         int                     nr_tasks;
104         bool                    show_quiet;
105
106         bool                    show_convergence;
107         bool                    measure_convergence;
108
109         int                     perturb_secs;
110         int                     nr_cpus;
111         int                     nr_nodes;
112
113         /* Affinity options -C and -N: */
114         char                    *cpu_list_str;
115         char                    *node_list_str;
116 };
117
118
119 /* Global, read-writable area, accessible to all processes and threads: */
120
121 struct global_info {
122         u8                      *data;
123
124         pthread_mutex_t         startup_mutex;
125         int                     nr_tasks_started;
126
127         pthread_mutex_t         startup_done_mutex;
128
129         pthread_mutex_t         start_work_mutex;
130         int                     nr_tasks_working;
131
132         pthread_mutex_t         stop_work_mutex;
133         u64                     bytes_done;
134
135         struct thread_data      *threads;
136
137         /* Convergence latency measurement: */
138         bool                    all_converged;
139         bool                    stop_work;
140
141         int                     print_once;
142
143         struct params           p;
144 };
145
146 static struct global_info       *g = NULL;
147
148 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
149 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
150
151 struct params p0;
152
153 static const struct option options[] = {
154         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
155         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
156
157         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
158         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
159         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
160         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
161
162         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run"),
163         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run"),
164         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
165
166         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via writes (can be mixed with -W)"),
167         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
168         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
169         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
170         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
171
172
173         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
174         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
175         OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
176         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
177
178         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
179         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
180         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
181         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
182         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
183         OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
184         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
185
186         /* Special option string parsing callbacks: */
187         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
188                         "bind the first N tasks to these specific cpus (the rest is unbound)",
189                         parse_cpus_opt),
190         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
191                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
192                         parse_nodes_opt),
193         OPT_END()
194 };
195
196 static const char * const bench_numa_usage[] = {
197         "perf bench numa <options>",
198         NULL
199 };
200
201 static const char * const numa_usage[] = {
202         "perf bench numa mem [<options>]",
203         NULL
204 };
205
206 static cpu_set_t bind_to_cpu(int target_cpu)
207 {
208         cpu_set_t orig_mask, mask;
209         int ret;
210
211         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
212         BUG_ON(ret);
213
214         CPU_ZERO(&mask);
215
216         if (target_cpu == -1) {
217                 int cpu;
218
219                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
220                         CPU_SET(cpu, &mask);
221         } else {
222                 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
223                 CPU_SET(target_cpu, &mask);
224         }
225
226         ret = sched_setaffinity(0, sizeof(mask), &mask);
227         BUG_ON(ret);
228
229         return orig_mask;
230 }
231
232 static cpu_set_t bind_to_node(int target_node)
233 {
234         int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
235         cpu_set_t orig_mask, mask;
236         int cpu;
237         int ret;
238
239         BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
240         BUG_ON(!cpus_per_node);
241
242         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
243         BUG_ON(ret);
244
245         CPU_ZERO(&mask);
246
247         if (target_node == -1) {
248                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
249                         CPU_SET(cpu, &mask);
250         } else {
251                 int cpu_start = (target_node + 0) * cpus_per_node;
252                 int cpu_stop  = (target_node + 1) * cpus_per_node;
253
254                 BUG_ON(cpu_stop > g->p.nr_cpus);
255
256                 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
257                         CPU_SET(cpu, &mask);
258         }
259
260         ret = sched_setaffinity(0, sizeof(mask), &mask);
261         BUG_ON(ret);
262
263         return orig_mask;
264 }
265
266 static void bind_to_cpumask(cpu_set_t mask)
267 {
268         int ret;
269
270         ret = sched_setaffinity(0, sizeof(mask), &mask);
271         BUG_ON(ret);
272 }
273
274 static void mempol_restore(void)
275 {
276         int ret;
277
278         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
279
280         BUG_ON(ret);
281 }
282
283 static void bind_to_memnode(int node)
284 {
285         unsigned long nodemask;
286         int ret;
287
288         if (node == -1)
289                 return;
290
291         BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
292         nodemask = 1L << node;
293
294         ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
295         dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
296
297         BUG_ON(ret);
298 }
299
300 #define HPSIZE (2*1024*1024)
301
302 #define set_taskname(fmt...)                            \
303 do {                                                    \
304         char name[20];                                  \
305                                                         \
306         snprintf(name, 20, fmt);                        \
307         prctl(PR_SET_NAME, name);                       \
308 } while (0)
309
310 static u8 *alloc_data(ssize_t bytes0, int map_flags,
311                       int init_zero, int init_cpu0, int thp, int init_random)
312 {
313         cpu_set_t orig_mask;
314         ssize_t bytes;
315         u8 *buf;
316         int ret;
317
318         if (!bytes0)
319                 return NULL;
320
321         /* Allocate and initialize all memory on CPU#0: */
322         if (init_cpu0) {
323                 orig_mask = bind_to_node(0);
324                 bind_to_memnode(0);
325         }
326
327         bytes = bytes0 + HPSIZE;
328
329         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
330         BUG_ON(buf == (void *)-1);
331
332         if (map_flags == MAP_PRIVATE) {
333                 if (thp > 0) {
