Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / sound / soc / codecs / sta350.c
1 /*
2  * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
3  *
4  * Copyright: 2014 Raumfeld GmbH
5  * Author: Sven Brandau <info@brandau.biz>
6  *
7  * based on code from:
8  *      Raumfeld GmbH
9  *        Johannes Stezenbach <js@sig21.net>
10  *      Wolfson Microelectronics PLC.
11  *        Mark Brown <broonie@opensource.wolfsonmicro.com>
12  *      Freescale Semiconductor, Inc.
13  *        Timur Tabi <timur@freescale.com>
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  */
20
21 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/i2c.h>
29 #include <linux/of_device.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regmap.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/gpio/consumer.h>
34 #include <linux/slab.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41 #include <sound/tlv.h>
42
43 #include <sound/sta350.h>
44 #include "sta350.h"
45
46 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \
47                       SNDRV_PCM_RATE_44100 | \
48                       SNDRV_PCM_RATE_48000 | \
49                       SNDRV_PCM_RATE_88200 | \
50                       SNDRV_PCM_RATE_96000 | \
51                       SNDRV_PCM_RATE_176400 | \
52                       SNDRV_PCM_RATE_192000)
53
54 #define STA350_FORMATS \
55         (SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
56          SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
57          SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
58          SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
59          SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
60          SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
61
62 /* Power-up register defaults */
63 static const struct reg_default sta350_regs[] = {
64         {  0x0, 0x63 },
65         {  0x1, 0x80 },
66         {  0x2, 0xdf },
67         {  0x3, 0x40 },
68         {  0x4, 0xc2 },
69         {  0x5, 0x5c },
70         {  0x6, 0x00 },
71         {  0x7, 0xff },
72         {  0x8, 0x60 },
73         {  0x9, 0x60 },
74         {  0xa, 0x60 },
75         {  0xb, 0x00 },
76         {  0xc, 0x00 },
77         {  0xd, 0x00 },
78         {  0xe, 0x00 },
79         {  0xf, 0x40 },
80         { 0x10, 0x80 },
81         { 0x11, 0x77 },
82         { 0x12, 0x6a },
83         { 0x13, 0x69 },
84         { 0x14, 0x6a },
85         { 0x15, 0x69 },
86         { 0x16, 0x00 },
87         { 0x17, 0x00 },
88         { 0x18, 0x00 },
89         { 0x19, 0x00 },
90         { 0x1a, 0x00 },
91         { 0x1b, 0x00 },
92         { 0x1c, 0x00 },
93         { 0x1d, 0x00 },
94         { 0x1e, 0x00 },
95         { 0x1f, 0x00 },
96         { 0x20, 0x00 },
97         { 0x21, 0x00 },
98         { 0x22, 0x00 },
99         { 0x23, 0x00 },
100         { 0x24, 0x00 },
101         { 0x25, 0x00 },
102         { 0x26, 0x00 },
103         { 0x27, 0x2a },
104         { 0x28, 0xc0 },
105         { 0x29, 0xf3 },
106         { 0x2a, 0x33 },
107         { 0x2b, 0x00 },
108         { 0x2c, 0x0c },
109         { 0x31, 0x00 },
110         { 0x36, 0x00 },
111         { 0x37, 0x00 },
112         { 0x38, 0x00 },
113         { 0x39, 0x01 },
114         { 0x3a, 0xee },
115         { 0x3b, 0xff },
116         { 0x3c, 0x7e },
117         { 0x3d, 0xc0 },
118         { 0x3e, 0x26 },
119         { 0x3f, 0x00 },
120         { 0x48, 0x00 },
121         { 0x49, 0x00 },
122         { 0x4a, 0x00 },
123         { 0x4b, 0x04 },
124         { 0x4c, 0x00 },
125 };
126
127 static const struct regmap_range sta350_write_regs_range[] = {
128         regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
129         regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
130         regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
131         regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
132 };
133
134 static const struct regmap_range sta350_read_regs_range[] = {
135         regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
136         regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
137         regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
138         regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
139 };
140
141 static const struct regmap_range sta350_volatile_regs_range[] = {
142         regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
143         regmap_reg_range(STA350_STATUS,  STA350_STATUS),
144 };
145
146 static const struct regmap_access_table sta350_write_regs = {
147         .yes_ranges =   sta350_write_regs_range,
148         .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range),
149 };
150
151 static const struct regmap_access_table sta350_read_regs = {
152         .yes_ranges =   sta350_read_regs_range,
153         .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range),
154 };
155
156 static const struct regmap_access_table sta350_volatile_regs = {
157         .yes_ranges =   sta350_volatile_regs_range,
158         .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range),
159 };
160
161 /* regulator power supply names */
162 static const char * const sta350_supply_names[] = {
163         "vdd-dig",      /* digital supply, 3.3V */
164         "vdd-pll",      /* pll supply, 3.3V */
165         "vcc"           /* power amp supply, 5V - 26V */
166 };
167
168 /* codec private data */
169 struct sta350_priv {
170         struct regmap *regmap;
171         struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
172         struct sta350_platform_data *pdata;
173
174         unsigned int mclk;
175         unsigned int format;
176
177         u32 coef_shadow[STA350_COEF_COUNT];
178         int shutdown;
179
180         struct gpio_desc *gpiod_nreset;
181         struct gpio_desc *gpiod_power_down;
182
183         struct mutex coeff_lock;
184 };
185
186 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
187 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
188 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
189
190 static const char * const sta350_drc_ac[] = {
191         "Anti-Clipping", "Dynamic Range Compression"
192 };
193 static const char * const sta350_auto_gc_mode[] = {
194         "User", "AC no clipping", "AC limited clipping (10%)",
195         "DRC nighttime listening mode"
196 };
197 static const char * const sta350_auto_xo_mode[] = {
198         "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
199         "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
200         "340Hz", "360Hz"
201 };
202 static const char * const sta350_binary_output[] = {
203         "FFX 3-state output - normal operation", "Binary output"
204 };
205 static const char * const sta350_limiter_select[] = {
206         "Limiter Disabled", "Limiter #1", "Limiter #2"
207 };
208 static const char * const sta350_limiter_attack_rate[] = {
209         "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
