These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / sound / soc / codecs / sta32x.c
1 /*
2  * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
3  *
4  * Copyright: 2011 Raumfeld GmbH
5  * Author: Johannes Stezenbach <js@sig21.net>
6  *
7  * based on code from:
8  *      Wolfson Microelectronics PLC.
9  *        Mark Brown <broonie@opensource.wolfsonmicro.com>
10  *      Freescale Semiconductor, Inc.
11  *        Timur Tabi <timur@freescale.com>
12  *
13  * This program is free software; you can redistribute  it and/or modify it
14  * under  the terms of  the GNU General  Public License as published by the
15  * Free Software Foundation;  either version 2 of the  License, or (at your
16  * option) any later version.
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
20
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/i2c.h>
27 #include <linux/of_device.h>
28 #include <linux/of_gpio.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <sound/core.h>
35 #include <sound/pcm.h>
36 #include <sound/pcm_params.h>
37 #include <sound/soc.h>
38 #include <sound/soc-dapm.h>
39 #include <sound/initval.h>
40 #include <sound/tlv.h>
41
42 #include <sound/sta32x.h>
43 #include "sta32x.h"
44
45 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
46                       SNDRV_PCM_RATE_44100 | \
47                       SNDRV_PCM_RATE_48000 | \
48                       SNDRV_PCM_RATE_88200 | \
49                       SNDRV_PCM_RATE_96000 | \
50                       SNDRV_PCM_RATE_176400 | \
51                       SNDRV_PCM_RATE_192000)
52
53 #define STA32X_FORMATS \
54         (SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
55          SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
56          SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
57          SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
58          SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
59          SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
60
61 /* Power-up register defaults */
62 static const struct reg_default sta32x_regs[] = {
63         {  0x0, 0x63 },
64         {  0x1, 0x80 },
65         {  0x2, 0xc2 },
66         {  0x3, 0x40 },
67         {  0x4, 0xc2 },
68         {  0x5, 0x5c },
69         {  0x6, 0x10 },
70         {  0x7, 0xff },
71         {  0x8, 0x60 },
72         {  0x9, 0x60 },
73         {  0xa, 0x60 },
74         {  0xb, 0x80 },
75         {  0xc, 0x00 },
76         {  0xd, 0x00 },
77         {  0xe, 0x00 },
78         {  0xf, 0x40 },
79         { 0x10, 0x80 },
80         { 0x11, 0x77 },
81         { 0x12, 0x6a },
82         { 0x13, 0x69 },
83         { 0x14, 0x6a },
84         { 0x15, 0x69 },
85         { 0x16, 0x00 },
86         { 0x17, 0x00 },
87         { 0x18, 0x00 },
88         { 0x19, 0x00 },
89         { 0x1a, 0x00 },
90         { 0x1b, 0x00 },
91         { 0x1c, 0x00 },
92         { 0x1d, 0x00 },
93         { 0x1e, 0x00 },
94         { 0x1f, 0x00 },
95         { 0x20, 0x00 },
96         { 0x21, 0x00 },
97         { 0x22, 0x00 },
98         { 0x23, 0x00 },
99         { 0x24, 0x00 },
100         { 0x25, 0x00 },
101         { 0x26, 0x00 },
102         { 0x27, 0x2d },
103         { 0x28, 0xc0 },
104         { 0x2b, 0x00 },
105         { 0x2c, 0x0c },
106 };
107
108 static const struct regmap_range sta32x_write_regs_range[] = {
109         regmap_reg_range(STA32X_CONFA,  STA32X_FDRC2),
110 };
111
112 static const struct regmap_range sta32x_read_regs_range[] = {
113         regmap_reg_range(STA32X_CONFA,  STA32X_FDRC2),
114 };
115
116 static const struct regmap_range sta32x_volatile_regs_range[] = {
117         regmap_reg_range(STA32X_CFADDR2, STA32X_CFUD),
118 };
119
120 static const struct regmap_access_table sta32x_write_regs = {
121         .yes_ranges =   sta32x_write_regs_range,
122         .n_yes_ranges = ARRAY_SIZE(sta32x_write_regs_range),
123 };
124
125 static const struct regmap_access_table sta32x_read_regs = {
126         .yes_ranges =   sta32x_read_regs_range,
127         .n_yes_ranges = ARRAY_SIZE(sta32x_read_regs_range),
128 };
129
130 static const struct regmap_access_table sta32x_volatile_regs = {
131         .yes_ranges =   sta32x_volatile_regs_range,
132         .n_yes_ranges = ARRAY_SIZE(sta32x_volatile_regs_range),
133 };
134
135 /* regulator power supply names */
136 static const char *sta32x_supply_names[] = {
137         "Vdda", /* analog supply, 3.3VV */
138         "Vdd3", /* digital supply, 3.3V */
139         "Vcc"   /* power amp spply, 10V - 36V */
140 };
141
142 /* codec private data */
143 struct sta32x_priv {
144         struct regmap *regmap;
145         struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
146         struct snd_soc_codec *codec;
147         struct sta32x_platform_data *pdata;
148
149         unsigned int mclk;
150         unsigned int format;
151
152         u32 coef_shadow[STA32X_COEF_COUNT];
153         struct delayed_work watchdog_work;
154         int shutdown;
155         struct gpio_desc *gpiod_nreset;
156         struct mutex coeff_lock;
157 };
158
159 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
160 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
161 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
162
163 static const char *sta32x_drc_ac[] = {
164         "Anti-Clipping", "Dynamic Range Compression" };
165 static const char *sta32x_auto_eq_mode[] = {
166         "User", "Preset", "Loudness" };
167 static const char *sta32x_auto_gc_mode[] = {
168         "User", "AC no clipping", "AC limited clipping (10%)",
169         "DRC nighttime listening mode" };
170 static const char *sta32x_auto_xo_mode[] = {
171         "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
172         "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
173 static const char *sta32x_preset_eq_mode[] = {
174         "Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
175         "Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
176         "Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
177         "Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
178         "Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
179         "Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
180 static const char *sta32x_limiter_select[] = {