334                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
335                         if (ret && !g->print_once) {
336                                 g->print_once = 1;
337                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
338                         }
339                 }
340                 if (thp < 0) {
341                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
342                         if (ret && !g->print_once) {
343                                 g->print_once = 1;
344                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
345                         }
346                 }
347         }
348
349         if (init_zero) {
350                 bzero(buf, bytes);
351         } else {
352                 /* Initialize random contents, different in each word: */
353                 if (init_random) {
354                         u64 *wbuf = (void *)buf;
355                         long off = rand();
356                         long i;
357
358                         for (i = 0; i < bytes/8; i++)
359                                 wbuf[i] = i + off;
360                 }
361         }
362
363         /* Align to 2MB boundary: */
364         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
365
366         /* Restore affinity: */
367         if (init_cpu0) {
368                 bind_to_cpumask(orig_mask);
369                 mempol_restore();
370         }
371
372         return buf;
373 }
374
375 static void free_data(void *data, ssize_t bytes)
376 {
377         int ret;
378
379         if (!data)
380                 return;
381
382         ret = munmap(data, bytes);
383         BUG_ON(ret);
384 }
385
386 /*
387  * Create a shared memory buffer that can be shared between processes, zeroed:
388  */
389 static void * zalloc_shared_data(ssize_t bytes)
390 {
391         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
392 }
393
394 /*
395  * Create a shared memory buffer that can be shared between processes:
396  */
397 static void * setup_shared_data(ssize_t bytes)
398 {
399         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
400 }
401
402 /*
403  * Allocate process-local memory - this will either be shared between
404  * threads of this process, or only be accessed by this thread:
405  */
406 static void * setup_private_data(ssize_t bytes)
407 {
408         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
409 }
410
411 /*
412  * Return a process-shared (global) mutex:
413  */
414 static void init_global_mutex(pthread_mutex_t *mutex)
415 {
416         pthread_mutexattr_t attr;
417
418         pthread_mutexattr_init(&attr);
419         pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
420         pthread_mutex_init(mutex, &attr);
421 }
422
423 static int parse_cpu_list(const char *arg)
424 {
425         p0.cpu_list_str = strdup(arg);
426
427         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
428
429         return 0;
430 }
431
432 static int parse_setup_cpu_list(void)
433 {
434         struct thread_data *td;
435         char *str0, *str;
436         int t;
437
438         if (!g->p.cpu_list_str)
439                 return 0;
440
441         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
442
443         str0 = str = strdup(g->p.cpu_list_str);
444         t = 0;
445
446         BUG_ON(!str);
447
448         tprintf("# binding tasks to CPUs:\n");
449         tprintf("#  ");
450
451         while (true) {
452                 int bind_cpu, bind_cpu_0, bind_cpu_1;
453                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
454                 int bind_len;
455                 int step;
456                 int mul;
457
458                 tok = strsep(&str, ",");
459                 if (!tok)
460                         break;
461
462                 tok_end = strstr(tok, "-");
463
464                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
465                 if (!tok_end) {
466                         /* Single CPU specified: */
467                         bind_cpu_0 = bind_cpu_1 = atol(tok);
468                 } else {
469                         /* CPU range specified (for example: "5-11"): */
470                         bind_cpu_0 = atol(tok);
471                         bind_cpu_1 = atol(tok_end + 1);
472                 }
473
474                 step = 1;
475                 tok_step = strstr(tok, "#");
476                 if (tok_step) {
477                         step = atol(tok_step + 1);
478                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
479                 }
480
481                 /*
482                  * Mask length.
483                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
484                  * where the _4 means the next 4 CPUs are allowed.
485                  */
486                 bind_len = 1;
487                 tok_len = strstr(tok, "_");
488                 if (tok_len) {
489                         bind_len = atol(tok_len + 1);
490                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
491                 }
492
493                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
494                 mul = 1;
495                 tok_mul = strstr(tok, "x");
496                 if (tok_mul) {
497                         mul = atol(tok_mul + 1);
498                         BUG_ON(mul <= 0);
499                 }
500
501                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
502
503                 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
504                         printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
505                         return -1;
506                 }
507
508                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
509                 BUG_ON(bind_cpu_0 > bind_cpu_1);
510
511                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
512                         int i;
513
514                         for (i = 0; i < mul; i++) {
515                                 int cpu;
516
517                                 if (t >= g->p.nr_tasks) {
518                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
519                                         goto out;
520                                 }
521                                 td = g->threads + t;
522
523                                 if (t)
524                                         tprintf(",");
525                                 if (bind_len > 1) {
526                                         tprintf("%2d/%d", bind_cpu, bind_len);
527                                 } else {
528                                         tprintf("%2d", bind_cpu);
529                                 }
530
531                                 CPU_ZERO(&td->bind_cpumask);
532                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
533                                         BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
534                                         CPU_SET(cpu, &td->bind_cpumask);
535                                 }
536                                 t++;
537                         }
538                 }
539         }
540 out:
541
542         tprintf("\n");
543
544         if (t < g->p.nr_tasks)
545                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
546
547         free(str0);
548         return 0;
549 }
550
551 static int parse_cpus_opt(const struct option *opt __maybe_unused,
552                           const char *arg, int unset __maybe_unused)
553 {
554         if (!arg)
555                 return -1;
556
557         return parse_cpu_list(arg);
558 }
559
560 static int parse_node_list(const char *arg)
561 {
562         p0.node_list_str = strdup(arg);
563
564         dprintf("got NODE list: {%s}\n", p0.node_list_str);
565
566         return 0;
567 }
568