210         "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
211         "0.0645", "0.0564", "0.0501", "0.0451"
212 };
213 static const char * const sta350_limiter_release_rate[] = {
214         "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
215         "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
216         "0.0134", "0.0117", "0.0110", "0.0104"
217 };
218 static const char * const sta350_noise_shaper_type[] = {
219         "Third order", "Fourth order"
220 };
221
222 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
223         0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
224         8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
225 );
226
227 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
228         0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
229         1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
230         2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
231         3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
232         8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
233 );
234
235 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
236         0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
237         8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
238         14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
239 );
240
241 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
242         0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
243         1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
244         3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
245         5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
246         13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
247 );
248
249 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
250                             STA350_CONFD, STA350_CONFD_DRC_SHIFT,
251                             sta350_drc_ac);
252 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
253                             STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
254                             sta350_noise_shaper_type);
255 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
256                             STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
257                             sta350_auto_gc_mode);
258 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
259                             STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
260                             sta350_auto_xo_mode);
261 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
262                             STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
263                             sta350_binary_output);
264 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
265                             STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
266                             sta350_binary_output);
267 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
268                             STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
269                             sta350_binary_output);
270 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
271                             STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
272                             sta350_limiter_select);
273 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
274                             STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
275                             sta350_limiter_select);
276 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
277                             STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
278                             sta350_limiter_select);
279 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
280                             STA350_L1AR, STA350_LxA_SHIFT,
281                             sta350_limiter_attack_rate);
282 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
283                             STA350_L2AR, STA350_LxA_SHIFT,
284                             sta350_limiter_attack_rate);
285 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
286                             STA350_L1AR, STA350_LxR_SHIFT,
287                             sta350_limiter_release_rate);
288 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
289                             STA350_L2AR, STA350_LxR_SHIFT,
290                             sta350_limiter_release_rate);
291
292 /*
293  * byte array controls for setting biquad, mixer, scaling coefficients;
294  * for biquads all five coefficients need to be set in one go,
295  * mixer and pre/postscale coefs can be set individually;
296  * each coef is 24bit, the bytes are ordered in the same way
297  * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
298  */
299
300 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
301                                    struct snd_ctl_elem_info *uinfo)
302 {
303         int numcoef = kcontrol->private_value >> 16;
304         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
305         uinfo->count = 3 * numcoef;
306         return 0;
307 }
308
309 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
310                                   struct snd_ctl_elem_value *ucontrol)
311 {
312         struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
313         struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
314         int numcoef = kcontrol->private_value >> 16;
315         int index = kcontrol->private_value & 0xffff;
316         unsigned int cfud, val;
317         int i, ret = 0;
318
319         mutex_lock(&sta350->coeff_lock);
320
321         /* preserve reserved bits in STA350_CFUD */
322         regmap_read(sta350->regmap, STA350_CFUD, &cfud);
323         cfud &= 0xf0;
324         /*
325          * chip documentation does not say if the bits are self clearing,
326          * so do it explicitly
327          */
328         regmap_write(sta350->regmap, STA350_CFUD, cfud);
329
330         regmap_write(sta350->regmap, STA350_CFADDR2, index);
331         if (numcoef == 1) {
332                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
333         } else if (numcoef == 5) {
334                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
335         } else {
336                 ret = -EINVAL;
337                 goto exit_unlock;
338         }
339
340         for (i = 0; i < 3 * numcoef; i++) {
341                 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
342                 ucontrol->value.bytes.data[i] = val;
343         }
344
345 exit_unlock:
346         mutex_unlock(&sta350->coeff_lock);
347
348         return ret;
349 }
350
351 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
352                                   struct snd_ctl_elem_value *ucontrol)
353 {
