Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / sound / ppc / pmac.c
1 /*
2  * PMac DBDMA lowlevel functions
3  *
4  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
5  * code based on dmasound.c.
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21
22
23 #include <linux/io.h>
24 #include <asm/irq.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <sound/core.h>
34 #include "pmac.h"
35 #include <sound/pcm_params.h>
36 #include <asm/pmac_feature.h>
37 #include <asm/pci-bridge.h>
38
39
40 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
41 static int awacs_freqs[8] = {
42         44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
43 };
44 /* fixed frequency table for tumbler */
45 static int tumbler_freqs[1] = {
46         44100
47 };
48
49
50 /*
51  * we will allocate a single 'emergency' dbdma cmd block to use if the
52  * tx status comes up "DEAD".  This happens on some PowerComputing Pmac
53  * clones, either owing to a bug in dbdma or some interaction between
54  * IDE and sound.  However, this measure would deal with DEAD status if
55  * it appeared elsewhere.
56  */
57 static struct pmac_dbdma emergency_dbdma;
58 static int emergency_in_use;
59
60
61 /*
62  * allocate DBDMA command arrays
63  */
64 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
65 {
66         unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
67
68         rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
69                                         &rec->dma_base, GFP_KERNEL);
70         if (rec->space == NULL)
71                 return -ENOMEM;
72         rec->size = size;
73         memset(rec->space, 0, rsize);
74         rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
75         rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
76
77         return 0;
78 }
79
80 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
81 {
82         if (rec->space) {
83                 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
84
85                 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
86         }
87 }
88
89
90 /*
91  * pcm stuff
92  */
93
94 /*
95  * look up frequency table
96  */
97
98 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
99 {
100         int i, ok, found;
101
102         ok = rec->cur_freqs;
103         if (rate > chip->freq_table[0])
104                 return 0;
105         found = 0;
106         for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
107                 if (! (ok & 1)) continue;
108                 found = i;
109                 if (rate >= chip->freq_table[i])
110                         break;
111         }
112         return found;
113 }
114
115 /*
116  * check whether another stream is active
117  */
118 static inline int another_stream(int stream)
119 {
120         return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
121                 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
122 }
123
124 /*
125  * allocate buffers
126  */
127 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
128                                   struct snd_pcm_hw_params *hw_params)
129 {
130         return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
131 }
132
133 /*
134  * release buffers
135  */
136 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
137 {
138         snd_pcm_lib_free_pages(subs);
139         return 0;
140 }
141
142 /*
143  * get a stream of the opposite direction
144  */
145 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
146 {
147         switch (stream) {
148         case SNDRV_PCM_STREAM_PLAYBACK:
149                 return &chip->playback;
150         case SNDRV_PCM_STREAM_CAPTURE:
151                 return &chip->capture;
152         default:
153                 snd_BUG();
154                 return NULL;
155         }
156 }
157
158 /*
159  * wait while run status is on
160  */
161 static inline void
162 snd_pmac_wait_ack(struct pmac_stream *rec)
163 {
164         int timeout = 50000;
165         while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
166                 udelay(1);
167 }
168
169 /*
170  * set the format and rate to the chip.
171  * call the lowlevel function if defined (e.g. for AWACS).
172  */
173 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
174 {
175         /* set up frequency and format */
176         out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
177         out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
178         if (chip->set_format)
179                 chip->set_format(chip);
180 }
181
182 /*
183  * stop the DMA transfer
184  */
185 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
186 {
187         out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
188         snd_pmac_wait_ack(rec);
189 }
190
191 /*
192  * set the command pointer address
193  */
194 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
195 {
196         out_le32(&rec->dma->cmdptr, cmd->addr);
197 }
198
199 /*
200  * start the DMA
201  */
202 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
203 {
204         out_le32(&rec->dma->control, status | (status << 16));
205 }
206
207
208 /*
209  * prepare playback/capture stream
210  */
211 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
212 {
213         int i;
214         volatile struct dbdma_cmd __iomem *cp;
215         struct snd_pcm_runtime *runtime = subs->runtime;
216         int rate_index;
217         long offset;
218         struct pmac_stream *astr;
219
220         rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
221         rec->period_size = snd_pcm_lib_period_bytes(subs);
222         rec->nperiods = rec->dma_size / rec->period_size;
223         rec->cur_period = 0;
224         rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
225
226         /* set up constraints */
227         astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
228         if (! astr)
229                 return -EINVAL;
230         astr->cur_freqs = 1 << rate_index;
231         astr->cur_formats = 1 << runtime->format;
232         chip->rate_index = rate_index;
233         chip->format = runtime->format;
234
235         /* We really want to execute a DMA stop command, after the AWACS
236          * is initialized.
237          * For reasons I don't understand, it stops the hissing noise
238          * common to many PowerBook G3 systems and random noise otherwise
239          * captured on iBook2's about every third time. -ReneR
240          */
241         spin_lock_irq(&chip->reg_lock);
242         snd_pmac_dma_stop(rec);
243         chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
244         snd_pmac_dma_set_command(rec, &chip->extra_dma);
245         snd_pmac_dma_run(rec, RUN);
246         spin_unlock_irq(&chip->reg_lock);
247         mdelay(5);
248         spin_lock_irq(&chip->reg_lock);
249         /* continuous DMA memory type doesn't provide the physical address,
250          * so we need to resolve the address here...