569 static int parse_setup_node_list(void)
570 {
571         struct thread_data *td;
572         char *str0, *str;
573         int t;
574
575         if (!g->p.node_list_str)
576                 return 0;
577
578         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
579
580         str0 = str = strdup(g->p.node_list_str);
581         t = 0;
582
583         BUG_ON(!str);
584
585         tprintf("# binding tasks to NODEs:\n");
586         tprintf("# ");
587
588         while (true) {
589                 int bind_node, bind_node_0, bind_node_1;
590                 char *tok, *tok_end, *tok_step, *tok_mul;
591                 int step;
592                 int mul;
593
594                 tok = strsep(&str, ",");
595                 if (!tok)
596                         break;
597
598                 tok_end = strstr(tok, "-");
599
600                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
601                 if (!tok_end) {
602                         /* Single NODE specified: */
603                         bind_node_0 = bind_node_1 = atol(tok);
604                 } else {
605                         /* NODE range specified (for example: "5-11"): */
606                         bind_node_0 = atol(tok);
607                         bind_node_1 = atol(tok_end + 1);
608                 }
609
610                 step = 1;
611                 tok_step = strstr(tok, "#");
612                 if (tok_step) {
613                         step = atol(tok_step + 1);
614                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
615                 }
616
617                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
618                 mul = 1;
619                 tok_mul = strstr(tok, "x");
620                 if (tok_mul) {
621                         mul = atol(tok_mul + 1);
622                         BUG_ON(mul <= 0);
623                 }
624
625                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
626
627                 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
628                         printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
629                         return -1;
630                 }
631
632                 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
633                 BUG_ON(bind_node_0 > bind_node_1);
634
635                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
636                         int i;
637
638                         for (i = 0; i < mul; i++) {
639                                 if (t >= g->p.nr_tasks) {
640                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
641                                         goto out;
642                                 }
643                                 td = g->threads + t;
644
645                                 if (!t)
646                                         tprintf(" %2d", bind_node);
647                                 else
648                                         tprintf(",%2d", bind_node);
649
650                                 td->bind_node = bind_node;
651                                 t++;
652                         }
653                 }
654         }
655 out:
656
657         tprintf("\n");
658
659         if (t < g->p.nr_tasks)
660                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
661
662         free(str0);
663         return 0;
664 }
665
666 static int parse_nodes_opt(const struct option *opt __maybe_unused,
667                           const char *arg, int unset __maybe_unused)
668 {
669         if (!arg)
670                 return -1;
671
672         return parse_node_list(arg);
673
674         return 0;
675 }
676
677 #define BIT(x) (1ul << x)
678
679 static inline uint32_t lfsr_32(uint32_t lfsr)
680 {
681         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
682         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
683 }
684
685 /*
686  * Make sure there's real data dependency to RAM (when read
687  * accesses are enabled), so the compiler, the CPU and the
688  * kernel (KSM, zero page, etc.) cannot optimize away RAM
689  * accesses:
690  */
691 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
692 {
693         if (g->p.data_reads)
694                 val += *data;
695         if (g->p.data_writes)
696                 *data = val + 1;
697         return val;
698 }
699
700 /*
701  * The worker process does two types of work, a forwards going
702  * loop and a backwards going loop.
703  *
704  * We do this so that on multiprocessor systems we do not create
705  * a 'train' of processing, with highly synchronized processes,
706  * skewing the whole benchmark.
707  */
708 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
709 {
710         long words = bytes/sizeof(u64);
711         u64 *data = (void *)__data;
712         long chunk_0, chunk_1;
713         u64 *d0, *d, *d1;
714         long off;
715         long i;
716
717         BUG_ON(!data && words);
718         BUG_ON(data && !words);
719
720         if (!data)
721                 return val;
722
723         /* Very simple memset() work variant: */
724         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
725                 bzero(data, bytes);
726                 return val;
727         }
728
729         /* Spread out by PID/TID nr and by loop nr: */
730         chunk_0 = words/nr_max;
731         chunk_1 = words/g->p.nr_loops;
732         off = nr*chunk_0 + loop*chunk_1;
733
734         while (off >= words)
735                 off -= words;
736
737         if (g->p.data_rand_walk) {
738                 u32 lfsr = nr + loop + val;
739                 int j;
740
741                 for (i = 0; i < words/1024; i++) {
742                         long start, end;
743
744                         lfsr = lfsr_32(lfsr);
745
746                         start = lfsr % words;
747                         end = min(start + 1024, words-1);
748
749                         if (g->p.data_zero_memset) {
750                                 bzero(data + start, (end-start) * sizeof(u64));
751                         } else {
752                                 for (j = start; j < end; j++)
753                                         val = access_data(data + j, val);
754                         }
755                 }
756         } else if (!g->p.data_backwards || (nr + loop) & 1) {
757
758                 d0 = data + off;
759                 d  = data + off + 1;
760                 d1 = data + words;
761
762                 /* Process data forwards: */
763                 for (;;) {
764                         if (unlikely(d >= d1))
765                                 d = data;
766                         if (unlikely(d == d0))
767                                 break;
768
769                         val = access_data(d, val);
770
771                         d++;
772                 }
773         } else {
774                 /* Process data backwards: */
775
776                 d0 = data + off;
777                 d  = data + off - 1;
778                 d1 = data + words;
779
780                 /* Process data forwards: */
781                 for (;;) {
782                         if (unlikely(d < data))
783                                 d = data + words-1;
784                         if (unlikely(d == d0))
785                                 break;
786
787                         val = access_data(d, val);
788
789                         d--;
790                 }
791         }
792
793         return val;
794 }
795
796 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
797 {
798         unsigned int cpu;
799
800         cpu = sched_getcpu();
801
802         g->threads[task_nr].curr_cpu = cpu;
803         prctl(0, bytes_worked);
804 }
805
806 #define MAX_NR_NODES    64
807
808 /*
809  * Count the number of nodes a process's threads
810  * are spread out on.