354         struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
355         struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
356         int numcoef = kcontrol->private_value >> 16;
357         int index = kcontrol->private_value & 0xffff;
358         unsigned int cfud;
359         int i;
360
361         /* preserve reserved bits in STA350_CFUD */
362         regmap_read(sta350->regmap, STA350_CFUD, &cfud);
363         cfud &= 0xf0;
364         /*
365          * chip documentation does not say if the bits are self clearing,
366          * so do it explicitly
367          */
368         regmap_write(sta350->regmap, STA350_CFUD, cfud);
369
370         regmap_write(sta350->regmap, STA350_CFADDR2, index);
371         for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
372                 sta350->coef_shadow[index + i] =
373                           (ucontrol->value.bytes.data[3 * i] << 16)
374                         | (ucontrol->value.bytes.data[3 * i + 1] << 8)
375                         | (ucontrol->value.bytes.data[3 * i + 2]);
376         for (i = 0; i < 3 * numcoef; i++)
377                 regmap_write(sta350->regmap, STA350_B1CF1 + i,
378                              ucontrol->value.bytes.data[i]);
379         if (numcoef == 1)
380                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
381         else if (numcoef == 5)
382                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
383         else
384                 return -EINVAL;
385
386         return 0;
387 }
388
389 static int sta350_sync_coef_shadow(struct snd_soc_codec *codec)
390 {
391         struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
392         unsigned int cfud;
393         int i;
394
395         /* preserve reserved bits in STA350_CFUD */
396         regmap_read(sta350->regmap, STA350_CFUD, &cfud);
397         cfud &= 0xf0;
398
399         for (i = 0; i < STA350_COEF_COUNT; i++) {
400                 regmap_write(sta350->regmap, STA350_CFADDR2, i);
401                 regmap_write(sta350->regmap, STA350_B1CF1,
402                              (sta350->coef_shadow[i] >> 16) & 0xff);
403                 regmap_write(sta350->regmap, STA350_B1CF2,
404                              (sta350->coef_shadow[i] >> 8) & 0xff);
405                 regmap_write(sta350->regmap, STA350_B1CF3,
406                              (sta350->coef_shadow[i]) & 0xff);
407                 /*
408                  * chip documentation does not say if the bits are
409                  * self-clearing, so do it explicitly
410                  */
411                 regmap_write(sta350->regmap, STA350_CFUD, cfud);
412                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
413         }
414         return 0;
415 }
416
417 static int sta350_cache_sync(struct snd_soc_codec *codec)
418 {
419         struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
420         unsigned int mute;
421         int rc;
422
423         /* mute during register sync */
424         regmap_read(sta350->regmap, STA350_CFUD, &mute);
425         regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
426         sta350_sync_coef_shadow(codec);
427         rc = regcache_sync(sta350->regmap);
428         regmap_write(sta350->regmap, STA350_MMUTE, mute);
429         return rc;
430 }
431
432 #define SINGLE_COEF(xname, index) \
433 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
434         .info = sta350_coefficient_info, \
435         .get = sta350_coefficient_get,\
436         .put = sta350_coefficient_put, \
437         .private_value = index | (1 << 16) }
438
439 #define BIQUAD_COEFS(xname, index) \
440 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
441         .info = sta350_coefficient_info, \
442         .get = sta350_coefficient_get,\
443         .put = sta350_coefficient_put, \
444         .private_value = index | (5 << 16) }
445
446 static const struct snd_kcontrol_new sta350_snd_controls[] = {
447 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
448 /* VOL */
449 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
450 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
451 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
452 /* CONFD */
453 SOC_SINGLE("High Pass Filter Bypass Switch",
454            STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
455 SOC_SINGLE("De-emphasis Filter Switch",
456            STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
457 SOC_SINGLE("DSP Bypass Switch",
458            STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
459 SOC_SINGLE("Post-scale Link Switch",
460            STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
461 SOC_SINGLE("Biquad Coefficient Link Switch",
462            STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
463 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
464 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
465 SOC_SINGLE("Zero-detect Mute Enable Switch",
466            STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
467 SOC_SINGLE("Submix Mode Switch",
468            STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
469 /* CONFE */
470 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
471 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
472 /* MUTE */
473 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
474 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
475 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
476 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
477 /* AUTOx */
478 SOC_ENUM("Automode GC", sta350_auto_gc_enum),
479 SOC_ENUM("Automode XO", sta350_auto_xo_enum),
480 /* CxCFG */
481 SOC_SINGLE("Ch1 Tone Control Bypass Switch",
482            STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
483 SOC_SINGLE("Ch2 Tone Control Bypass Switch",
484            STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
485 SOC_SINGLE("Ch1 EQ Bypass Switch",
486            STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
487 SOC_SINGLE("Ch2 EQ Bypass Switch",
488            STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
489 SOC_SINGLE("Ch1 Master Volume Bypass Switch",
490            STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
491 SOC_SINGLE("Ch2 Master Volume Bypass Switch",
492            STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
493 SOC_SINGLE("Ch3 Master Volume Bypass Switch",
494            STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
495 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
496 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
497 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
498 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
499 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
500 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
501 /* TONE */
502 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