181         "Limiter Disabled", "Limiter #1", "Limiter #2" };
182 static const char *sta32x_limiter_attack_rate[] = {
183         "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
184         "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
185         "0.0645", "0.0564", "0.0501", "0.0451" };
186 static const char *sta32x_limiter_release_rate[] = {
187         "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
188         "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
189         "0.0134", "0.0117", "0.0110", "0.0104" };
190 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_attack_tlv,
191         0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
192         8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
193 );
194
195 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_release_tlv,
196         0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
197         1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
198         2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
199         3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
200         8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
201 );
202
203 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_attack_tlv,
204         0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
205         8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
206         14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
207 );
208
209 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_release_tlv,
210         0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
211         1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
212         3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
213         5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
214         13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
215 );
216
217 static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum,
218                             STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
219                             sta32x_drc_ac);
220 static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum,
221                             STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
222                             sta32x_auto_eq_mode);
223 static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum,
224                             STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
225                             sta32x_auto_gc_mode);
226 static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum,
227                             STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
228                             sta32x_auto_xo_mode);
229 static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum,
230                             STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
231                             sta32x_preset_eq_mode);
232 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum,
233                             STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
234                             sta32x_limiter_select);
235 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum,
236                             STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
237                             sta32x_limiter_select);
238 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum,
239                             STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
240                             sta32x_limiter_select);
241 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum,
242                             STA32X_L1AR, STA32X_LxA_SHIFT,
243                             sta32x_limiter_attack_rate);
244 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum,
245                             STA32X_L2AR, STA32X_LxA_SHIFT,
246                             sta32x_limiter_attack_rate);
247 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum,
248                             STA32X_L1AR, STA32X_LxR_SHIFT,
249                             sta32x_limiter_release_rate);
250 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum,
251                             STA32X_L2AR, STA32X_LxR_SHIFT,
252                             sta32x_limiter_release_rate);
253
254 /* byte array controls for setting biquad, mixer, scaling coefficients;
255  * for biquads all five coefficients need to be set in one go,
256  * mixer and pre/postscale coefs can be set individually;
257  * each coef is 24bit, the bytes are ordered in the same way
258  * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
259  */
260
261 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
262                                    struct snd_ctl_elem_info *uinfo)
263 {
264         int numcoef = kcontrol->private_value >> 16;
265         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
266         uinfo->count = 3 * numcoef;
267         return 0;
268 }
269
270 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
271                                   struct snd_ctl_elem_value *ucontrol)
272 {
273         struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
274         struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
275         int numcoef = kcontrol->private_value >> 16;
276         int index = kcontrol->private_value & 0xffff;
277         unsigned int cfud, val;
278         int i, ret = 0;
279
280         mutex_lock(&sta32x->coeff_lock);
281
282         /* preserve reserved bits in STA32X_CFUD */
283         regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
284         cfud &= 0xf0;
285         /*
286          * chip documentation does not say if the bits are self clearing,
287          * so do it explicitly
288          */
289         regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
290
291         regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
292         if (numcoef == 1) {
293                 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x04);
294         } else if (numcoef == 5) {
295                 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x08);
296         } else {
297                 ret = -EINVAL;
298                 goto exit_unlock;
299         }
300
301         for (i = 0; i < 3 * numcoef; i++) {