251          */
252         offset = runtime->dma_addr;
253         for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
254                 cp->phy_addr = cpu_to_le32(offset);
255                 cp->req_count = cpu_to_le16(rec->period_size);
256                 /*cp->res_count = cpu_to_le16(0);*/
257                 cp->xfer_status = cpu_to_le16(0);
258                 offset += rec->period_size;
259         }
260         /* make loop */
261         cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
262         cp->cmd_dep = cpu_to_le32(rec->cmd.addr);
263
264         snd_pmac_dma_stop(rec);
265         snd_pmac_dma_set_command(rec, &rec->cmd);
266         spin_unlock_irq(&chip->reg_lock);
267
268         return 0;
269 }
270
271
272 /*
273  * PCM trigger/stop
274  */
275 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
276                                 struct snd_pcm_substream *subs, int cmd)
277 {
278         volatile struct dbdma_cmd __iomem *cp;
279         int i, command;
280
281         switch (cmd) {
282         case SNDRV_PCM_TRIGGER_START:
283         case SNDRV_PCM_TRIGGER_RESUME:
284                 if (rec->running)
285                         return -EBUSY;
286                 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
287                            OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
288                 spin_lock(&chip->reg_lock);
289                 snd_pmac_beep_stop(chip);
290                 snd_pmac_pcm_set_format(chip);
291                 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
292                         out_le16(&cp->command, command);
293                 snd_pmac_dma_set_command(rec, &rec->cmd);
294                 (void)in_le32(&rec->dma->status);
295                 snd_pmac_dma_run(rec, RUN|WAKE);
296                 rec->running = 1;
297                 spin_unlock(&chip->reg_lock);
298                 break;
299
300         case SNDRV_PCM_TRIGGER_STOP:
301         case SNDRV_PCM_TRIGGER_SUSPEND:
302                 spin_lock(&chip->reg_lock);
303                 rec->running = 0;
304                 /*printk(KERN_DEBUG "stopped!!\n");*/
305                 snd_pmac_dma_stop(rec);
306                 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
307                         out_le16(&cp->command, DBDMA_STOP);
308                 spin_unlock(&chip->reg_lock);
309                 break;
310
311         default:
312                 return -EINVAL;
313         }
314
315         return 0;
316 }
317
318 /*
319  * return the current pointer
320  */
321 inline
322 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
323                                               struct pmac_stream *rec,
324                                               struct snd_pcm_substream *subs)
325 {
326         int count = 0;
327
328 #if 1 /* hmm.. how can we get the current dma pointer?? */
329         int stat;
330         volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
331         stat = le16_to_cpu(cp->xfer_status);
332         if (stat & (ACTIVE|DEAD)) {
333                 count = in_le16(&cp->res_count);
334                 if (count)
335                         count = rec->period_size - count;
336         }
337 #endif
338         count += rec->cur_period * rec->period_size;
339         /*printk(KERN_DEBUG "pointer=%d\n", count);*/
340         return bytes_to_frames(subs->runtime, count);
341 }
342
343 /*
344  * playback
345  */
346
347 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
348 {
349         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
350         return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
351 }
352
353 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
354                                      int cmd)
355 {
356         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
357         return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
358 }
359
360 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
361 {
362         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
363         return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
364 }
365
366
367 /*
368  * capture
369  */
370
371 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
372 {
373         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
374         return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
375 }
376
377 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
378                                     int cmd)
379 {
380         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
381         return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
382 }
383
384 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
385 {
386         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
387         return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
388 }
389
390
391 /*
392  * Handle DEAD DMA transfers:
393  * if the TX status comes up "DEAD" - reported on some Power Computing machines
394  * we need to re-start the dbdma - but from a different physical start address
395  * and with a different transfer length.  It would get very messy to do this
396  * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
397  * addresses each time.  So, we will keep a single dbdma_cmd block which can be
398  * fiddled with.
399  * When DEAD status is first reported the content of the faulted dbdma block is
400  * copied into the emergency buffer and we note that the buffer is in use.
401  * we then bump the start physical address by the amount that was successfully
402  * output before it died.
403  * On any subsequent DEAD result we just do the bump-ups (we know that we are
404  * already using the emergency dbdma_cmd).
405  * CHECK: this just tries to "do it".  It is possible that we should abandon
406  * xfers when the number of residual bytes gets below a certain value - I can
407  * see that this might cause a loop-forever if a too small transfer causes
408  * DEAD status.  However this is a TODO for now - we'll see what gets reported.
409  * When we get a successful transfer result with the emergency buffer we just
410  * pretend that it completed using the original dmdma_cmd and carry on.  The
411  * 'next_cmd' field will already point back to the original loop of blocks.