811  *
812  * A count of 1 means that the process is compressed
813  * to a single node. A count of g->p.nr_nodes means it's
814  * spread out on the whole system.
815  */
816 static int count_process_nodes(int process_nr)
817 {
818         char node_present[MAX_NR_NODES] = { 0, };
819         int nodes;
820         int n, t;
821
822         for (t = 0; t < g->p.nr_threads; t++) {
823                 struct thread_data *td;
824                 int task_nr;
825                 int node;
826
827                 task_nr = process_nr*g->p.nr_threads + t;
828                 td = g->threads + task_nr;
829
830                 node = numa_node_of_cpu(td->curr_cpu);
831                 if (node < 0) /* curr_cpu was likely still -1 */
832                         return 0;
833
834                 node_present[node] = 1;
835         }
836
837         nodes = 0;
838
839         for (n = 0; n < MAX_NR_NODES; n++)
840                 nodes += node_present[n];
841
842         return nodes;
843 }
844
845 /*
846  * Count the number of distinct process-threads a node contains.
847  *
848  * A count of 1 means that the node contains only a single
849  * process. If all nodes on the system contain at most one
850  * process then we are well-converged.
851  */
852 static int count_node_processes(int node)
853 {
854         int processes = 0;
855         int t, p;
856
857         for (p = 0; p < g->p.nr_proc; p++) {
858                 for (t = 0; t < g->p.nr_threads; t++) {
859                         struct thread_data *td;
860                         int task_nr;
861                         int n;
862
863                         task_nr = p*g->p.nr_threads + t;
864                         td = g->threads + task_nr;
865
866                         n = numa_node_of_cpu(td->curr_cpu);
867                         if (n == node) {
868                                 processes++;
869                                 break;
870                         }
871                 }
872         }
873
874         return processes;
875 }
876
877 static void calc_convergence_compression(int *strong)
878 {
879         unsigned int nodes_min, nodes_max;
880         int p;
881
882         nodes_min = -1;
883         nodes_max =  0;
884
885         for (p = 0; p < g->p.nr_proc; p++) {
886                 unsigned int nodes = count_process_nodes(p);
887
888                 if (!nodes) {
889                         *strong = 0;
890                         return;
891                 }
892
893                 nodes_min = min(nodes, nodes_min);
894                 nodes_max = max(nodes, nodes_max);
895         }
896
897         /* Strong convergence: all threads compress on a single node: */
898         if (nodes_min == 1 && nodes_max == 1) {
899                 *strong = 1;
900         } else {
901                 *strong = 0;
902                 tprintf(" {%d-%d}", nodes_min, nodes_max);
903         }
904 }
905
906 static void calc_convergence(double runtime_ns_max, double *convergence)
907 {
908         unsigned int loops_done_min, loops_done_max;
909         int process_groups;
910         int nodes[MAX_NR_NODES];
911         int distance;
912         int nr_min;
913         int nr_max;
914         int strong;
915         int sum;
916         int nr;
917         int node;
918         int cpu;
919         int t;
920
921         if (!g->p.show_convergence && !g->p.measure_convergence)
922                 return;
923
924         for (node = 0; node < g->p.nr_nodes; node++)
925                 nodes[node] = 0;
926
927         loops_done_min = -1;
928         loops_done_max = 0;
929
930         for (t = 0; t < g->p.nr_tasks; t++) {
931                 struct thread_data *td = g->threads + t;
932                 unsigned int loops_done;
933
934                 cpu = td->curr_cpu;
935
936                 /* Not all threads have written it yet: */
937                 if (cpu < 0)
938                         continue;
939
940                 node = numa_node_of_cpu(cpu);
941
942                 nodes[node]++;
943
944                 loops_done = td->loops_done;
945                 loops_done_min = min(loops_done, loops_done_min);
946                 loops_done_max = max(loops_done, loops_done_max);
947         }
948
949         nr_max = 0;
950         nr_min = g->p.nr_tasks;
951         sum = 0;
952
953         for (node = 0; node < g->p.nr_nodes; node++) {
954                 nr = nodes[node];
955                 nr_min = min(nr, nr_min);
956                 nr_max = max(nr, nr_max);
957                 sum += nr;
958         }
959         BUG_ON(nr_min > nr_max);
960
961         BUG_ON(sum > g->p.nr_tasks);
962
963         if (0 && (sum < g->p.nr_tasks))
964                 return;
965
966         /*
967          * Count the number of distinct process groups present
968          * on nodes - when we are converged this will decrease
969          * to g->p.nr_proc:
970          */
971         process_groups = 0;
972
973         for (node = 0; node < g->p.nr_nodes; node++) {
974                 int processes = count_node_processes(node);
975
976                 nr = nodes[node];
977                 tprintf(" %2d/%-2d", nr, processes);
978
979                 process_groups += processes;
980         }
981
982         distance = nr_max - nr_min;
983
984         tprintf(" [%2d/%-2d]", distance, process_groups);
985
986         tprintf(" l:%3d-%-3d (%3d)",
987                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
988
989         if (loops_done_min && loops_done_max) {
990                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
991
992                 tprintf(" [%4.1f%%]", skew * 100.0);
993         }
994
995         calc_convergence_compression(&strong);
996
997         if (strong && process_groups == g->p.nr_proc) {
998                 if (!*convergence) {
999                         *convergence = runtime_ns_max;
1000                         tprintf(" (%6.1fs converged)\n", *convergence/1e9);
1001                         if (g->p.measure_convergence) {
1002                                 g->all_converged = true;
1003                                 g->stop_work = true;
1004                         }
1005                 }
1006         } else {
1007                 if (*convergence) {
1008                         tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1009                         *convergence = 0;
1010                 }
1011                 tprintf("\n");
1012         }
1013 }
1014
1015 static void show_summary(double runtime_ns_max, int l, double *convergence)
1016 {
1017         tprintf("\r #  %5.1f%%  [%.1f mins]",
1018                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1019