302                 regmap_read(sta32x->regmap, STA32X_B1CF1 + i, &val);
303                 ucontrol->value.bytes.data[i] = val;
304         }
305
306 exit_unlock:
307         mutex_unlock(&sta32x->coeff_lock);
308
309         return ret;
310 }
311
312 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
313                                   struct snd_ctl_elem_value *ucontrol)
314 {
315         struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
316         struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
317         int numcoef = kcontrol->private_value >> 16;
318         int index = kcontrol->private_value & 0xffff;
319         unsigned int cfud;
320         int i;
321
322         /* preserve reserved bits in STA32X_CFUD */
323         regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
324         cfud &= 0xf0;
325         /*
326          * chip documentation does not say if the bits are self clearing,
327          * so do it explicitly
328          */
329         regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
330
331         regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
332         for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
333                 sta32x->coef_shadow[index + i] =
334                           (ucontrol->value.bytes.data[3 * i] << 16)
335                         | (ucontrol->value.bytes.data[3 * i + 1] << 8)
336                         | (ucontrol->value.bytes.data[3 * i + 2]);
337         for (i = 0; i < 3 * numcoef; i++)
338                 regmap_write(sta32x->regmap, STA32X_B1CF1 + i,
339                              ucontrol->value.bytes.data[i]);
340         if (numcoef == 1)
341                 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
342         else if (numcoef == 5)
343                 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x02);
344         else
345                 return -EINVAL;
346
347         return 0;
348 }
349
350 static int sta32x_sync_coef_shadow(struct snd_soc_codec *codec)
351 {
352         struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
353         unsigned int cfud;
354         int i;
355
356         /* preserve reserved bits in STA32X_CFUD */
357         regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
358         cfud &= 0xf0;
359
360         for (i = 0; i < STA32X_COEF_COUNT; i++) {
361                 regmap_write(sta32x->regmap, STA32X_CFADDR2, i);
362                 regmap_write(sta32x->regmap, STA32X_B1CF1,
363                              (sta32x->coef_shadow[i] >> 16) & 0xff);
364                 regmap_write(sta32x->regmap, STA32X_B1CF2,
365                              (sta32x->coef_shadow[i] >> 8) & 0xff);
366                 regmap_write(sta32x->regmap, STA32X_B1CF3,
367                              (sta32x->coef_shadow[i]) & 0xff);
368                 /*
369                  * chip documentation does not say if the bits are
370                  * self-clearing, so do it explicitly
371                  */
372                 regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
373                 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
374         }
375         return 0;
376 }
377
378 static int sta32x_cache_sync(struct snd_soc_codec *codec)
379 {
380         struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
381         unsigned int mute;
382         int rc;
383
384         /* mute during register sync */
385         regmap_read(sta32x->regmap, STA32X_MMUTE, &mute);
386         regmap_write(sta32x->regmap, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
387         sta32x_sync_coef_shadow(codec);
388         rc = regcache_sync(sta32x->regmap);
389         regmap_write(sta32x->regmap, STA32X_MMUTE, mute);
390         return rc;
391 }
392
393 /* work around ESD issue where sta32x resets and loses all configuration */
394 static void sta32x_watchdog(struct work_struct *work)
395 {
396         struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
397                                                   watchdog_work.work);
398         struct snd_soc_codec *codec = sta32x->codec;
399         unsigned int confa, confa_cached;
400
401         /* check if sta32x has reset itself */
402         confa_cached = snd_soc_read(codec, STA32X_CONFA);
403         regcache_cache_bypass(sta32x->regmap, true);
404         confa = snd_soc_read(codec, STA32X_CONFA);
405         regcache_cache_bypass(sta32x->regmap, false);
406         if (confa != confa_cached) {
407                 regcache_mark_dirty(sta32x->regmap);
408                 sta32x_cache_sync(codec);
409         }
410
411         if (!sta32x->shutdown)
412                 queue_delayed_work(system_power_efficient_wq,
413                                    &sta32x->watchdog_work,
414                                    round_jiffies_relative(HZ));
415 }
416
417 static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
418 {
419         if (sta32x->pdata->needs_esd_watchdog) {
420                 sta32x->shutdown = 0;
421                 queue_delayed_work(system_power_efficient_wq,
422                                    &sta32x->watchdog_work,
423                                    round_jiffies_relative(HZ));
424         }
425 }
426
427 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
428 {
429         if (sta32x->pdata->needs_esd_watchdog) {
430                 sta32x->shutdown = 1;
431                 cancel_delayed_work_sync(&sta32x->watchdog_work);
432         }
433 }
434
435 #define SINGLE_COEF(xname, index) \
436 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
437         .info = sta32x_coefficient_info, \
438         .get = sta32x_coefficient_get,\
439         .put = sta32x_coefficient_put, \
440         .private_value = index | (1 << 16) }
441
442 #define BIQUAD_COEFS(xname, index) \
443 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
444         .info = sta32x_coefficient_info, \
445         .get = sta32x_coefficient_get,\
446         .put = sta32x_coefficient_put, \
447         .private_value = index | (5 << 16) }
448
449 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
450 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
451 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
452 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