503                      STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
504 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
505                      STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
506 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
507 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
508 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
509 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
510
511 /*
512  * depending on mode, the attack/release thresholds have
513  * two different enum definitions; provide both
514  */
515 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
516                STA350_L1ATRT, STA350_LxA_SHIFT,
517                16, 0, sta350_limiter_ac_attack_tlv),
518 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
519                STA350_L2ATRT, STA350_LxA_SHIFT,
520                16, 0, sta350_limiter_ac_attack_tlv),
521 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
522                STA350_L1ATRT, STA350_LxR_SHIFT,
523                16, 0, sta350_limiter_ac_release_tlv),
524 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
525                STA350_L2ATRT, STA350_LxR_SHIFT,
526                16, 0, sta350_limiter_ac_release_tlv),
527 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
528                STA350_L1ATRT, STA350_LxA_SHIFT,
529                16, 0, sta350_limiter_drc_attack_tlv),
530 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
531                STA350_L2ATRT, STA350_LxA_SHIFT,
532                16, 0, sta350_limiter_drc_attack_tlv),
533 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
534                STA350_L1ATRT, STA350_LxR_SHIFT,
535                16, 0, sta350_limiter_drc_release_tlv),
536 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
537                STA350_L2ATRT, STA350_LxR_SHIFT,
538                16, 0, sta350_limiter_drc_release_tlv),
539
540 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
541 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
542 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
543 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
544 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
545 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
546 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
547 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
548 BIQUAD_COEFS("High-pass", 40),
549 BIQUAD_COEFS("Low-pass", 45),
550 SINGLE_COEF("Ch1 - Prescale", 50),
551 SINGLE_COEF("Ch2 - Prescale", 51),
552 SINGLE_COEF("Ch1 - Postscale", 52),
553 SINGLE_COEF("Ch2 - Postscale", 53),
554 SINGLE_COEF("Ch3 - Postscale", 54),
555 SINGLE_COEF("Thermal warning - Postscale", 55),
556 SINGLE_COEF("Ch1 - Mix 1", 56),
557 SINGLE_COEF("Ch1 - Mix 2", 57),
558 SINGLE_COEF("Ch2 - Mix 1", 58),
559 SINGLE_COEF("Ch2 - Mix 2", 59),
560 SINGLE_COEF("Ch3 - Mix 1", 60),
561 SINGLE_COEF("Ch3 - Mix 2", 61),
562 };
563
564 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
565 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
566 SND_SOC_DAPM_OUTPUT("LEFT"),
567 SND_SOC_DAPM_OUTPUT("RIGHT"),
568 SND_SOC_DAPM_OUTPUT("SUB"),
569 };
570
571 static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
572         { "LEFT", NULL, "DAC" },
573         { "RIGHT", NULL, "DAC" },
574         { "SUB", NULL, "DAC" },
575         { "DAC", NULL, "Playback" },
576 };
577
578 /* MCLK interpolation ratio per fs */
579 static struct {
580         int fs;
581         int ir;
582 } interpolation_ratios[] = {
583         { 32000, 0 },
584         { 44100, 0 },
585         { 48000, 0 },
586         { 88200, 1 },
587         { 96000, 1 },
588         { 176400, 2 },
589         { 192000, 2 },
590 };
591
592 /* MCLK to fs clock ratios */
593 static int mcs_ratio_table[3][6] = {
594         { 768, 512, 384, 256, 128, 576 },
595         { 384, 256, 192, 128,  64,   0 },
596         { 192, 128,  96,  64,  32,   0 },
597 };
598
599 /**
600  * sta350_set_dai_sysclk - configure MCLK
601  * @codec_dai: the codec DAI
602  * @clk_id: the clock ID (ignored)
603  * @freq: the MCLK input frequency
604  * @dir: the clock direction (ignored)
605  *
606  * The value of MCLK is used to determine which sample rates are supported
607  * by the STA350, based on the mcs_ratio_table.
608  *
609  * This function must be called by the machine driver's 'startup' function,
610  * otherwise the list of supported sample rates will not be available in
611  * time for ALSA.
612  */
613 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
614                                  int clk_id, unsigned int freq, int dir)
615 {
616         struct snd_soc_codec *codec = codec_dai->codec;
617         struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
618
619         dev_dbg(codec->dev, "mclk=%u\n", freq);
620         sta350->mclk = freq;
621
622         return 0;
623 }
624
625 /**
626  * sta350_set_dai_fmt - configure the codec for the selected audio format
627  * @codec_dai: the codec DAI
628  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
629  *
630  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
631  * codec accordingly.
632  */
633 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
634                               unsigned int fmt)
635 {
636         struct snd_soc_codec *codec = codec_dai->codec;
637         struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
638         unsigned int confb = 0;
639
640         switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
641         case SND_SOC_DAIFMT_CBS_CFS:
642                 break;
643         default:
644                 return -EINVAL;
645         }
646
647         switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
648         case SND_SOC_DAIFMT_I2S:
649         case SND_SOC_DAIFMT_RIGHT_J:
650         case SND_SOC_DAIFMT_LEFT_J:
651                 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
652                 break;
653         default:
654                 return -EINVAL;
655         }
656
657         switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
658         case SND_SOC_DAIFMT_NB_NF:
659                 confb |= STA350_CONFB_C2IM;
660                 break;
661         case SND_SOC_DAIFMT_NB_IF:
662                 confb |= STA350_CONFB_C1IM;
663                 break;
664         default:
665                 return -EINVAL;
666         }
667
668         return regmap_update_bits(sta350->regmap, STA350_CONFB,
669                                   STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
670 }
671
672 /**
673  * sta350_hw_params - program the STA350 with the given hardware parameters.
674  * @substream: the audio stream
675  * @params: the hardware parameters to set
676  * @dai: the SOC DAI (ignored)
677  *
678  * This function programs the hardware with the values provided.
679  * Specifically, the sample rate and the data format.