1020         calc_convergence(runtime_ns_max, convergence);
1021
1022         if (g->p.show_details >= 0)
1023                 fflush(stdout);
1024 }
1025
1026 static void *worker_thread(void *__tdata)
1027 {
1028         struct thread_data *td = __tdata;
1029         struct timeval start0, start, stop, diff;
1030         int process_nr = td->process_nr;
1031         int thread_nr = td->thread_nr;
1032         unsigned long last_perturbance;
1033         int task_nr = td->task_nr;
1034         int details = g->p.show_details;
1035         int first_task, last_task;
1036         double convergence = 0;
1037         u64 val = td->val;
1038         double runtime_ns_max;
1039         u8 *global_data;
1040         u8 *process_data;
1041         u8 *thread_data;
1042         u64 bytes_done;
1043         long work_done;
1044         u32 l;
1045
1046         bind_to_cpumask(td->bind_cpumask);
1047         bind_to_memnode(td->bind_node);
1048
1049         set_taskname("thread %d/%d", process_nr, thread_nr);
1050
1051         global_data = g->data;
1052         process_data = td->process_data;
1053         thread_data = setup_private_data(g->p.bytes_thread);
1054
1055         bytes_done = 0;
1056
1057         last_task = 0;
1058         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1059                 last_task = 1;
1060
1061         first_task = 0;
1062         if (process_nr == 0 && thread_nr == 0)
1063                 first_task = 1;
1064
1065         if (details >= 2) {
1066                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1067                         process_nr, thread_nr, global_data, process_data, thread_data);
1068         }
1069
1070         if (g->p.serialize_startup) {
1071                 pthread_mutex_lock(&g->startup_mutex);
1072                 g->nr_tasks_started++;
1073                 pthread_mutex_unlock(&g->startup_mutex);
1074
1075                 /* Here we will wait for the main process to start us all at once: */
1076                 pthread_mutex_lock(&g->start_work_mutex);
1077                 g->nr_tasks_working++;
1078
1079                 /* Last one wake the main process: */
1080                 if (g->nr_tasks_working == g->p.nr_tasks)
1081                         pthread_mutex_unlock(&g->startup_done_mutex);
1082
1083                 pthread_mutex_unlock(&g->start_work_mutex);
1084         }
1085
1086         gettimeofday(&start0, NULL);
1087
1088         start = stop = start0;
1089         last_perturbance = start.tv_sec;
1090
1091         for (l = 0; l < g->p.nr_loops; l++) {
1092                 start = stop;
1093
1094                 if (g->stop_work)
1095                         break;
1096
1097                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1098                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1099                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1100
1101                 if (g->p.sleep_usecs) {
1102                         pthread_mutex_lock(td->process_lock);
1103                         usleep(g->p.sleep_usecs);
1104                         pthread_mutex_unlock(td->process_lock);
1105                 }
1106                 /*
1107                  * Amount of work to be done under a process-global lock:
1108                  */
1109                 if (g->p.bytes_process_locked) {
1110                         pthread_mutex_lock(td->process_lock);
1111                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1112                         pthread_mutex_unlock(td->process_lock);
1113                 }
1114
1115                 work_done = g->p.bytes_global + g->p.bytes_process +
1116                             g->p.bytes_process_locked + g->p.bytes_thread;
1117
1118                 update_curr_cpu(task_nr, work_done);
1119                 bytes_done += work_done;
1120
1121                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1122                         continue;
1123
1124                 td->loops_done = l;
1125
1126                 gettimeofday(&stop, NULL);
1127
1128                 /* Check whether our max runtime timed out: */
1129                 if (g->p.nr_secs) {
1130                         timersub(&stop, &start0, &diff);
1131                         if ((u32)diff.tv_sec >= g->p.nr_secs) {
1132                                 g->stop_work = true;
1133                                 break;
1134                         }
1135                 }
1136
1137                 /* Update the summary at most once per second: */
1138                 if (start.tv_sec == stop.tv_sec)
1139                         continue;
1140
1141                 /*
1142                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1143                  * by migrating to CPU#0:
1144                  */
1145                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1146                         cpu_set_t orig_mask;
1147                         int target_cpu;
1148                         int this_cpu;
1149
1150                         last_perturbance = stop.tv_sec;
1151
1152                         /*
1153                          * Depending on where we are running, move into
1154                          * the other half of the system, to create some
1155                          * real disturbance:
1156                          */
1157                         this_cpu = g->threads[task_nr].curr_cpu;
1158                         if (this_cpu < g->p.nr_cpus/2)
1159                                 target_cpu = g->p.nr_cpus-1;
1160                         else
1161                                 target_cpu = 0;
1162
1163                         orig_mask = bind_to_cpu(target_cpu);
1164
1165                         /* Here we are running on the target CPU already */
1166                         if (details >= 1)
1167                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1168
1169                         bind_to_cpumask(orig_mask);
1170                 }
1171
1172                 if (details >= 3) {
1173                         timersub(&stop, &start, &diff);
1174                         runtime_ns_max = diff.tv_sec * 1000000000;
1175                         runtime_ns_max += diff.tv_usec * 1000;
1176
1177                         if (details >= 0) {
1178                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1179                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1180                         }
1181                         fflush(stdout);
1182                 }
1183                 if (!last_task)
1184                         continue;
1185
1186                 timersub(&stop, &start0, &diff);