453 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
454 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
455 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
456 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
457 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
458 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
459 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
460 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
461 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
462 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
463 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
464 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
465 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
466 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
467 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
468 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
469 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
470 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
471 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
472 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
473 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
474 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
475 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
476 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
477 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
478 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
479 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
480 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
481 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
482 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
483 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum),
484
485 /* depending on mode, the attack/release thresholds have
486  * two different enum definitions; provide both
487  */
488 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
489                16, 0, sta32x_limiter_ac_attack_tlv),
490 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
491                16, 0, sta32x_limiter_ac_attack_tlv),
492 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
493                16, 0, sta32x_limiter_ac_release_tlv),
494 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
495                16, 0, sta32x_limiter_ac_release_tlv),
496 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
497                16, 0, sta32x_limiter_drc_attack_tlv),
498 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
499                16, 0, sta32x_limiter_drc_attack_tlv),
500 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
501                16, 0, sta32x_limiter_drc_release_tlv),
502 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
503                16, 0, sta32x_limiter_drc_release_tlv),
504
505 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
506 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
507 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
508 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
509 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
510 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
511 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
512 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
513 BIQUAD_COEFS("High-pass", 40),
514 BIQUAD_COEFS("Low-pass", 45),
515 SINGLE_COEF("Ch1 - Prescale", 50),
516 SINGLE_COEF("Ch2 - Prescale", 51),
517 SINGLE_COEF("Ch1 - Postscale", 52),
518 SINGLE_COEF("Ch2 - Postscale", 53),
519 SINGLE_COEF("Ch3 - Postscale", 54),
520 SINGLE_COEF("Thermal warning - Postscale", 55),
521 SINGLE_COEF("Ch1 - Mix 1", 56),
522 SINGLE_COEF("Ch1 - Mix 2", 57),
523 SINGLE_COEF("Ch2 - Mix 1", 58),
524 SINGLE_COEF("Ch2 - Mix 2", 59),
525 SINGLE_COEF("Ch3 - Mix 1", 60),
526 SINGLE_COEF("Ch3 - Mix 2", 61),
527 };
528
529 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
530 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
531 SND_SOC_DAPM_OUTPUT("LEFT"),
532 SND_SOC_DAPM_OUTPUT("RIGHT"),
533 SND_SOC_DAPM_OUTPUT("SUB"),
534 };
535
536 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
537         { "LEFT", NULL, "DAC" },
538         { "RIGHT", NULL, "DAC" },
539         { "SUB", NULL, "DAC" },
540 };
541
542 /* MCLK interpolation ratio per fs */
543 static struct {
544         int fs;
545         int ir;
546 } interpolation_ratios[] = {
547         { 32000, 0 },
548         { 44100, 0 },
549         { 48000, 0 },
550         { 88200, 1 },
551         { 96000, 1 },
552         { 176400, 2 },
553         { 192000, 2 },
554 };
555
556 /* MCLK to fs clock ratios */
557 static int mcs_ratio_table[3][7] = {
558         { 768, 512, 384, 256, 128, 576, 0 },
559         { 384, 256, 192, 128,  64,   0 },
560         { 384, 256, 192, 128,  64,   0 },
561 };
562
563 /**
564  * sta32x_set_dai_sysclk - configure MCLK
565  * @codec_dai: the codec DAI
566  * @clk_id: the clock ID (ignored)
567  * @freq: the MCLK input frequency
568  * @dir: the clock direction (ignored)
569  *
570  * The value of MCLK is used to determine which sample rates are supported
571  * by the STA32X, based on the mclk_ratios table.
572  *
573  * This function must be called by the machine driver's 'startup' function,
574  * otherwise the list of supported sample rates will not be available in
575  * time for ALSA.
576  *
577  * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
578  * theoretically possible sample rates to be enabled. Call it again with a
579  * proper value set one the external clock is set (most probably you would do
580  * that from a machine's driver 'hw_param' hook.
581  */
582 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
583                 int clk_id, unsigned int freq, int dir)
584 {
585         struct snd_soc_codec *codec = codec_dai->codec;
586         struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
587
588         dev_dbg(codec->dev, "mclk=%u\n", freq);
589         sta32x->mclk = freq;
590
591         return 0;
592 }
593
594 /**
595  * sta32x_set_dai_fmt - configure the codec for the selected audio format
596  * @codec_dai: the codec DAI
597  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
598  *
599  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
600  * codec accordingly.