412  */
413 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
414                                           volatile struct dbdma_cmd __iomem *cp)
415 {
416         unsigned short req, res ;
417         unsigned int phy ;
418
419         /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
420
421         /* to clear DEAD status we must first clear RUN
422            set it to quiescent to be on the safe side */
423         (void)in_le32(&rec->dma->status);
424         out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
425
426         if (!emergency_in_use) { /* new problem */
427                 memcpy((void *)emergency_dbdma.cmds, (void *)cp,
428                        sizeof(struct dbdma_cmd));
429                 emergency_in_use = 1;
430                 cp->xfer_status = cpu_to_le16(0);
431                 cp->req_count = cpu_to_le16(rec->period_size);
432                 cp = emergency_dbdma.cmds;
433         }
434
435         /* now bump the values to reflect the amount
436            we haven't yet shifted */
437         req = le16_to_cpu(cp->req_count);
438         res = le16_to_cpu(cp->res_count);
439         phy = le32_to_cpu(cp->phy_addr);
440         phy += (req - res);
441         cp->req_count = cpu_to_le16(res);
442         cp->res_count = cpu_to_le16(0);
443         cp->xfer_status = cpu_to_le16(0);
444         cp->phy_addr = cpu_to_le32(phy);
445
446         cp->cmd_dep = cpu_to_le32(rec->cmd.addr
447                 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
448
449         cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
450
451         /* point at our patched up command block */
452         out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
453
454         /* we must re-start the controller */
455         (void)in_le32(&rec->dma->status);
456         /* should complete clearing the DEAD status */
457         out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
458 }
459
460 /*
461  * update playback/capture pointer from interrupts
462  */
463 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
464 {
465         volatile struct dbdma_cmd __iomem *cp;
466         int c;
467         int stat;
468
469         spin_lock(&chip->reg_lock);
470         if (rec->running) {
471                 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
472
473                         if (emergency_in_use)   /* already using DEAD xfer? */
474                                 cp = emergency_dbdma.cmds;
475                         else
476                                 cp = &rec->cmd.cmds[rec->cur_period];
477
478                         stat = le16_to_cpu(cp->xfer_status);
479
480                         if (stat & DEAD) {
481                                 snd_pmac_pcm_dead_xfer(rec, cp);
482                                 break; /* this block is still going */
483                         }
484
485                         if (emergency_in_use)
486                                 emergency_in_use = 0 ; /* done that */
487
488                         if (! (stat & ACTIVE))
489                                 break;
490
491                         /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/
492                         cp->xfer_status = cpu_to_le16(0);
493                         cp->req_count = cpu_to_le16(rec->period_size);
494                         /*cp->res_count = cpu_to_le16(0);*/
495                         rec->cur_period++;
496                         if (rec->cur_period >= rec->nperiods) {
497                                 rec->cur_period = 0;
498                         }
499
500                         spin_unlock(&chip->reg_lock);
501                         snd_pcm_period_elapsed(rec->substream);
502                         spin_lock(&chip->reg_lock);
503                 }
504         }
505         spin_unlock(&chip->reg_lock);
506 }
507
508
509 /*
510  * hw info
511  */
512
513 static struct snd_pcm_hardware snd_pmac_playback =
514 {
515         .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
516                                  SNDRV_PCM_INFO_MMAP |
517                                  SNDRV_PCM_INFO_MMAP_VALID |
518                                  SNDRV_PCM_INFO_RESUME),
519         .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
520         .rates =                SNDRV_PCM_RATE_8000_44100,
521         .rate_min =             7350,
522         .rate_max =             44100,
523         .channels_min =         2,
524         .channels_max =         2,
525         .buffer_bytes_max =     131072,
526         .period_bytes_min =     256,
527         .period_bytes_max =     16384,
528         .periods_min =          3,
529         .periods_max =          PMAC_MAX_FRAGS,
530 };
531
532 static struct snd_pcm_hardware snd_pmac_capture =
533 {
534         .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
535                                  SNDRV_PCM_INFO_MMAP |
536                                  SNDRV_PCM_INFO_MMAP_VALID |
537                                  SNDRV_PCM_INFO_RESUME),
538         .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
539         .rates =                SNDRV_PCM_RATE_8000_44100,
540         .rate_min =             7350,
541         .rate_max =             44100,
542         .channels_min =         2,
543         .channels_max =         2,
544         .buffer_bytes_max =     131072,
545         .period_bytes_min =     256,
546         .period_bytes_max =     16384,
547         .periods_min =          3,
548         .periods_max =          PMAC_MAX_FRAGS,
549 };
550
551
552 #if 0 // NYI
553 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
554                                  struct snd_pcm_hw_rule *rule)
555 {
556         struct snd_pmac *chip = rule->private;
557         struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
558         int i, freq_table[8], num_freqs;
559
560         if (! rec)
561                 return -EINVAL;
562         num_freqs = 0;
563         for (i = chip->num_freqs - 1; i >= 0; i--) {
564                 if (rec->cur_freqs & (1 << i))
565                         freq_table[num_freqs++] = chip->freq_table[i];
566         }
567
568         return snd_interval_list(hw_param_interval(params, rule->var),
569                                  num_freqs, freq_table, 0);
570 }
571
572 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
573                                    struct snd_pcm_hw_rule *rule)
574 {
575         struct snd_pmac *chip = rule->private;
576         struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
577
578         if (! rec)
579                 return -EINVAL;
580         return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