680  */
681 static int sta350_hw_params(struct snd_pcm_substream *substream,
682                             struct snd_pcm_hw_params *params,
683                             struct snd_soc_dai *dai)
684 {
685         struct snd_soc_codec *codec = dai->codec;
686         struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
687         int i, mcs = -EINVAL, ir = -EINVAL;
688         unsigned int confa, confb;
689         unsigned int rate, ratio;
690         int ret;
691
692         if (!sta350->mclk) {
693                 dev_err(codec->dev,
694                         "sta350->mclk is unset. Unable to determine ratio\n");
695                 return -EIO;
696         }
697
698         rate = params_rate(params);
699         ratio = sta350->mclk / rate;
700         dev_dbg(codec->dev, "rate: %u, ratio: %u\n", rate, ratio);
701
702         for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
703                 if (interpolation_ratios[i].fs == rate) {
704                         ir = interpolation_ratios[i].ir;
705                         break;
706                 }
707         }
708
709         if (ir < 0) {
710                 dev_err(codec->dev, "Unsupported samplerate: %u\n", rate);
711                 return -EINVAL;
712         }
713
714         for (i = 0; i < 6; i++) {
715                 if (mcs_ratio_table[ir][i] == ratio) {
716                         mcs = i;
717                         break;
718                 }
719         }
720
721         if (mcs < 0) {
722                 dev_err(codec->dev, "Unresolvable ratio: %u\n", ratio);
723                 return -EINVAL;
724         }
725
726         confa = (ir << STA350_CONFA_IR_SHIFT) |
727                 (mcs << STA350_CONFA_MCS_SHIFT);
728         confb = 0;
729
730         switch (params_width(params)) {
731         case 24:
732                 dev_dbg(codec->dev, "24bit\n");
733                 /* fall through */
734         case 32:
735                 dev_dbg(codec->dev, "24bit or 32bit\n");
736                 switch (sta350->format) {
737                 case SND_SOC_DAIFMT_I2S:
738                         confb |= 0x0;
739                         break;
740                 case SND_SOC_DAIFMT_LEFT_J:
741                         confb |= 0x1;
742                         break;
743                 case SND_SOC_DAIFMT_RIGHT_J:
744                         confb |= 0x2;
745                         break;
746                 }
747
748                 break;
749         case 20:
750                 dev_dbg(codec->dev, "20bit\n");
751                 switch (sta350->format) {
752                 case SND_SOC_DAIFMT_I2S:
753                         confb |= 0x4;
754                         break;
755                 case SND_SOC_DAIFMT_LEFT_J:
756                         confb |= 0x5;
757                         break;
758                 case SND_SOC_DAIFMT_RIGHT_J:
759                         confb |= 0x6;
760                         break;
761                 }
762
763                 break;
764         case 18:
765                 dev_dbg(codec->dev, "18bit\n");
766                 switch (sta350->format) {
767                 case SND_SOC_DAIFMT_I2S:
768                         confb |= 0x8;
769                         break;
770                 case SND_SOC_DAIFMT_LEFT_J:
771                         confb |= 0x9;
772                         break;
773                 case SND_SOC_DAIFMT_RIGHT_J:
774                         confb |= 0xa;
775                         break;
776                 }
777
778                 break;
779         case 16:
780                 dev_dbg(codec->dev, "16bit\n");
781                 switch (sta350->format) {
782                 case SND_SOC_DAIFMT_I2S:
783                         confb |= 0x0;
784                         break;
785                 case SND_SOC_DAIFMT_LEFT_J:
786                         confb |= 0xd;
787                         break;
788                 case SND_SOC_DAIFMT_RIGHT_J:
789                         confb |= 0xe;
790                         break;
791                 }
792
793                 break;
794         default:
795                 return -EINVAL;
796         }
797
798         ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
799                                  STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
800                                  confa);
801         if (ret < 0)
802                 return ret;
803
804         ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
805                                  STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
806                                  confb);
807         if (ret < 0)
808                 return ret;
809
810         return 0;
811 }
812
813 static int sta350_startup_sequence(struct sta350_priv *sta350)
814 {
815         if (sta350->gpiod_power_down)
816                 gpiod_set_value(sta350->gpiod_power_down, 1);
817
818         if (sta350->gpiod_nreset) {
819                 gpiod_set_value(sta350->gpiod_nreset, 0);
820                 mdelay(1);
821                 gpiod_set_value(sta350->gpiod_nreset, 1);
822                 mdelay(1);
823         }
824
825         return 0;
826 }
827
828 /**
829  * sta350_set_bias_level - DAPM callback
830  * @codec: the codec device
831  * @level: DAPM power level
832  *
833  * This is called by ALSA to put the codec into low power mode
834  * or to wake it up.  If the codec is powered off completely
835  * all registers must be restored after power on.