601  */
602 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
603                               unsigned int fmt)
604 {
605         struct snd_soc_codec *codec = codec_dai->codec;
606         struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
607         u8 confb = 0;
608
609         switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
610         case SND_SOC_DAIFMT_CBS_CFS:
611                 break;
612         default:
613                 return -EINVAL;
614         }
615
616         switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
617         case SND_SOC_DAIFMT_I2S:
618         case SND_SOC_DAIFMT_RIGHT_J:
619         case SND_SOC_DAIFMT_LEFT_J:
620                 sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
621                 break;
622         default:
623                 return -EINVAL;
624         }
625
626         switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
627         case SND_SOC_DAIFMT_NB_NF:
628                 confb |= STA32X_CONFB_C2IM;
629                 break;
630         case SND_SOC_DAIFMT_NB_IF:
631                 confb |= STA32X_CONFB_C1IM;
632                 break;
633         default:
634                 return -EINVAL;
635         }
636
637         return regmap_update_bits(sta32x->regmap, STA32X_CONFB,
638                                   STA32X_CONFB_C1IM | STA32X_CONFB_C2IM, confb);
639 }
640
641 /**
642  * sta32x_hw_params - program the STA32X with the given hardware parameters.
643  * @substream: the audio stream
644  * @params: the hardware parameters to set
645  * @dai: the SOC DAI (ignored)
646  *
647  * This function programs the hardware with the values provided.
648  * Specifically, the sample rate and the data format.
649  */
650 static int sta32x_hw_params(struct snd_pcm_substream *substream,
651                             struct snd_pcm_hw_params *params,
652                             struct snd_soc_dai *dai)
653 {
654         struct snd_soc_codec *codec = dai->codec;
655         struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
656         int i, mcs = -EINVAL, ir = -EINVAL;
657         unsigned int confa, confb;
658         unsigned int rate, ratio;
659         int ret;
660
661         if (!sta32x->mclk) {
662                 dev_err(codec->dev,
663                         "sta32x->mclk is unset. Unable to determine ratio\n");
664                 return -EIO;
665         }
666
667         rate = params_rate(params);
668         ratio = sta32x->mclk / rate;
669         dev_dbg(codec->dev, "rate: %u, ratio: %u\n", rate, ratio);
670
671         for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
672                 if (interpolation_ratios[i].fs == rate) {
673                         ir = interpolation_ratios[i].ir;
674                         break;
675                 }
676         }
677
678         if (ir < 0) {
679                 dev_err(codec->dev, "Unsupported samplerate: %u\n", rate);
680                 return -EINVAL;
681         }
682
683         for (i = 0; i < 6; i++) {
684                 if (mcs_ratio_table[ir][i] == ratio) {
685                         mcs = i;
686                         break;
687                 }
688         }
689
690         if (mcs < 0) {
691                 dev_err(codec->dev, "Unresolvable ratio: %u\n", ratio);
692                 return -EINVAL;
693         }
694
695         confa = (ir << STA32X_CONFA_IR_SHIFT) |
696                 (mcs << STA32X_CONFA_MCS_SHIFT);
697         confb = 0;
698
699         switch (params_width(params)) {
700         case 24:
701                 dev_dbg(codec->dev, "24bit\n");
702                 /* fall through */
703         case 32:
704                 dev_dbg(codec->dev, "24bit or 32bit\n");
705                 switch (sta32x->format) {
706                 case SND_SOC_DAIFMT_I2S:
707                         confb |= 0x0;
708                         break;
709                 case SND_SOC_DAIFMT_LEFT_J:
710                         confb |= 0x1;
711                         break;
712                 case SND_SOC_DAIFMT_RIGHT_J:
713                         confb |= 0x2;
714                         break;
715                 }
716
717                 break;
718         case 20:
719                 dev_dbg(codec->dev, "20bit\n");
720                 switch (sta32x->format) {
721                 case SND_SOC_DAIFMT_I2S:
722                         confb |= 0x4;
723                         break;
724                 case SND_SOC_DAIFMT_LEFT_J:
725                         confb |= 0x5;
726                         break;
727                 case SND_SOC_DAIFMT_RIGHT_J:
728                         confb |= 0x6;
729                         break;
730                 }
731
732                 break;
733         case 18:
734                 dev_dbg(codec->dev, "18bit\n");
735                 switch (sta32x->format) {
736                 case SND_SOC_DAIFMT_I2S:
737                         confb |= 0x8;
738                         break;
739                 case SND_SOC_DAIFMT_LEFT_J:
740                         confb |= 0x9;
741                         break;
742                 case SND_SOC_DAIFMT_RIGHT_J:
743                         confb |= 0xa;
744                         break;
745                 }
746
747                 break;
748         case 16:
749                 dev_dbg(codec->dev, "16bit\n");
750                 switch (sta32x->format) {
751                 case SND_SOC_DAIFMT_I2S:
752                         confb |= 0x0;
753                         break;
754                 case SND_SOC_DAIFMT_LEFT_J:
755                         confb |= 0xd;
756                         break;
757                 case SND_SOC_DAIFMT_RIGHT_J:
758                         confb |= 0xe;
759                         break;
760                 }
761
762                 break;
763         default:
764                 return -EINVAL;
765         }
766
767         ret = regmap_update_bits(sta32x->regmap, STA32X_CONFA,
768                                  STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK,
769                                  confa);
770         if (ret < 0)
771                 return ret;
772
773         ret = regmap_update_bits(sta32x->regmap, STA32X_CONFB,
774                                  STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB,
775                                  confb);
776         if (ret < 0)
777                 return ret;
778
779         return 0;
780 }
781
782 static int sta32x_startup_sequence(struct sta32x_priv *sta32x)
783 {
784         if (sta32x->gpiod_nreset) {
785                 gpiod_set_value(sta32x->gpiod_nreset, 0);
786                 mdelay(1);
787                 gpiod_set_value(sta32x->gpiod_nreset, 1);
788                 mdelay(1);
789         }
790
791         return 0;
792 }
793
794 /**
795  * sta32x_set_bias_level - DAPM callback
796  * @codec: the codec device
797  * @level: DAPM power level
798  *
799  * This is called by ALSA to put the codec into low power mode
800  * or to wake it up.  If the codec is powered off completely
801  * all registers must be restored after power on.