1187                 runtime_ns_max = diff.tv_sec * 1000000000ULL;
1188                 runtime_ns_max += diff.tv_usec * 1000ULL;
1189
1190                 show_summary(runtime_ns_max, l, &convergence);
1191         }
1192
1193         gettimeofday(&stop, NULL);
1194         timersub(&stop, &start0, &diff);
1195         td->runtime_ns = diff.tv_sec * 1000000000ULL;
1196         td->runtime_ns += diff.tv_usec * 1000ULL;
1197
1198         free_data(thread_data, g->p.bytes_thread);
1199
1200         pthread_mutex_lock(&g->stop_work_mutex);
1201         g->bytes_done += bytes_done;
1202         pthread_mutex_unlock(&g->stop_work_mutex);
1203
1204         return NULL;
1205 }
1206
1207 /*
1208  * A worker process starts a couple of threads:
1209  */
1210 static void worker_process(int process_nr)
1211 {
1212         pthread_mutex_t process_lock;
1213         struct thread_data *td;
1214         pthread_t *pthreads;
1215         u8 *process_data;
1216         int task_nr;
1217         int ret;
1218         int t;
1219
1220         pthread_mutex_init(&process_lock, NULL);
1221         set_taskname("process %d", process_nr);
1222
1223         /*
1224          * Pick up the memory policy and the CPU binding of our first thread,
1225          * so that we initialize memory accordingly:
1226          */
1227         task_nr = process_nr*g->p.nr_threads;
1228         td = g->threads + task_nr;
1229
1230         bind_to_memnode(td->bind_node);
1231         bind_to_cpumask(td->bind_cpumask);
1232
1233         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1234         process_data = setup_private_data(g->p.bytes_process);
1235
1236         if (g->p.show_details >= 3) {
1237                 printf(" # process %2d global mem: %p, process mem: %p\n",
1238                         process_nr, g->data, process_data);
1239         }
1240
1241         for (t = 0; t < g->p.nr_threads; t++) {
1242                 task_nr = process_nr*g->p.nr_threads + t;
1243                 td = g->threads + task_nr;
1244
1245                 td->process_data = process_data;
1246                 td->process_nr   = process_nr;
1247                 td->thread_nr    = t;
1248                 td->task_nr      = task_nr;
1249                 td->val          = rand();
1250                 td->curr_cpu     = -1;
1251                 td->process_lock = &process_lock;
1252
1253                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1254                 BUG_ON(ret);
1255         }
1256
1257         for (t = 0; t < g->p.nr_threads; t++) {
1258                 ret = pthread_join(pthreads[t], NULL);
1259                 BUG_ON(ret);
1260         }
1261
1262         free_data(process_data, g->p.bytes_process);
1263         free(pthreads);
1264 }
1265
1266 static void print_summary(void)
1267 {
1268         if (g->p.show_details < 0)
1269                 return;
1270
1271         printf("\n ###\n");
1272         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1273                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1274         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1275                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1276         printf(" #      %5dx %5ldMB process shared mem operations\n",
1277                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1278         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1279                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1280
1281         printf(" ###\n");
1282
1283         printf("\n ###\n"); fflush(stdout);
1284 }
1285
1286 static void init_thread_data(void)
1287 {
1288         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1289         int t;
1290
1291         g->threads = zalloc_shared_data(size);
1292
1293         for (t = 0; t < g->p.nr_tasks; t++) {
1294                 struct thread_data *td = g->threads + t;
1295                 int cpu;
1296
1297                 /* Allow all nodes by default: */
1298                 td->bind_node = -1;
1299
1300                 /* Allow all CPUs by default: */
1301                 CPU_ZERO(&td->bind_cpumask);
1302                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1303                         CPU_SET(cpu, &td->bind_cpumask);
1304         }
1305 }
1306
1307 static void deinit_thread_data(void)
1308 {
1309         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1310
1311         free_data(g->threads, size);
1312 }
1313
1314 static int init(void)
1315 {
1316         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1317
1318         /* Copy over options: */
1319         g->p = p0;
1320
1321         g->p.nr_cpus = numa_num_configured_cpus();
1322
1323         g->p.nr_nodes = numa_max_node() + 1;
1324
1325         /* char array in count_process_nodes(): */
1326         BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1327
1328         if (g->p.show_quiet && !g->p.show_details)
1329                 g->p.show_details = -1;
1330
1331         /* Some memory should be specified: */
1332         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1333                 return -1;
1334
1335         if (g->p.mb_global_str) {
1336                 g->p.mb_global = atof(g->p.mb_global_str);
1337                 BUG_ON(g->p.mb_global < 0);
1338         }
1339
1340         if (g->p.mb_proc_str) {
1341                 g->p.mb_proc = atof(g->p.mb_proc_str);
1342                 BUG_ON(g->p.mb_proc < 0);
1343         }
1344
1345         if (g->p.mb_proc_locked_str) {
1346                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1347                 BUG_ON(g->p.mb_proc_locked < 0);
1348                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1349         }
1350
1351         if (g->p.mb_thread_str) {
1352                 g->p.mb_thread = atof(g->p.mb_thread_str);
1353                 BUG_ON(g->p.mb_thread < 0);
1354         }
1355
1356         BUG_ON(g->p.nr_threads <= 0);
1357         BUG_ON(g->p.nr_proc <= 0);
1358
1359         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1360
1361         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1362         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1363         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1364         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1365
1366         g->data = setup_shared_data(g->p.bytes_global);
1367
1368         /* Startup serialization: */
1369         init_global_mutex(&g->start_work_mutex);
1370         init_global_mutex(&g->startup_mutex);
1371         init_global_mutex(&g->startup_done_mutex);
1372         init_global_mutex(&g->stop_work_mutex);
1373
1374         init_thread_data();
1375
1376         tprintf("#\n");