836  */
837 static int sta350_set_bias_level(struct snd_soc_codec *codec,
838                                  enum snd_soc_bias_level level)
839 {
840         struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
841         int ret;
842
843         dev_dbg(codec->dev, "level = %d\n", level);
844         switch (level) {
845         case SND_SOC_BIAS_ON:
846                 break;
847
848         case SND_SOC_BIAS_PREPARE:
849                 /* Full power on */
850                 regmap_update_bits(sta350->regmap, STA350_CONFF,
851                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD,
852                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD);
853                 break;
854
855         case SND_SOC_BIAS_STANDBY:
856                 if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
857                         ret = regulator_bulk_enable(
858                                 ARRAY_SIZE(sta350->supplies),
859                                 sta350->supplies);
860                         if (ret < 0) {
861                                 dev_err(codec->dev,
862                                         "Failed to enable supplies: %d\n",
863                                         ret);
864                                 return ret;
865                         }
866                         sta350_startup_sequence(sta350);
867                         sta350_cache_sync(codec);
868                 }
869
870                 /* Power down */
871                 regmap_update_bits(sta350->regmap, STA350_CONFF,
872                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD,
873                                    0);
874
875                 break;
876
877         case SND_SOC_BIAS_OFF:
878                 /* The chip runs through the power down sequence for us */
879                 regmap_update_bits(sta350->regmap, STA350_CONFF,
880                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
881
882                 /* power down: low */
883                 if (sta350->gpiod_power_down)
884                         gpiod_set_value(sta350->gpiod_power_down, 0);
885
886                 if (sta350->gpiod_nreset)
887                         gpiod_set_value(sta350->gpiod_nreset, 0);
888
889                 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
890                                        sta350->supplies);
891                 break;
892         }
893         codec->dapm.bias_level = level;
894         return 0;
895 }
896
897 static const struct snd_soc_dai_ops sta350_dai_ops = {
898         .hw_params      = sta350_hw_params,
899         .set_sysclk     = sta350_set_dai_sysclk,
900         .set_fmt        = sta350_set_dai_fmt,
901 };
902
903 static struct snd_soc_dai_driver sta350_dai = {
904         .name = "sta350-hifi",
905         .playback = {
906                 .stream_name = "Playback",
907                 .channels_min = 2,
908                 .channels_max = 2,
909                 .rates = STA350_RATES,
910                 .formats = STA350_FORMATS,
911         },
912         .ops = &sta350_dai_ops,
913 };
914
915 static int sta350_probe(struct snd_soc_codec *codec)
916 {
917         struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
918         struct sta350_platform_data *pdata = sta350->pdata;
919         int i, ret = 0, thermal = 0;
920
921         ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
922                                     sta350->supplies);
923         if (ret < 0) {
924                 dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
925                 return ret;
926         }
927
928         ret = sta350_startup_sequence(sta350);
929         if (ret < 0) {
930                 dev_err(codec->dev, "Failed to startup device\n");
931                 return ret;
932         }
933
934         /* CONFA */
935         if (!pdata->thermal_warning_recovery)
936                 thermal |= STA350_CONFA_TWAB;
937         if (!pdata->thermal_warning_adjustment)
938                 thermal |= STA350_CONFA_TWRB;
939         if (!pdata->fault_detect_recovery)
940                 thermal |= STA350_CONFA_FDRB;
941         regmap_update_bits(sta350->regmap, STA350_CONFA,
942                            STA350_CONFA_TWAB | STA350_CONFA_TWRB |
943                            STA350_CONFA_FDRB,
944                            thermal);
945
946         /* CONFC */
947         regmap_update_bits(sta350->regmap, STA350_CONFC,
948                            STA350_CONFC_OM_MASK,
949                            pdata->ffx_power_output_mode
950                                 << STA350_CONFC_OM_SHIFT);
951         regmap_update_bits(sta350->regmap, STA350_CONFC,
952                            STA350_CONFC_CSZ_MASK,
953                            pdata->drop_compensation_ns
954                                 << STA350_CONFC_CSZ_SHIFT);
955         regmap_update_bits(sta350->regmap,
956                            STA350_CONFC,
957                            STA350_CONFC_OCRB,
958                            pdata->oc_warning_adjustment ?
959                                 STA350_CONFC_OCRB : 0);
960
961         /* CONFE */
962         regmap_update_bits(sta350->regmap, STA350_CONFE,
963                            STA350_CONFE_MPCV,
964                            pdata->max_power_use_mpcc ?
965                                 STA350_CONFE_MPCV : 0);
966         regmap_update_bits(sta350->regmap, STA350_CONFE,
967                            STA350_CONFE_MPC,
968                            pdata->max_power_correction ?
969                                 STA350_CONFE_MPC : 0);
970         regmap_update_bits(sta350->regmap, STA350_CONFE,
971                            STA350_CONFE_AME,
972                            pdata->am_reduction_mode ?
973                                 STA350_CONFE_AME : 0);
974         regmap_update_bits(sta350->regmap, STA350_CONFE,
975                            STA350_CONFE_PWMS,
976                            pdata->odd_pwm_speed_mode ?
977                                 STA350_CONFE_PWMS : 0);
978         regmap_update_bits(sta350->regmap, STA350_CONFE,
979                            STA350_CONFE_DCCV,
980                            pdata->distortion_compensation ?
981                                 STA350_CONFE_DCCV : 0);
982         /*  CONFF */
983         regmap_update_bits(sta350->regmap, STA350_CONFF,
984                            STA350_CONFF_IDE,
985                            pdata->invalid_input_detect_mute ?
986                                 STA350_CONFF_IDE : 0);
987         regmap_update_bits(sta350->regmap, STA350_CONFF,
988                            STA350_CONFF_OCFG_MASK,
989                            pdata->output_conf
990                                 << STA350_CONFF_OCFG_SHIFT);
991
992         /* channel to output mapping */
993         regmap_update_bits(sta350->regmap, STA350_C1CFG,
994                            STA350_CxCFG_OM_MASK,
995                            pdata->ch1_output_mapping
996                                 << STA350_CxCFG_OM_SHIFT);
997         regmap_update_bits(sta350->regmap, STA350_C2CFG,
998                            STA350_CxCFG_OM_MASK,
999                            pdata->ch2_output_mapping
1000                                 << STA350_CxCFG_OM_SHIFT);
1001         regmap_update_bits(sta350->regmap, STA350_C3CFG,
1002                            STA350_CxCFG_OM_MASK,
1003                            pdata->ch3_output_mapping
1004                                 << STA350_CxCFG_OM_SHIFT);
1005
1006         /* miscellaneous registers */
1007         regmap_update_bits(sta350->regmap, STA350_MISC1,
1008                            STA350_MISC1_CPWMEN,
1009                            pdata->activate_mute_output ?