802  */
803 static int sta32x_set_bias_level(struct snd_soc_codec *codec,
804                                  enum snd_soc_bias_level level)
805 {
806         int ret;
807         struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
808
809         dev_dbg(codec->dev, "level = %d\n", level);
810         switch (level) {
811         case SND_SOC_BIAS_ON:
812                 break;
813
814         case SND_SOC_BIAS_PREPARE:
815                 /* Full power on */
816                 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
817                                     STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
818                                     STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
819                 break;
820
821         case SND_SOC_BIAS_STANDBY:
822                 if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
823                         ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
824                                                     sta32x->supplies);
825                         if (ret != 0) {
826                                 dev_err(codec->dev,
827                                         "Failed to enable supplies: %d\n", ret);
828                                 return ret;
829                         }
830
831                         sta32x_startup_sequence(sta32x);
832                         sta32x_cache_sync(codec);
833                         sta32x_watchdog_start(sta32x);
834                 }
835
836                 /* Power down */
837                 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
838                                    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
839                                    0);
840
841                 break;
842
843         case SND_SOC_BIAS_OFF:
844                 /* The chip runs through the power down sequence for us. */
845                 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
846                                    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 0);
847                 msleep(300);
848                 sta32x_watchdog_stop(sta32x);
849
850                 if (sta32x->gpiod_nreset)
851                         gpiod_set_value(sta32x->gpiod_nreset, 0);
852
853                 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
854                                        sta32x->supplies);
855                 break;
856         }
857         return 0;
858 }
859
860 static const struct snd_soc_dai_ops sta32x_dai_ops = {
861         .hw_params      = sta32x_hw_params,
862         .set_sysclk     = sta32x_set_dai_sysclk,
863         .set_fmt        = sta32x_set_dai_fmt,
864 };
865
866 static struct snd_soc_dai_driver sta32x_dai = {
867         .name = "sta32x-hifi",
868         .playback = {
869                 .stream_name = "Playback",
870                 .channels_min = 2,
871                 .channels_max = 2,
872                 .rates = STA32X_RATES,
873                 .formats = STA32X_FORMATS,
874         },
875         .ops = &sta32x_dai_ops,
876 };
877
878 static int sta32x_probe(struct snd_soc_codec *codec)
879 {
880         struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
881         struct sta32x_platform_data *pdata = sta32x->pdata;
882         int i, ret = 0, thermal = 0;
883         ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
884                                     sta32x->supplies);
885         if (ret != 0) {
886                 dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
887                 return ret;
888         }
889
890         ret = sta32x_startup_sequence(sta32x);
891         if (ret < 0) {
892                 dev_err(codec->dev, "Failed to startup device\n");
893                 return ret;
894         }
895
896         /* CONFA */
897         if (!pdata->thermal_warning_recovery)
898                 thermal |= STA32X_CONFA_TWAB;
899         if (!pdata->thermal_warning_adjustment)
900                 thermal |= STA32X_CONFA_TWRB;
901         if (!pdata->fault_detect_recovery)
902                 thermal |= STA32X_CONFA_FDRB;
903         regmap_update_bits(sta32x->regmap, STA32X_CONFA,
904                            STA32X_CONFA_TWAB | STA32X_CONFA_TWRB |
905                            STA32X_CONFA_FDRB,
906                            thermal);
907
908         /* CONFC */
909         regmap_update_bits(sta32x->regmap, STA32X_CONFC,
910                            STA32X_CONFC_CSZ_MASK,
911                            pdata->drop_compensation_ns
912                                 << STA32X_CONFC_CSZ_SHIFT);
913
914         /* CONFE */
915         regmap_update_bits(sta32x->regmap, STA32X_CONFE,
916                            STA32X_CONFE_MPCV,
917                            pdata->max_power_use_mpcc ?