581                                    rec->cur_formats);
582 }
583 #endif // NYI
584
585 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
586                              struct snd_pcm_substream *subs)
587 {
588         struct snd_pcm_runtime *runtime = subs->runtime;
589         int i;
590
591         /* look up frequency table and fill bit mask */
592         runtime->hw.rates = 0;
593         for (i = 0; i < chip->num_freqs; i++)
594                 if (chip->freqs_ok & (1 << i))
595                         runtime->hw.rates |=
596                                 snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
597
598         /* check for minimum and maximum rates */
599         for (i = 0; i < chip->num_freqs; i++) {
600                 if (chip->freqs_ok & (1 << i)) {
601                         runtime->hw.rate_max = chip->freq_table[i];
602                         break;
603                 }
604         }
605         for (i = chip->num_freqs - 1; i >= 0; i--) {
606                 if (chip->freqs_ok & (1 << i)) {
607                         runtime->hw.rate_min = chip->freq_table[i];
608                         break;
609                 }
610         }
611         runtime->hw.formats = chip->formats_ok;
612         if (chip->can_capture) {
613                 if (! chip->can_duplex)
614                         runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
615                 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
616         }
617         runtime->private_data = rec;
618         rec->substream = subs;
619
620 #if 0 /* FIXME: still under development.. */
621         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
622                             snd_pmac_hw_rule_rate, chip, rec->stream, -1);
623         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
624                             snd_pmac_hw_rule_format, chip, rec->stream, -1);
625 #endif
626
627         runtime->hw.periods_max = rec->cmd.size - 1;
628
629         /* constraints to fix choppy sound */
630         snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
631         return 0;
632 }
633
634 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
635                               struct snd_pcm_substream *subs)
636 {
637         struct pmac_stream *astr;
638
639         snd_pmac_dma_stop(rec);
640
641         astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
642         if (! astr)
643                 return -EINVAL;
644
645         /* reset constraints */
646         astr->cur_freqs = chip->freqs_ok;
647         astr->cur_formats = chip->formats_ok;
648
649         return 0;
650 }
651
652 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
653 {
654         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
655
656         subs->runtime->hw = snd_pmac_playback;
657         return snd_pmac_pcm_open(chip, &chip->playback, subs);
658 }
659
660 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
661 {
662         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
663
664         subs->runtime->hw = snd_pmac_capture;
665         return snd_pmac_pcm_open(chip, &chip->capture, subs);
666 }
667
668 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
669 {
670         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
671
672         return snd_pmac_pcm_close(chip, &chip->playback, subs);
673 }
674
675 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
676 {
677         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
678
679         return snd_pmac_pcm_close(chip, &chip->capture, subs);
680 }
681
682 /*
683  */
684
685 static struct snd_pcm_ops snd_pmac_playback_ops = {
686         .open =         snd_pmac_playback_open,
687         .close =        snd_pmac_playback_close,
688         .ioctl =        snd_pcm_lib_ioctl,
689         .hw_params =    snd_pmac_pcm_hw_params,
690         .hw_free =      snd_pmac_pcm_hw_free,
691         .prepare =      snd_pmac_playback_prepare,
692         .trigger =      snd_pmac_playback_trigger,
693         .pointer =      snd_pmac_playback_pointer,
694 };
695
696 static struct snd_pcm_ops snd_pmac_capture_ops = {
697         .open =         snd_pmac_capture_open,
698         .close =        snd_pmac_capture_close,
699         .ioctl =        snd_pcm_lib_ioctl,
700         .hw_params =    snd_pmac_pcm_hw_params,
701         .hw_free =      snd_pmac_pcm_hw_free,
702         .prepare =      snd_pmac_capture_prepare,
703         .trigger =      snd_pmac_capture_trigger,
704         .pointer =      snd_pmac_capture_pointer,
705 };
706
707 int snd_pmac_pcm_new(struct snd_pmac *chip)
708 {
709         struct snd_pcm *pcm;
710         int err;
711         int num_captures = 1;
712
713         if (! chip->can_capture)
714                 num_captures = 0;
715         err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
716         if (err < 0)
717                 return err;
718
719         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
720         if (chip->can_capture)
721                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
722
723         pcm->private_data = chip;
724         pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
725         strcpy(pcm->name, chip->card->shortname);
726         chip->pcm = pcm;
727
728         chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
729         if (chip->can_byte_swap)
730                 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
731
732         chip->playback.cur_formats = chip->formats_ok;
733         chip->capture.cur_formats = chip->formats_ok;
734         chip->playback.cur_freqs = chip->freqs_ok;
735         chip->capture.cur_freqs = chip->freqs_ok;
736
737         /* preallocate 64k buffer */
738         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
739                                               &chip->pdev->dev,
740                                               64 * 1024, 64 * 1024);
741
742         return 0;
743 }
744
745
746 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
747 {
748         out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
749         snd_pmac_wait_ack(&chip->playback);
750         out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
751         snd_pmac_wait_ack(&chip->capture);
752 }
753
754
755 /*
756  * handling beep
757  */
758 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
759 {
760         struct pmac_stream *rec = &chip->playback;
761
762         snd_pmac_dma_stop(rec);
763         chip->extra_dma.cmds->req_count = cpu_to_le16(bytes);
764         chip->extra_dma.cmds->xfer_status = cpu_to_le16(0);
765         chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr);
766         chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr);
