Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / sound / pci / ctxfi / cthw20k2.c
1 /**
2  * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3  *
4  * This source file is released under GPL v2 license (no other versions).
5  * See the COPYING file included in the main directory of this source
6  * distribution for the license terms and conditions.
7  *
8  * @File        cthw20k2.c
9  *
10  * @Brief
11  * This file contains the implementation of hardware access method for 20k2.
12  *
13  * @Author      Liu Chun
14  * @Date        May 14 2008
15  *
16  */
17
18 #include <linux/types.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/io.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include "cthw20k2.h"
27 #include "ct20k2reg.h"
28
29 #if BITS_PER_LONG == 32
30 #define CT_XFI_DMA_MASK         DMA_BIT_MASK(32) /* 32 bit PTE */
31 #else
32 #define CT_XFI_DMA_MASK         DMA_BIT_MASK(64) /* 64 bit PTE */
33 #endif
34
35 struct hw20k2 {
36         struct hw hw;
37         /* for i2c */
38         unsigned char dev_id;
39         unsigned char addr_size;
40         unsigned char data_size;
41
42         int mic_source;
43 };
44
45 static u32 hw_read_20kx(struct hw *hw, u32 reg);
46 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
47
48 /*
49  * Type definition block.
50  * The layout of control structures can be directly applied on 20k2 chip.
51  */
52
53 /*
54  * SRC control block definitions.
55  */
56
57 /* SRC resource control block */
58 #define SRCCTL_STATE    0x00000007
59 #define SRCCTL_BM       0x00000008
60 #define SRCCTL_RSR      0x00000030
61 #define SRCCTL_SF       0x000001C0
62 #define SRCCTL_WR       0x00000200
63 #define SRCCTL_PM       0x00000400
64 #define SRCCTL_ROM      0x00001800
65 #define SRCCTL_VO       0x00002000
66 #define SRCCTL_ST       0x00004000
67 #define SRCCTL_IE       0x00008000
68 #define SRCCTL_ILSZ     0x000F0000
69 #define SRCCTL_BP       0x00100000
70
71 #define SRCCCR_CISZ     0x000007FF
72 #define SRCCCR_CWA      0x001FF800
73 #define SRCCCR_D        0x00200000
74 #define SRCCCR_RS       0x01C00000
75 #define SRCCCR_NAL      0x3E000000
76 #define SRCCCR_RA       0xC0000000
77
78 #define SRCCA_CA        0x0FFFFFFF
79 #define SRCCA_RS        0xE0000000
80
81 #define SRCSA_SA        0x0FFFFFFF
82
83 #define SRCLA_LA        0x0FFFFFFF
84
85 /* Mixer Parameter Ring ram Low and Hight register.
86  * Fixed-point value in 8.24 format for parameter channel */
87 #define MPRLH_PITCH     0xFFFFFFFF
88
89 /* SRC resource register dirty flags */
90 union src_dirty {
91         struct {
92                 u16 ctl:1;
93                 u16 ccr:1;
94                 u16 sa:1;
95                 u16 la:1;
96                 u16 ca:1;
97                 u16 mpr:1;
98                 u16 czbfs:1;    /* Clear Z-Buffers */
99                 u16 rsv:9;
100         } bf;
101         u16 data;
102 };
103
104 struct src_rsc_ctrl_blk {
105         unsigned int    ctl;
106         unsigned int    ccr;
107         unsigned int    ca;
108         unsigned int    sa;
109         unsigned int    la;
110         unsigned int    mpr;
111         union src_dirty dirty;
112 };
113
114 /* SRC manager control block */
115 union src_mgr_dirty {
116         struct {
117                 u16 enb0:1;
118                 u16 enb1:1;
119                 u16 enb2:1;
120                 u16 enb3:1;
121                 u16 enb4:1;
122                 u16 enb5:1;
123                 u16 enb6:1;
124                 u16 enb7:1;
125                 u16 enbsa:1;
126                 u16 rsv:7;
127         } bf;
128         u16 data;
129 };
130
131 struct src_mgr_ctrl_blk {
132         unsigned int            enbsa;
133         unsigned int            enb[8];
134         union src_mgr_dirty     dirty;
135 };
136
137 /* SRCIMP manager control block */
138 #define SRCAIM_ARC      0x00000FFF
139 #define SRCAIM_NXT      0x00FF0000
140 #define SRCAIM_SRC      0xFF000000
141
142 struct srcimap {
143         unsigned int srcaim;
144         unsigned int idx;
145 };
146
147 /* SRCIMP manager register dirty flags */
148 union srcimp_mgr_dirty {
149         struct {
150                 u16 srcimap:1;
151                 u16 rsv:15;
152         } bf;
153         u16 data;
154 };
155
156 struct srcimp_mgr_ctrl_blk {
157         struct srcimap          srcimap;
158         union srcimp_mgr_dirty  dirty;
159 };
160
161 /*
162  * Function implementation block.