918                                 STA32X_CONFE_MPCV : 0);
919         regmap_update_bits(sta32x->regmap, STA32X_CONFE,
920                            STA32X_CONFE_MPC,
921                            pdata->max_power_correction ?
922                                 STA32X_CONFE_MPC : 0);
923         regmap_update_bits(sta32x->regmap, STA32X_CONFE,
924                            STA32X_CONFE_AME,
925                            pdata->am_reduction_mode ?
926                                 STA32X_CONFE_AME : 0);
927         regmap_update_bits(sta32x->regmap, STA32X_CONFE,
928                            STA32X_CONFE_PWMS,
929                            pdata->odd_pwm_speed_mode ?
930                                 STA32X_CONFE_PWMS : 0);
931
932         /*  CONFF */
933         regmap_update_bits(sta32x->regmap, STA32X_CONFF,
934                            STA32X_CONFF_IDE,
935                            pdata->invalid_input_detect_mute ?
936                                 STA32X_CONFF_IDE : 0);
937
938         /* select output configuration  */
939         regmap_update_bits(sta32x->regmap, STA32X_CONFF,
940                            STA32X_CONFF_OCFG_MASK,
941                            pdata->output_conf
942                                 << STA32X_CONFF_OCFG_SHIFT);
943
944         /* channel to output mapping */
945         regmap_update_bits(sta32x->regmap, STA32X_C1CFG,
946                            STA32X_CxCFG_OM_MASK,
947                            pdata->ch1_output_mapping
948                                 << STA32X_CxCFG_OM_SHIFT);
949         regmap_update_bits(sta32x->regmap, STA32X_C2CFG,
950                            STA32X_CxCFG_OM_MASK,
951                            pdata->ch2_output_mapping
952                                 << STA32X_CxCFG_OM_SHIFT);
953         regmap_update_bits(sta32x->regmap, STA32X_C3CFG,
954                            STA32X_CxCFG_OM_MASK,
955                            pdata->ch3_output_mapping
956                                 << STA32X_CxCFG_OM_SHIFT);
957
958         /* initialize coefficient shadow RAM with reset values */
959         for (i = 4; i <= 49; i += 5)
960                 sta32x->coef_shadow[i] = 0x400000;
961         for (i = 50; i <= 54; i++)
962                 sta32x->coef_shadow[i] = 0x7fffff;
963         sta32x->coef_shadow[55] = 0x5a9df7;
964         sta32x->coef_shadow[56] = 0x7fffff;
965         sta32x->coef_shadow[59] = 0x7fffff;
966         sta32x->coef_shadow[60] = 0x400000;
967         sta32x->coef_shadow[61] = 0x400000;
968
969         if (sta32x->pdata->needs_esd_watchdog)
970                 INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
971
972         snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_STANDBY);
973         /* Bias level configuration will have done an extra enable */
974         regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
975
976         return 0;
977 }
978
979 static int sta32x_remove(struct snd_soc_codec *codec)
980 {
981         struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
982
983         sta32x_watchdog_stop(sta32x);
984         regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
985
986         return 0;
987 }
988
989 static const struct snd_soc_codec_driver sta32x_codec = {
990         .probe =                sta32x_probe,
991         .remove =               sta32x_remove,
992         .set_bias_level =       sta32x_set_bias_level,
993         .suspend_bias_off =     true,
994         .controls =             sta32x_snd_controls,
995         .num_controls =         ARRAY_SIZE(sta32x_snd_controls),
996         .dapm_widgets =         sta32x_dapm_widgets,
997         .num_dapm_widgets =     ARRAY_SIZE(sta32x_dapm_widgets),
998         .dapm_routes =          sta32x_dapm_routes,
999         .num_dapm_routes =      ARRAY_SIZE(sta32x_dapm_routes),
1000 };
1001
1002 static const struct regmap_config sta32x_regmap = {
1003         .reg_bits =             8,
1004         .val_bits =             8,
1005         .max_register =         STA32X_FDRC2,
1006         .reg_defaults =         sta32x_regs,
1007         .num_reg_defaults =     ARRAY_SIZE(sta32x_regs),
1008         .cache_type =           REGCACHE_RBTREE,
1009         .wr_table =             &sta32x_write_regs,
1010         .rd_table =             &sta32x_read_regs,
1011         .volatile_table =       &sta32x_volatile_regs,
1012 };
1013
1014 #ifdef CONFIG_OF
1015 static const struct of_device_id st32x_dt_ids[] = {
1016         { .compatible = "st,sta32x", },
1017         { }
1018 };
1019 MODULE_DEVICE_TABLE(of, st32x_dt_ids);
1020
1021 static int sta32x_probe_dt(struct device *dev, struct sta32x_priv *sta32x)
1022 {
1023         struct device_node *np = dev->of_node;
1024         struct sta32x_platform_data *pdata;
1025         u16 tmp;
1026
1027         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1028         if (!pdata)