767         chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE + BR_ALWAYS);
768         out_le32(&chip->awacs->control,
769                  (in_le32(&chip->awacs->control) & ~0x1f00)
770                  | (speed << 8));
771         out_le32(&chip->awacs->byteswap, 0);
772         snd_pmac_dma_set_command(rec, &chip->extra_dma);
773         snd_pmac_dma_run(rec, RUN);
774 }
775
776 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
777 {
778         snd_pmac_dma_stop(&chip->playback);
779         chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
780         snd_pmac_pcm_set_format(chip); /* reset format */
781 }
782
783
784 /*
785  * interrupt handlers
786  */
787 static irqreturn_t
788 snd_pmac_tx_intr(int irq, void *devid)
789 {
790         struct snd_pmac *chip = devid;
791         snd_pmac_pcm_update(chip, &chip->playback);
792         return IRQ_HANDLED;
793 }
794
795
796 static irqreturn_t
797 snd_pmac_rx_intr(int irq, void *devid)
798 {
799         struct snd_pmac *chip = devid;
800         snd_pmac_pcm_update(chip, &chip->capture);
801         return IRQ_HANDLED;
802 }
803
804
805 static irqreturn_t
806 snd_pmac_ctrl_intr(int irq, void *devid)
807 {
808         struct snd_pmac *chip = devid;
809         int ctrl = in_le32(&chip->awacs->control);
810
811         /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/
812         if (ctrl & MASK_PORTCHG) {
813                 /* do something when headphone is plugged/unplugged? */
814                 if (chip->update_automute)
815                         chip->update_automute(chip, 1);
816         }
817         if (ctrl & MASK_CNTLERR) {
818                 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
819                 if (err && chip->model <= PMAC_SCREAMER)
820                         snd_printk(KERN_DEBUG "error %x\n", err);
821         }
822         /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
823         out_le32(&chip->awacs->control, ctrl);
824         return IRQ_HANDLED;
825 }
826
827
828 /*
829  * a wrapper to feature call for compatibility
830  */
831 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
832 {
833         if (ppc_md.feature_call)
834                 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
835 }
836
837 /*
838  * release resources
839  */
840
841 static int snd_pmac_free(struct snd_pmac *chip)
842 {
843         /* stop sounds */
844         if (chip->initialized) {
845                 snd_pmac_dbdma_reset(chip);
846                 /* disable interrupts from awacs interface */
847                 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
848         }
849
850         if (chip->node)
851                 snd_pmac_sound_feature(chip, 0);
852
853         /* clean up mixer if any */
854         if (chip->mixer_free)
855                 chip->mixer_free(chip);
856
857         snd_pmac_detach_beep(chip);
858
859         /* release resources */
860         if (chip->irq >= 0)
861                 free_irq(chip->irq, (void*)chip);
862         if (chip->tx_irq >= 0)
863                 free_irq(chip->tx_irq, (void*)chip);
864         if (chip->rx_irq >= 0)
865                 free_irq(chip->rx_irq, (void*)chip);
866         snd_pmac_dbdma_free(chip, &chip->playback.cmd);
867         snd_pmac_dbdma_free(chip, &chip->capture.cmd);
868         snd_pmac_dbdma_free(chip, &chip->extra_dma);
869         snd_pmac_dbdma_free(chip, &emergency_dbdma);
870         iounmap(chip->macio_base);
871         iounmap(chip->latch_base);
872         iounmap(chip->awacs);
873         iounmap(chip->playback.dma);
874         iounmap(chip->capture.dma);
875
876         if (chip->node) {
877                 int i;
878                 for (i = 0; i < 3; i++) {
879                         if (chip->requested & (1 << i))
880                                 release_mem_region(chip->rsrc[i].start,
881                                                    resource_size(&chip->rsrc[i]));
882                 }
883         }
884
885         pci_dev_put(chip->pdev);
886         of_node_put(chip->node);
887         kfree(chip);
888         return 0;
889 }
890
891
892 /*
893  * free the device
894  */
895 static int snd_pmac_dev_free(struct snd_device *device)
896 {
897         struct snd_pmac *chip = device->device_data;
898         return snd_pmac_free(chip);
899 }
900
901
902 /*
903  * check the machine support byteswap (little-endian)
904  */
905
906 static void detect_byte_swap(struct snd_pmac *chip)
907 {
908         struct device_node *mio;
909
910         /* if seems that Keylargo can't byte-swap  */
911         for (mio = chip->node->parent; mio; mio = mio->parent) {
912                 if (strcmp(mio->name, "mac-io") == 0) {
913                         if (of_device_is_compatible(mio, "Keylargo"))
914                                 chip->can_byte_swap = 0;
915                         break;
916                 }
917         }
918
919         /* it seems the Pismo & iBook can't byte-swap in hardware. */
920         if (of_machine_is_compatible("PowerBook3,1") ||
921             of_machine_is_compatible("PowerBook2,1"))
922                 chip->can_byte_swap = 0 ;
923
924         if (of_machine_is_compatible("PowerBook2,1"))
925                 chip->can_duplex = 0;
926 }
927
928
929 /*
930  * detect a sound chip
931  */
932 static int snd_pmac_detect(struct snd_pmac *chip)
933 {
934         struct device_node *sound;
935         struct device_node *dn;
936         const unsigned int *prop;
937         unsigned int l;
938         struct macio_chip* macio;
939
940         if (!machine_is(powermac))
941                 return -ENODEV;
942
943         chip->subframe = 0;
944         chip->revision = 0;
945         chip->freqs_ok = 0xff; /* all ok */
946         chip->model = PMAC_AWACS;
947         chip->can_byte_swap = 1;
948         chip->can_duplex = 1;
949         chip->can_capture = 1;
950         chip->num_freqs = ARRAY_SIZE(awacs_freqs);
951         chip->freq_table = awacs_freqs;
952         chip->pdev = NULL;
953
954         chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
955
956         /* check machine type */
957         if (of_machine_is_compatible("AAPL,3400/2400")
958             || of_machine_is_compatible("AAPL,3500"))
959                 chip->is_pbook_3400 = 1;
960         else if (of_machine_is_compatible("PowerBook1,1")
961                  || of_machine_is_compatible("AAPL,PowerBook1998"))
962                 chip->is_pbook_G3 = 1;
963         chip->node = of_find_node_by_name(NULL, "awacs");
964         sound = of_node_get(chip->node);
965
966         /*
967          * powermac G3 models have a node called "davbus"
968          * with a child called "sound".
