Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / sound / pci / ctxfi / ctvmem.c
1 /**
2  * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3  *
4  * This source file is released under GPL v2 license (no other versions).
5  * See the COPYING file included in the main directory of this source
6  * distribution for the license terms and conditions.
7  *
8  * @File    ctvmem.c
9  *
10  * @Brief
11  * This file contains the implementation of virtual memory management object
12  * for card device.
13  *
14  * @Author Liu Chun
15  * @Date Apr 1 2008
16  */
17
18 #include "ctvmem.h"
19 #include "ctatc.h"
20 #include <linux/slab.h>
21 #include <linux/mm.h>
22 #include <linux/io.h>
23 #include <sound/pcm.h>
24
25 #define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *))
26 #define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE)
27
28 /* *
29  * Find or create vm block based on requested @size.
30  * @size must be page aligned.
31  * */
32 static struct ct_vm_block *
33 get_vm_block(struct ct_vm *vm, unsigned int size, struct ct_atc *atc)
34 {
35         struct ct_vm_block *block = NULL, *entry;
36         struct list_head *pos;
37
38         size = CT_PAGE_ALIGN(size);
39         if (size > vm->size) {
40                 dev_err(atc->card->dev,
41                         "Fail! No sufficient device virtual memory space available!\n");
42                 return NULL;
43         }
44
45         mutex_lock(&vm->lock);
46         list_for_each(pos, &vm->unused) {
47                 entry = list_entry(pos, struct ct_vm_block, list);
48                 if (entry->size >= size)
49                         break; /* found a block that is big enough */
50         }
51         if (pos == &vm->unused)
52                 goto out;
53
54         if (entry->size == size) {
55                 /* Move the vm node from unused list to used list directly */
56                 list_move(&entry->list, &vm->used);
57                 vm->size -= size;
58                 block = entry;
59                 goto out;
60         }
61
62         block = kzalloc(sizeof(*block), GFP_KERNEL);
63         if (!block)
64                 goto out;
65
66         block->addr = entry->addr;
67         block->size = size;
68         list_add(&block->list, &vm->used);
69         entry->addr += size;
70         entry->size -= size;
71         vm->size -= size;
72
73  out:
74         mutex_unlock(&vm->lock);
75         return block;
76 }
77
78 static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block)
79 {
80         struct ct_vm_block *entry, *pre_ent;
81         struct list_head *pos, *pre;
82
83         block->size = CT_PAGE_ALIGN(block->size);
84
85         mutex_lock(&vm->lock);
86         list_del(&block->list);
87         vm->size += block->size;
88
89         list_for_each(pos, &vm->unused) {
90                 entry = list_entry(pos, struct ct_vm_block, list);
91                 if (entry->addr >= (block->addr + block->size))
92                         break; /* found a position */
93         }
94         if (pos == &vm->unused) {
95                 list_add_tail(&block->list, &vm->unused);
96                 entry = block;
97         } else {
98                 if ((block->addr + block->size) == entry->addr) {
99                         entry->addr = block->addr;
100                         entry->size += block->size;
101                         kfree(block);
102                 } else {
103                         __list_add(&block->list, pos->prev, pos);
104                         entry = block;
105                 }
106         }
107
108         pos = &entry->list;
109         pre = pos->prev;
110         while (pre != &vm->unused) {
111                 entry = list_entry(pos, struct ct_vm_block, list);
112                 pre_ent = list_entry(pre, struct ct_vm_block, list);
113                 if ((pre_ent->addr + pre_ent->size) > entry->addr)
114                         break;
115
116                 pre_ent->size += entry->size;
117                 list_del(pos);
118                 kfree(entry);
119                 pos = pre;
120                 pre = pos->prev;
121         }
122         mutex_unlock(&vm->lock);
123 }
124
125 /* Map host addr (kmalloced/vmalloced) to device logical addr. */
126 static struct ct_vm_block *
127 ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
128 {
129         struct ct_vm_block *block;
130         unsigned int pte_start;
131         unsigned i, pages;
132         unsigned long *ptp;
133         struct ct_atc *atc = snd_pcm_substream_chip(substream);
134
135         block = get_vm_block(vm, size, atc);
136         if (block == NULL) {
137                 dev_err(atc->card->dev,
138                         "No virtual memory block that is big enough to allocate!\n");
139                 return NULL;
140         }
141
142         ptp = (unsigned long *)vm->ptp[0].area;
143         pte_start = (block->addr >> CT_PAGE_SHIFT);
144         pages = block->size >> CT_PAGE_SHIFT;
145         for (i = 0; i < pages; i++) {
146                 unsigned long addr;
147                 addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT);
148                 ptp[pte_start + i] = addr;
149         }
150
151         block->size = size;
152         return block;
153 }
154
155 static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
156 {
157         /* do unmapping */
158         put_vm_block(vm, block);
159 }
160
161 /* *
162  * return the host physical addr of the @index-th device
163  * page table page on success, or ~0UL on failure.
164  * The first returned ~0UL indicates the termination.
165  * */
166 static dma_addr_t
167 ct_get_ptp_phys(struct ct_vm *vm, int index)
168 {
169         dma_addr_t addr;
170
171         addr = (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
172
173         return addr;
174 }
175
176 int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
177 {
178         struct ct_vm *vm;
179         struct ct_vm_block *block;
180         int i, err = 0;
181
182         *rvm = NULL;
183
184         vm = kzalloc(sizeof(*vm), GFP_KERNEL);
185         if (!vm)
186                 return -ENOMEM;
187
188         mutex_init(&vm->lock);
189
190         /* Allocate page table pages */
191         for (i = 0; i < CT_PTP_NUM; i++) {
192                 err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
193                                           snd_dma_pci_data(pci),
194                                           PAGE_SIZE, &vm->ptp[i]);
195                 if (err < 0)
196                         break;
197         }
198         if (err < 0) {
199                 /* no page table pages are allocated */
200                 ct_vm_destroy(vm);
201                 return -ENOMEM;
202         }
203         vm->size = CT_ADDRS_PER_PAGE * i;
204         vm->map = ct_vm_map;
205         vm->unmap = ct_vm_unmap;
206         vm->get_ptp_phys = ct_get_ptp_phys;
207         INIT_LIST_HEAD(&vm->unused);
208         INIT_LIST_HEAD(&vm->used);
209         block = kzalloc(sizeof(*block), GFP_KERNEL);
210         if (NULL != block) {
211                 block->addr = 0;
212                 block->size = vm->size;
213                 list_add(&block->list, &vm->unused);
214         }
215
216         *rvm = vm;
217         return 0;
218 }
219
220 /* The caller must ensure no mapping pages are being used
221  * by hardware before calling this function */
222 void ct_vm_destroy(struct ct_vm *vm)
223 {
224         int i;
225         struct list_head *pos;
226         struct ct_vm_block *entry;
227
228         /* free used and unused list nodes */
229         while (!list_empty(&vm->used)) {
230                 pos = vm->used.next;
231                 list_del(pos);
232                 entry = list_entry(pos, struct ct_vm_block, list);
233                 kfree(entry);
234         }
235         while (!list_empty(&vm->unused)) {
236                 pos = vm->unused.next;
237                 list_del(pos);
238                 entry = list_entry(pos, struct ct_vm_block, list);
239                 kfree(entry);
240         }
241
242         /* free allocated page table pages */
243         for (i = 0; i < CT_PTP_NUM; i++)
244                 snd_dma_free_pages(&vm->ptp[i]);
245
246         vm->size = 0;
247
248         kfree(vm);
249 }