1010                                 STA350_MISC1_CPWMEN : 0);
1011         regmap_update_bits(sta350->regmap, STA350_MISC1,
1012                            STA350_MISC1_BRIDGOFF,
1013                            pdata->bridge_immediate_off ?
1014                                 STA350_MISC1_BRIDGOFF : 0);
1015         regmap_update_bits(sta350->regmap, STA350_MISC1,
1016                            STA350_MISC1_NSHHPEN,
1017                            pdata->noise_shape_dc_cut ?
1018                                 STA350_MISC1_NSHHPEN : 0);
1019         regmap_update_bits(sta350->regmap, STA350_MISC1,
1020                            STA350_MISC1_RPDNEN,
1021                            pdata->powerdown_master_vol ?
1022                                 STA350_MISC1_RPDNEN: 0);
1023
1024         regmap_update_bits(sta350->regmap, STA350_MISC2,
1025                            STA350_MISC2_PNDLSL_MASK,
1026                            pdata->powerdown_delay_divider
1027                                 << STA350_MISC2_PNDLSL_SHIFT);
1028
1029         /* initialize coefficient shadow RAM with reset values */
1030         for (i = 4; i <= 49; i += 5)
1031                 sta350->coef_shadow[i] = 0x400000;
1032         for (i = 50; i <= 54; i++)
1033                 sta350->coef_shadow[i] = 0x7fffff;
1034         sta350->coef_shadow[55] = 0x5a9df7;
1035         sta350->coef_shadow[56] = 0x7fffff;
1036         sta350->coef_shadow[59] = 0x7fffff;
1037         sta350->coef_shadow[60] = 0x400000;
1038         sta350->coef_shadow[61] = 0x400000;
1039
1040         sta350_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1041         /* Bias level configuration will have done an extra enable */
1042         regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1043
1044         return 0;
1045 }
1046
1047 static int sta350_remove(struct snd_soc_codec *codec)
1048 {
1049         struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
1050
1051         regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1052
1053         return 0;
1054 }
1055
1056 static const struct snd_soc_codec_driver sta350_codec = {
1057         .probe =                sta350_probe,
1058         .remove =               sta350_remove,
1059         .set_bias_level =       sta350_set_bias_level,
1060         .suspend_bias_off =     true,
1061         .controls =             sta350_snd_controls,
1062         .num_controls =         ARRAY_SIZE(sta350_snd_controls),
1063         .dapm_widgets =         sta350_dapm_widgets,
1064         .num_dapm_widgets =     ARRAY_SIZE(sta350_dapm_widgets),
1065         .dapm_routes =          sta350_dapm_routes,
1066         .num_dapm_routes =      ARRAY_SIZE(sta350_dapm_routes),
1067 };
1068
1069 static const struct regmap_config sta350_regmap = {
1070         .reg_bits =             8,
1071         .val_bits =             8,
1072         .max_register =         STA350_MISC2,
1073         .reg_defaults =         sta350_regs,
1074         .num_reg_defaults =     ARRAY_SIZE(sta350_regs),
1075         .cache_type =           REGCACHE_RBTREE,
1076         .wr_table =             &sta350_write_regs,
1077         .rd_table =             &sta350_read_regs,
1078         .volatile_table =       &sta350_volatile_regs,
1079 };
1080
1081 #ifdef CONFIG_OF
1082 static const struct of_device_id st350_dt_ids[] = {
1083         { .compatible = "st,sta350", },
1084         { }
1085 };
1086 MODULE_DEVICE_TABLE(of, st350_dt_ids);
1087
1088 static const char * const sta350_ffx_modes[] = {
1089         [STA350_FFX_PM_DROP_COMP]               = "drop-compensation",
1090         [STA350_FFX_PM_TAPERED_COMP]            = "tapered-compensation",
1091         [STA350_FFX_PM_FULL_POWER]              = "full-power-mode",
1092         [STA350_FFX_PM_VARIABLE_DROP_COMP]      = "variable-drop-compensation",
1093 };
1094
1095 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1096 {
1097         struct device_node *np = dev->of_node;
1098         struct sta350_platform_data *pdata;
1099         const char *ffx_power_mode;
1100         u16 tmp;
1101         u8 tmp8;
1102
1103         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1104         if (!pdata)
1105                 return -ENOMEM;
1106
1107         of_property_read_u8(np, "st,output-conf",
1108                             &pdata->output_conf);
1109         of_property_read_u8(np, "st,ch1-output-mapping",
1110                             &pdata->ch1_output_mapping);
1111         of_property_read_u8(np, "st,ch2-output-mapping",
1112                             &pdata->ch2_output_mapping);
1113         of_property_read_u8(np, "st,ch3-output-mapping",
1114                             &pdata->ch3_output_mapping);
1115
1116         if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1117                 pdata->thermal_warning_recovery = 1;
1118         if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1119                 pdata->thermal_warning_adjustment = 1;
1120         if (of_get_property(np, "st,fault-detect-recovery", NULL))
1121                 pdata->fault_detect_recovery = 1;
1122
1123         pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1124         if (!of_property_read_string(np, "st,ffx-power-output-mode",
1125                                      &ffx_power_mode)) {
1126                 int i, mode = -EINVAL;
1127
1128                 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1129                         if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1130                                 mode = i;
1131