969          */
970         if (!chip->node)
971                 chip->node = of_find_node_by_name(NULL, "davbus");
972         /*
973          * if we didn't find a davbus device, try 'i2s-a' since
974          * this seems to be what iBooks have
975          */
976         if (! chip->node) {
977                 chip->node = of_find_node_by_name(NULL, "i2s-a");
978                 if (chip->node && chip->node->parent &&
979                     chip->node->parent->parent) {
980                         if (of_device_is_compatible(chip->node->parent->parent,
981                                                  "K2-Keylargo"))
982                                 chip->is_k2 = 1;
983                 }
984         }
985         if (! chip->node)
986                 return -ENODEV;
987
988         if (!sound) {
989                 for_each_node_by_name(sound, "sound")
990                         if (sound->parent == chip->node)
991                                 break;
992         }
993         if (! sound) {
994                 of_node_put(chip->node);
995                 chip->node = NULL;
996                 return -ENODEV;
997         }
998         prop = of_get_property(sound, "sub-frame", NULL);
999         if (prop && *prop < 16)
1000                 chip->subframe = *prop;
1001         prop = of_get_property(sound, "layout-id", NULL);
1002         if (prop) {
1003                 /* partly deprecate snd-powermac, for those machines
1004                  * that have a layout-id property for now */
1005                 printk(KERN_INFO "snd-powermac no longer handles any "
1006                                  "machines with a layout-id property "
1007                                  "in the device-tree, use snd-aoa.\n");
1008                 of_node_put(sound);
1009                 of_node_put(chip->node);
1010                 chip->node = NULL;
1011                 return -ENODEV;
1012         }
1013         /* This should be verified on older screamers */
1014         if (of_device_is_compatible(sound, "screamer")) {
1015                 chip->model = PMAC_SCREAMER;
1016                 // chip->can_byte_swap = 0; /* FIXME: check this */
1017         }
1018         if (of_device_is_compatible(sound, "burgundy")) {
1019                 chip->model = PMAC_BURGUNDY;
1020                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1021         }
1022         if (of_device_is_compatible(sound, "daca")) {
1023                 chip->model = PMAC_DACA;
1024                 chip->can_capture = 0;  /* no capture */
1025                 chip->can_duplex = 0;
1026                 // chip->can_byte_swap = 0; /* FIXME: check this */
1027                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1028         }
1029         if (of_device_is_compatible(sound, "tumbler")) {
1030                 chip->model = PMAC_TUMBLER;
1031                 chip->can_capture = of_machine_is_compatible("PowerMac4,2")
1032                                 || of_machine_is_compatible("PowerBook3,2")
1033                                 || of_machine_is_compatible("PowerBook3,3")
1034                                 || of_machine_is_compatible("PowerBook4,1")
1035                                 || of_machine_is_compatible("PowerBook4,2")
1036                                 || of_machine_is_compatible("PowerBook4,3");
1037                 chip->can_duplex = 0;
1038                 // chip->can_byte_swap = 0; /* FIXME: check this */
1039                 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1040                 chip->freq_table = tumbler_freqs;
1041                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1042         }
1043         if (of_device_is_compatible(sound, "snapper")) {
1044                 chip->model = PMAC_SNAPPER;
1045                 // chip->can_byte_swap = 0; /* FIXME: check this */
1046                 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1047                 chip->freq_table = tumbler_freqs;
1048                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1049         }
1050         prop = of_get_property(sound, "device-id", NULL);
1051         if (prop)
1052                 chip->device_id = *prop;
1053         dn = of_find_node_by_name(NULL, "perch");
1054         chip->has_iic = (dn != NULL);
1055         of_node_put(dn);
1056
1057         /* We need the PCI device for DMA allocations, let's use a crude method
1058          * for now ...