1377         if (parse_setup_cpu_list() || parse_setup_node_list())
1378                 return -1;
1379         tprintf("#\n");
1380
1381         print_summary();
1382
1383         return 0;
1384 }
1385
1386 static void deinit(void)
1387 {
1388         free_data(g->data, g->p.bytes_global);
1389         g->data = NULL;
1390
1391         deinit_thread_data();
1392
1393         free_data(g, sizeof(*g));
1394         g = NULL;
1395 }
1396
1397 /*
1398  * Print a short or long result, depending on the verbosity setting:
1399  */
1400 static void print_res(const char *name, double val,
1401                       const char *txt_unit, const char *txt_short, const char *txt_long)
1402 {
1403         if (!name)
1404                 name = "main,";
1405
1406         if (!g->p.show_quiet)
1407                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1408         else
1409                 printf(" %14.3f %s\n", val, txt_long);
1410 }
1411
1412 static int __bench_numa(const char *name)
1413 {
1414         struct timeval start, stop, diff;
1415         u64 runtime_ns_min, runtime_ns_sum;
1416         pid_t *pids, pid, wpid;
1417         double delta_runtime;
1418         double runtime_avg;
1419         double runtime_sec_max;
1420         double runtime_sec_min;
1421         int wait_stat;
1422         double bytes;
1423         int i, t;
1424
1425         if (init())
1426                 return -1;
1427
1428         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1429         pid = -1;
1430
1431         /* All threads try to acquire it, this way we can wait for them to start up: */
1432         pthread_mutex_lock(&g->start_work_mutex);
1433
1434         if (g->p.serialize_startup) {
1435                 tprintf(" #\n");
1436                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1437         }
1438
1439         gettimeofday(&start, NULL);
1440
1441         for (i = 0; i < g->p.nr_proc; i++) {
1442                 pid = fork();
1443                 dprintf(" # process %2d: PID %d\n", i, pid);
1444
1445                 BUG_ON(pid < 0);
1446                 if (!pid) {
1447                         /* Child process: */
1448                         worker_process(i);
1449
1450                         exit(0);
1451                 }
1452                 pids[i] = pid;
1453
1454         }
1455         /* Wait for all the threads to start up: */
1456         while (g->nr_tasks_started != g->p.nr_tasks)
1457                 usleep(1000);
1458
1459         BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1460
1461         if (g->p.serialize_startup) {
1462                 double startup_sec;
1463
1464                 pthread_mutex_lock(&g->startup_done_mutex);
1465
1466                 /* This will start all threads: */
1467                 pthread_mutex_unlock(&g->start_work_mutex);
1468
1469                 /* This mutex is locked - the last started thread will wake us: */
1470                 pthread_mutex_lock(&g->startup_done_mutex);
1471
1472                 gettimeofday(&stop, NULL);
1473
1474                 timersub(&stop, &start, &diff);
1475
1476                 startup_sec = diff.tv_sec * 1000000000.0;
1477                 startup_sec += diff.tv_usec * 1000.0;
1478                 startup_sec /= 1e9;
1479
1480                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1481                 tprintf(" #\n");
1482
1483                 start = stop;
1484                 pthread_mutex_unlock(&g->startup_done_mutex);
1485         } else {
1486                 gettimeofday(&start, NULL);
1487         }
1488
1489         /* Parent process: */
1490
1491
1492         for (i = 0; i < g->p.nr_proc; i++) {
1493                 wpid = waitpid(pids[i], &wait_stat, 0);
1494                 BUG_ON(wpid < 0);
1495                 BUG_ON(!WIFEXITED(wait_stat));
1496
1497         }
1498
1499         runtime_ns_sum = 0;
1500         runtime_ns_min = -1LL;
1501
1502         for (t = 0; t < g->p.nr_tasks; t++) {
1503                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1504
1505                 runtime_ns_sum += thread_runtime_ns;
1506                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1507         }
1508
1509         gettimeofday(&stop, NULL);
1510         timersub(&stop, &start, &diff);
1511
1512         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1513
1514         tprintf("\n ###\n");
1515         tprintf("\n");
1516
1517         runtime_sec_max = diff.tv_sec * 1000000000.0;
1518         runtime_sec_max += diff.tv_usec * 1000.0;
1519         runtime_sec_max /= 1e9;
1520
1521         runtime_sec_min = runtime_ns_min/1e9;
1522
1523         bytes = g->bytes_done;
1524         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1525
1526         if (g->p.measure_convergence) {
1527                 print_res(name, runtime_sec_max,
1528                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1529         }
1530
1531         print_res(name, runtime_sec_max,
1532                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1533
1534         print_res(name, runtime_sec_min,
1535                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1536
1537         print_res(name, runtime_avg,
1538                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1539
1540         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1541         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1542                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1543
1544         print_res(name, bytes / g->p.nr_tasks / 1e9,
1545                 "GB,", "data/thread",           "GB data processed, per thread");
1546
1547         print_res(name, bytes / 1e9,
1548                 "GB,", "data-total",            "GB data processed, total");
1549
1550         print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1551                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1552
1553         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1554                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1555
1556         print_res(name, bytes / runtime_sec_max / 1e9,
1557                 "GB/sec,", "total-speed",       "GB/sec total speed");
1558
1559         free(pids);
1560
1561         deinit();
1562
1563         return 0;
1564 }
1565
1566 #define MAX_ARGS 50
1567
1568 static int command_size(const char **argv)
1569 {
1570         int size = 0;
1571
1572         while (*argv) {
1573                 size++;
1574                 argv++;
1575         }
1576
1577         BUG_ON(size >= MAX_ARGS);
1578
1579         return size;
1580 }
1581
1582 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1583 {