1132                 if (mode < 0)
1133                         dev_warn(dev, "Unsupported ffx output mode: %s\n",
1134                                  ffx_power_mode);
1135                 else
1136                         pdata->ffx_power_output_mode = mode;
1137         }
1138
1139         tmp = 140;
1140         of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1141         pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1142
1143         if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1144                 pdata->oc_warning_adjustment = 1;
1145
1146         /* CONFE */
1147         if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1148                 pdata->max_power_use_mpcc = 1;
1149
1150         if (of_get_property(np, "st,max-power-correction", NULL))
1151                 pdata->max_power_correction = 1;
1152
1153         if (of_get_property(np, "st,am-reduction-mode", NULL))
1154                 pdata->am_reduction_mode = 1;
1155
1156         if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1157                 pdata->odd_pwm_speed_mode = 1;
1158
1159         if (of_get_property(np, "st,distortion-compensation", NULL))
1160                 pdata->distortion_compensation = 1;
1161
1162         /* CONFF */
1163         if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1164                 pdata->invalid_input_detect_mute = 1;
1165
1166         /* MISC */
1167         if (of_get_property(np, "st,activate-mute-output", NULL))
1168                 pdata->activate_mute_output = 1;
1169
1170         if (of_get_property(np, "st,bridge-immediate-off", NULL))
1171                 pdata->bridge_immediate_off = 1;
1172
1173         if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1174                 pdata->noise_shape_dc_cut = 1;
1175
1176         if (of_get_property(np, "st,powerdown-master-volume", NULL))
1177                 pdata->powerdown_master_vol = 1;
1178
1179         if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1180                 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1181                         pdata->powerdown_delay_divider = ilog2(tmp8);
1182                 else
1183                         dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1184                                  tmp8);
1185         }
1186
1187         sta350->pdata = pdata;
1188
1189         return 0;
1190 }
1191 #endif
1192
1193 static int sta350_i2c_probe(struct i2c_client *i2c,
1194                             const struct i2c_device_id *id)
1195 {
1196         struct device *dev = &i2c->dev;
1197         struct sta350_priv *sta350;
1198         int ret, i;
1199
1200         sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1201         if (!sta350)
1202                 return -ENOMEM;
1203
1204         mutex_init(&sta350->coeff_lock);
1205         sta350->pdata = dev_get_platdata(dev);
1206
1207 #ifdef CONFIG_OF
1208         if (dev->of_node) {
1209                 ret = sta350_probe_dt(dev, sta350);
1210                 if (ret < 0)
1211                         return ret;
1212         }
1213 #endif
1214
1215         /* GPIOs */
1216         sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1217                                                        GPIOD_OUT_LOW);
1218         if (IS_ERR(sta350->gpiod_nreset))
1219                 return PTR_ERR(sta350->gpiod_nreset);
1220
1221         sta350->gpiod_power_down = devm_gpiod_get(dev, "power-down",
1222                                                   GPIOD_OUT_LOW);
1223         if (IS_ERR(sta350->gpiod_power_down))
1224                 return PTR_ERR(sta350->gpiod_power_down);
1225
1226         /* regulators */
1227         for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1228                 sta350->supplies[i].supply = sta350_supply_names[i];
1229
1230         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1231                                       sta350->supplies);
1232         if (ret < 0) {
1233                 dev_err(dev, "Failed to request supplies: %d\n", ret);
1234                 return ret;
1235         }
1236
1237         sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1238         if (IS_ERR(sta350->regmap)) {
1239                 ret = PTR_ERR(sta350->regmap);
1240                 dev_err(dev, "Failed to init regmap: %d\n", ret);
1241                 return ret;
1242         }
1243
1244         i2c_set_clientdata(i2c, sta350);
1245
1246         ret = snd_soc_register_codec(dev, &sta350_codec, &sta350_dai, 1);
1247         if (ret < 0)
1248                 dev_err(dev, "Failed to register codec (%d)\n", ret);
1249
1250         return ret;
1251 }
1252
1253 static int sta350_i2c_remove(struct i2c_client *client)
1254 {
1255         snd_soc_unregister_codec(&client->dev);
1256         return 0;
1257 }
1258
1259 static const struct i2c_device_id sta350_i2c_id[] = {
1260         { "sta350", 0 },
1261         { }
1262 };
1263 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1264
1265 static struct i2c_driver sta350_i2c_driver = {
1266         .driver = {
1267                 .name = "sta350",
1268                 .owner = THIS_MODULE,
1269                 .of_match_table = of_match_ptr(st350_dt_ids),
1270         },
1271         .probe =    sta350_i2c_probe,
1272         .remove =   sta350_i2c_remove,
1273         .id_table = sta350_i2c_id,
1274 };
1275
1276 module_i2c_driver(sta350_i2c_driver);
1277
1278 MODULE_DESCRIPTION("ASoC STA350 driver");
1279 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1280 MODULE_LICENSE("GPL");