1059          */
1060         macio = macio_find(chip->node, macio_unknown);
1061         if (macio == NULL)
1062                 printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1063         else {
1064                 struct pci_dev *pdev = NULL;
1065
1066                 for_each_pci_dev(pdev) {
1067                         struct device_node *np = pci_device_to_OF_node(pdev);
1068                         if (np && np == macio->of_node) {
1069                                 chip->pdev = pdev;
1070                                 break;
1071                         }
1072                 }
1073         }
1074         if (chip->pdev == NULL)
1075                 printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1076                        " device !\n");
1077
1078         detect_byte_swap(chip);
1079
1080         /* look for a property saying what sample rates
1081            are available */
1082         prop = of_get_property(sound, "sample-rates", &l);
1083         if (! prop)
1084                 prop = of_get_property(sound, "output-frame-rates", &l);
1085         if (prop) {
1086                 int i;
1087                 chip->freqs_ok = 0;
1088                 for (l /= sizeof(int); l > 0; --l) {
1089                         unsigned int r = *prop++;
1090                         /* Apple 'Fixed' format */
1091                         if (r >= 0x10000)
1092                                 r >>= 16;
1093                         for (i = 0; i < chip->num_freqs; ++i) {
1094                                 if (r == chip->freq_table[i]) {
1095                                         chip->freqs_ok |= (1 << i);
1096                                         break;
1097                                 }
1098                         }
1099                 }
1100         } else {
1101                 /* assume only 44.1khz */
1102                 chip->freqs_ok = 1;
1103         }
1104
1105         of_node_put(sound);
1106         return 0;
1107 }
1108
1109 #ifdef PMAC_SUPPORT_AUTOMUTE
1110 /*
1111  * auto-mute
1112  */
1113 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1114                               struct snd_ctl_elem_value *ucontrol)
1115 {
1116         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1117         ucontrol->value.integer.value[0] = chip->auto_mute;
1118         return 0;
1119 }
1120
1121 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1122                               struct snd_ctl_elem_value *ucontrol)
1123 {
1124         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1125         if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1126                 chip->auto_mute = !!ucontrol->value.integer.value[0];
1127                 if (chip->update_automute)
1128                         chip->update_automute(chip, 1);
1129                 return 1;
1130         }
1131         return 0;
1132 }
1133
1134 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1135                               struct snd_ctl_elem_value *ucontrol)
1136 {
1137         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1138         if (chip->detect_headphone)
1139                 ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1140         else
1141                 ucontrol->value.integer.value[0] = 0;
1142         return 0;
1143 }
1144
1145 static struct snd_kcontrol_new auto_mute_controls[] = {
1146         { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1147           .name = "Auto Mute Switch",
1148           .info = snd_pmac_boolean_mono_info,
1149           .get = pmac_auto_mute_get,
1150           .put = pmac_auto_mute_put,
1151         },
1152         { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1153           .name = "Headphone Detection",
1154           .access = SNDRV_CTL_ELEM_ACCESS_READ,
1155           .info = snd_pmac_boolean_mono_info,
1156           .get = pmac_hp_detect_get,
1157         },
1158 };
1159
1160 int snd_pmac_add_automute(struct snd_pmac *chip)
1161 {
1162         int err;
1163         chip->auto_mute = 1;
1164         err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1165         if (err < 0) {
1166                 printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1167                 return err;
1168         }
1169         chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1170         return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1171 }
1172 #endif /* PMAC_SUPPORT_AUTOMUTE */
1173
1174 /*
1175  * create and detect a pmac chip record
1176  */
1177 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1178 {
1179         struct snd_pmac *chip;
1180         struct device_node *np;
1181         int i, err;
1182         unsigned int irq;
1183         unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1184         static struct snd_device_ops ops = {
1185                 .dev_free =     snd_pmac_dev_free,
1186         };
1187
1188         *chip_return = NULL;
1189
1190         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1191         if (chip == NULL)
1192                 return -ENOMEM;
1193         chip->card = card;
1194
1195         spin_lock_init(&chip->reg_lock);
1196         chip->irq = chip->tx_irq = chip->rx_irq = -1;
1197
1198         chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1199         chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1200
1201         if ((err = snd_pmac_detect(chip)) < 0)
1202                 goto __error;
1203
1204         if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1205             snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1206             snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1207             snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1208                 err = -ENOMEM;
1209                 goto __error;
1210         }
1211
1212         np = chip->node;
1213         chip->requested = 0;
1214         if (chip->is_k2) {
1215                 static char *rnames[] = {
1216                         "Sound Control", "Sound DMA" };
1217                 for (i = 0; i < 2; i ++) {
1218                         if (of_address_to_resource(np->parent, i,
1219                                                    &chip->rsrc[i])) {
1220                                 printk(KERN_ERR "snd: can't translate rsrc "
1221                                        " %d (%s)\n", i, rnames[i]);
1222                                 err = -ENODEV;
1223                                 goto __error;
1224                         }
1225                         if (request_mem_region(chip->rsrc[i].start,
1226                                                resource_size(&chip->rsrc[i]),
1227                                                rnames[i]) == NULL) {
1228                                 printk(KERN_ERR "snd: can't request rsrc "
1229                                        " %d (%s: %pR)\n",
1230                                        i, rnames[i], &chip->rsrc[i]);
1231                                 err = -ENODEV;
1232                                 goto __error;
1233                         }
1234                         chip->requested |= (1 << i);
1235                 }
1236                 ctrl_addr = chip->rsrc[0].start;