1584         int i;
1585
1586         printf("\n # Running %s \"perf bench numa", name);
1587
1588         for (i = 0; i < argc; i++)
1589                 printf(" %s", argv[i]);
1590
1591         printf("\"\n");
1592
1593         memset(p, 0, sizeof(*p));
1594
1595         /* Initialize nonzero defaults: */
1596
1597         p->serialize_startup            = 1;
1598         p->data_reads                   = true;
1599         p->data_writes                  = true;
1600         p->data_backwards               = true;
1601         p->data_rand_walk               = true;
1602         p->nr_loops                     = -1;
1603         p->init_random                  = true;
1604         p->mb_global_str                = "1";
1605         p->nr_proc                      = 1;
1606         p->nr_threads                   = 1;
1607         p->nr_secs                      = 5;
1608         p->run_all                      = argc == 1;
1609 }
1610
1611 static int run_bench_numa(const char *name, const char **argv)
1612 {
1613         int argc = command_size(argv);
1614
1615         init_params(&p0, name, argc, argv);
1616         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1617         if (argc)
1618                 goto err;
1619
1620         if (__bench_numa(name))
1621                 goto err;
1622
1623         return 0;
1624
1625 err:
1626         return -1;
1627 }
1628
1629 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1630 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1631
1632 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1633 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1634
1635 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1636 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1637
1638 /*
1639  * The built-in test-suite executed by "perf bench numa -a".
1640  *
1641  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1642  */
1643 static const char *tests[][MAX_ARGS] = {
1644    /* Basic single-stream NUMA bandwidth measurements: */
1645    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1646                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1647    { "RAM-bw-local-NOTHP,",
1648                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1649                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1650    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1651                           "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1652
1653    /* 2-stream NUMA bandwidth measurements: */
1654    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1655                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1656    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1657                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1658
1659    /* Cross-stream NUMA bandwidth measurement: */
1660    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1661                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1662
1663    /* Convergence latency measurements: */
1664    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1665    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1666    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1667    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1668    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1669    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1670    { " 4x4-convergence-NOTHP,",
1671                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1672    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1673    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1674    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1675    { " 8x4-convergence-NOTHP,",
1676                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1677    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1678    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1679    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1680    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1681    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1682
1683    /* Various NUMA process/thread layout bandwidth measurements: */
1684    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1685    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1686    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1687    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1688    { " 8x1-bw-process-NOTHP,",
1689                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1690    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1691
1692    { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1693    { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1694    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1695    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1696
1697    { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1698    { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1699    { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1700    { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1701    { " 4x8-bw-thread-NOTHP,",
1702                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1703    { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1704    { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1705
1706    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1707    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1708
1709    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1710    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1711    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1712    { "numa01-bw-thread-NOTHP,",
1713                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1714 };
1715
1716 static int bench_all(void)
1717 {
1718         int nr = ARRAY_SIZE(tests);
1719         int ret;
1720         int i;
1721
1722         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1723         BUG_ON(ret < 0);
1724
1725         for (i = 0; i < nr; i++) {
1726                 run_bench_numa(tests[i][0], tests[i] + 1);
1727         }
1728
1729         printf("\n");
1730
1731         return 0;
1732 }
1733
1734 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1735 {
1736         init_params(&p0, "main,", argc, argv);
1737         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1738         if (argc)
1739                 goto err;
1740
1741         if (p0.run_all)
1742                 return bench_all();
1743
1744         if (__bench_numa(NULL))
1745                 goto err;
1746
1747         return 0;
1748
1749 err:
1750         usage_with_options(numa_usage, options);
1751         return -1;
1752 }