1029                 return -ENOMEM;
1030
1031         of_property_read_u8(np, "st,output-conf",
1032                             &pdata->output_conf);
1033         of_property_read_u8(np, "st,ch1-output-mapping",
1034                             &pdata->ch1_output_mapping);
1035         of_property_read_u8(np, "st,ch2-output-mapping",
1036                             &pdata->ch2_output_mapping);
1037         of_property_read_u8(np, "st,ch3-output-mapping",
1038                             &pdata->ch3_output_mapping);
1039
1040         if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1041                 pdata->thermal_warning_recovery = 1;
1042         if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1043                 pdata->thermal_warning_adjustment = 1;
1044         if (of_get_property(np, "st,needs_esd_watchdog", NULL))
1045                 pdata->needs_esd_watchdog = 1;
1046
1047         tmp = 140;
1048         of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1049         pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1050
1051         /* CONFE */
1052         if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1053                 pdata->max_power_use_mpcc = 1;
1054
1055         if (of_get_property(np, "st,max-power-correction", NULL))
1056                 pdata->max_power_correction = 1;
1057
1058         if (of_get_property(np, "st,am-reduction-mode", NULL))
1059                 pdata->am_reduction_mode = 1;
1060
1061         if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1062                 pdata->odd_pwm_speed_mode = 1;
1063
1064         /* CONFF */
1065         if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1066                 pdata->invalid_input_detect_mute = 1;
1067
1068         sta32x->pdata = pdata;
1069
1070         return 0;
1071 }
1072 #endif
1073
1074 static int sta32x_i2c_probe(struct i2c_client *i2c,
1075                             const struct i2c_device_id *id)
1076 {
1077         struct device *dev = &i2c->dev;
1078         struct sta32x_priv *sta32x;
1079         int ret, i;
1080
1081         sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
1082                               GFP_KERNEL);
1083         if (!sta32x)
1084                 return -ENOMEM;
1085
1086         mutex_init(&sta32x->coeff_lock);
1087         sta32x->pdata = dev_get_platdata(dev);
1088
1089 #ifdef CONFIG_OF
1090         if (dev->of_node) {
1091                 ret = sta32x_probe_dt(dev, sta32x);
1092                 if (ret < 0)
1093                         return ret;
1094         }
1095 #endif
1096
1097         /* GPIOs */
1098         sta32x->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1099                                                        GPIOD_OUT_LOW);
1100         if (IS_ERR(sta32x->gpiod_nreset))
1101                 return PTR_ERR(sta32x->gpiod_nreset);
1102
1103         /* regulators */
1104         for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
1105                 sta32x->supplies[i].supply = sta32x_supply_names[i];
1106
1107         ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies),
1108                                       sta32x->supplies);
1109         if (ret != 0) {
1110                 dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
1111                 return ret;
1112         }
1113
1114         sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap);
1115         if (IS_ERR(sta32x->regmap)) {
1116                 ret = PTR_ERR(sta32x->regmap);
1117                 dev_err(dev, "Failed to init regmap: %d\n", ret);
1118                 return ret;
1119         }
1120
1121         i2c_set_clientdata(i2c, sta32x);
1122
1123         ret = snd_soc_register_codec(dev, &sta32x_codec, &sta32x_dai, 1);
1124         if (ret < 0)
1125                 dev_err(dev, "Failed to register codec (%d)\n", ret);
1126
1127         return ret;
1128 }
1129
1130 static int sta32x_i2c_remove(struct i2c_client *client)
1131 {
1132         snd_soc_unregister_codec(&client->dev);
1133         return 0;
1134 }
1135
1136 static const struct i2c_device_id sta32x_i2c_id[] = {
1137         { "sta326", 0 },
1138         { "sta328", 0 },
1139         { "sta329", 0 },
1140         { }
1141 };
1142 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
1143
1144 static struct i2c_driver sta32x_i2c_driver = {
1145         .driver = {
1146                 .name = "sta32x",
1147                 .of_match_table = of_match_ptr(st32x_dt_ids),
1148         },
1149         .probe =    sta32x_i2c_probe,
1150         .remove =   sta32x_i2c_remove,
1151         .id_table = sta32x_i2c_id,
1152 };
1153
1154 module_i2c_driver(sta32x_i2c_driver);
1155
1156 MODULE_DESCRIPTION("ASoC STA32X driver");
1157 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
1158 MODULE_LICENSE("GPL");