1237                 txdma_addr = chip->rsrc[1].start;
1238                 rxdma_addr = txdma_addr + 0x100;
1239         } else {
1240                 static char *rnames[] = {
1241                         "Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1242                 for (i = 0; i < 3; i ++) {
1243                         if (of_address_to_resource(np, i,
1244                                                    &chip->rsrc[i])) {
1245                                 printk(KERN_ERR "snd: can't translate rsrc "
1246                                        " %d (%s)\n", i, rnames[i]);
1247                                 err = -ENODEV;
1248                                 goto __error;
1249                         }
1250                         if (request_mem_region(chip->rsrc[i].start,
1251                                                resource_size(&chip->rsrc[i]),
1252                                                rnames[i]) == NULL) {
1253                                 printk(KERN_ERR "snd: can't request rsrc "
1254                                        " %d (%s: %pR)\n",
1255                                        i, rnames[i], &chip->rsrc[i]);
1256                                 err = -ENODEV;
1257                                 goto __error;
1258                         }
1259                         chip->requested |= (1 << i);
1260                 }
1261                 ctrl_addr = chip->rsrc[0].start;
1262                 txdma_addr = chip->rsrc[1].start;
1263                 rxdma_addr = chip->rsrc[2].start;
1264         }
1265
1266         chip->awacs = ioremap(ctrl_addr, 0x1000);
1267         chip->playback.dma = ioremap(txdma_addr, 0x100);
1268         chip->capture.dma = ioremap(rxdma_addr, 0x100);
1269         if (chip->model <= PMAC_BURGUNDY) {
1270                 irq = irq_of_parse_and_map(np, 0);
1271                 if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1272                                 "PMac", (void*)chip)) {
1273                         snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1274                                    irq);
1275                         err = -EBUSY;
1276                         goto __error;
1277                 }
1278                 chip->irq = irq;
1279         }
1280         irq = irq_of_parse_and_map(np, 1);
1281         if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1282                 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1283                 err = -EBUSY;
1284                 goto __error;
1285         }
1286         chip->tx_irq = irq;
1287         irq = irq_of_parse_and_map(np, 2);
1288         if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1289                 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1290                 err = -EBUSY;
1291                 goto __error;
1292         }
1293         chip->rx_irq = irq;
1294
1295         snd_pmac_sound_feature(chip, 1);
1296
1297         /* reset & enable interrupts */
1298         if (chip->model <= PMAC_BURGUNDY)
1299                 out_le32(&chip->awacs->control, chip->control_mask);
1300
1301         /* Powerbooks have odd ways of enabling inputs such as
1302            an expansion-bay CD or sound from an internal modem
1303            or a PC-card modem. */
1304         if (chip->is_pbook_3400) {
1305                 /* Enable CD and PC-card sound inputs. */
1306                 /* This is done by reading from address
1307                  * f301a000, + 0x10 to enable the expansion-bay
1308                  * CD sound input, + 0x80 to enable the PC-card
1309                  * sound input.  The 0x100 enables the SCSI bus
1310                  * terminator power.
1311                  */
1312                 chip->latch_base = ioremap (0xf301a000, 0x1000);
1313                 in_8(chip->latch_base + 0x190);
1314         } else if (chip->is_pbook_G3) {
1315                 struct device_node* mio;
1316                 for (mio = chip->node->parent; mio; mio = mio->parent) {
1317                         if (strcmp(mio->name, "mac-io") == 0) {
1318                                 struct resource r;
1319                                 if (of_address_to_resource(mio, 0, &r) == 0)
1320                                         chip->macio_base =
1321                                                 ioremap(r.start, 0x40);
1322                                 break;
1323                         }
1324                 }
1325                 /* Enable CD sound input. */
1326                 /* The relevant bits for writing to this byte are 0x8f.
1327                  * I haven't found out what the 0x80 bit does.
1328                  * For the 0xf bits, writing 3 or 7 enables the CD
1329                  * input, any other value disables it.  Values
1330                  * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1331                  * 4, 6, 8 - f enable the input from the modem.
1332                  */
1333                 if (chip->macio_base)
1334                         out_8(chip->macio_base + 0x37, 3);
1335         }
1336
1337         /* Reset dbdma channels */
1338         snd_pmac_dbdma_reset(chip);
1339
1340         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1341                 goto __error;
1342
1343         *chip_return = chip;
1344         return 0;
1345
1346  __error:
1347         snd_pmac_free(chip);
1348         return err;
1349 }
1350
1351
1352 /*
1353  * sleep notify for powerbook
1354  */
1355
1356 #ifdef CONFIG_PM
1357
1358 /*
1359  * Save state when going to sleep, restore it afterwards.
1360  */
1361
1362 void snd_pmac_suspend(struct snd_pmac *chip)
1363 {
1364         unsigned long flags;
1365
1366         snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1367         if (chip->suspend)
1368                 chip->suspend(chip);
1369         snd_pcm_suspend_all(chip->pcm);
1370         spin_lock_irqsave(&chip->reg_lock, flags);
1371         snd_pmac_beep_stop(chip);
1372         spin_unlock_irqrestore(&chip->reg_lock, flags);
1373         if (chip->irq >= 0)
1374                 disable_irq(chip->irq);
1375         if (chip->tx_irq >= 0)
1376                 disable_irq(chip->tx_irq);
1377         if (chip->rx_irq >= 0)
1378                 disable_irq(chip->rx_irq);
1379         snd_pmac_sound_feature(chip, 0);
1380 }
1381
1382 void snd_pmac_resume(struct snd_pmac *chip)
1383 {
1384         snd_pmac_sound_feature(chip, 1);
1385         if (chip->resume)
1386                 chip->resume(chip);
1387         /* enable CD sound input */
1388         if (chip->macio_base && chip->is_pbook_G3)
1389                 out_8(chip->macio_base + 0x37, 3);
1390         else if (chip->is_pbook_3400)
1391                 in_8(chip->latch_base + 0x190);
1392
1393         snd_pmac_pcm_set_format(chip);
1394
1395         if (chip->irq >= 0)
1396                 enable_irq(chip->irq);
1397         if (chip->tx_irq >= 0)
1398                 enable_irq(chip->tx_irq);
1399         if (chip->rx_irq >= 0)
1400                 enable_irq(chip->rx_irq);
1401
1402         snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1403 }
1404
1405 #endif /* CONFIG_PM */
1406