163  */
164
165 static int src_get_rsc_ctrl_blk(void **rblk)
166 {
167         struct src_rsc_ctrl_blk *blk;
168
169         *rblk = NULL;
170         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
171         if (!blk)
172                 return -ENOMEM;
173
174         *rblk = blk;
175
176         return 0;
177 }
178
179 static int src_put_rsc_ctrl_blk(void *blk)
180 {
181         kfree(blk);
182
183         return 0;
184 }
185
186 static int src_set_state(void *blk, unsigned int state)
187 {
188         struct src_rsc_ctrl_blk *ctl = blk;
189
190         set_field(&ctl->ctl, SRCCTL_STATE, state);
191         ctl->dirty.bf.ctl = 1;
192         return 0;
193 }
194
195 static int src_set_bm(void *blk, unsigned int bm)
196 {
197         struct src_rsc_ctrl_blk *ctl = blk;
198
199         set_field(&ctl->ctl, SRCCTL_BM, bm);
200         ctl->dirty.bf.ctl = 1;
201         return 0;
202 }
203
204 static int src_set_rsr(void *blk, unsigned int rsr)
205 {
206         struct src_rsc_ctrl_blk *ctl = blk;
207
208         set_field(&ctl->ctl, SRCCTL_RSR, rsr);
209         ctl->dirty.bf.ctl = 1;
210         return 0;
211 }
212
213 static int src_set_sf(void *blk, unsigned int sf)
214 {
215         struct src_rsc_ctrl_blk *ctl = blk;
216
217         set_field(&ctl->ctl, SRCCTL_SF, sf);
218         ctl->dirty.bf.ctl = 1;
219         return 0;
220 }
221
222 static int src_set_wr(void *blk, unsigned int wr)
223 {
224         struct src_rsc_ctrl_blk *ctl = blk;
225
226         set_field(&ctl->ctl, SRCCTL_WR, wr);
227         ctl->dirty.bf.ctl = 1;
228         return 0;
229 }
230
231 static int src_set_pm(void *blk, unsigned int pm)
232 {
233         struct src_rsc_ctrl_blk *ctl = blk;
234
235         set_field(&ctl->ctl, SRCCTL_PM, pm);
236         ctl->dirty.bf.ctl = 1;
237         return 0;
238 }
239
240 static int src_set_rom(void *blk, unsigned int rom)
241 {
242         struct src_rsc_ctrl_blk *ctl = blk;
243
244         set_field(&ctl->ctl, SRCCTL_ROM, rom);
245         ctl->dirty.bf.ctl = 1;
246         return 0;
247 }
248
249 static int src_set_vo(void *blk, unsigned int vo)
250 {
251         struct src_rsc_ctrl_blk *ctl = blk;
252
253         set_field(&ctl->ctl, SRCCTL_VO, vo);
254         ctl->dirty.bf.ctl = 1;
255         return 0;
256 }
257
258 static int src_set_st(void *blk, unsigned int st)
259 {
260         struct src_rsc_ctrl_blk *ctl = blk;
261
262         set_field(&ctl->ctl, SRCCTL_ST, st);
263         ctl->dirty.bf.ctl = 1;
264         return 0;
265 }
266
267 static int src_set_ie(void *blk, unsigned int ie)
268 {
269         struct src_rsc_ctrl_blk *ctl = blk;
270
271         set_field(&ctl->ctl, SRCCTL_IE, ie);
272         ctl->dirty.bf.ctl = 1;
273         return 0;
274 }
275
276 static int src_set_ilsz(void *blk, unsigned int ilsz)
277 {
278         struct src_rsc_ctrl_blk *ctl = blk;
279
280         set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
281         ctl->dirty.bf.ctl = 1;
282         return 0;
283 }
284
285 static int src_set_bp(void *blk, unsigned int bp)
286 {
287         struct src_rsc_ctrl_blk *ctl = blk;
288
289         set_field(&ctl->ctl, SRCCTL_BP, bp);
290         ctl->dirty.bf.ctl = 1;
291         return 0;
292 }
293
294 static int src_set_cisz(void *blk, unsigned int cisz)
295 {
296         struct src_rsc_ctrl_blk *ctl = blk;
297
298         set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
299         ctl->dirty.bf.ccr = 1;
300         return 0;
301 }
302
303 static int src_set_ca(void *blk, unsigned int ca)
304 {
305         struct src_rsc_ctrl_blk *ctl = blk;
306
307         set_field(&ctl->ca, SRCCA_CA, ca);
308         ctl->dirty.bf.ca = 1;
309         return 0;
310 }
311
312 static int src_set_sa(void *blk, unsigned int sa)
313 {
314         struct src_rsc_ctrl_blk *ctl = blk;
315
316         set_field(&ctl->sa, SRCSA_SA, sa);
317         ctl->dirty.bf.sa = 1;
318         return 0;
319 }
320
321 static int src_set_la(void *blk, unsigned int la)
322 {
323         struct src_rsc_ctrl_blk *ctl = blk;
324
325         set_field(&ctl->la, SRCLA_LA, la);
326         ctl->dirty.bf.la = 1;
327         return 0;
328 }
329
330 static int src_set_pitch(void *blk, unsigned int pitch)
331 {
332         struct src_rsc_ctrl_blk *ctl = blk;
333
334         set_field(&ctl->mpr, MPRLH_PITCH, pitch);
335         ctl->dirty.bf.mpr = 1;
336         return 0;
337 }
338
339 static int src_set_clear_zbufs(void *blk, unsigned int clear)
340 {
341         ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
342         return 0;
343 }
344
345 static int src_set_dirty(void *blk, unsigned int flags)
346 {
347         ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
348         return 0;
349 }
350
351 static int src_set_dirty_all(void *blk)
352 {
353         ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
354         return 0;
355 }
356
357 #define AR_SLOT_SIZE            4096
358 #define AR_SLOT_BLOCK_SIZE      16
359 #define AR_PTS_PITCH            6
360 #define AR_PARAM_SRC_OFFSET     0x60
361
362 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
363 {
364         return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
365                         - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
366
367 }
368
369 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
370 {
371         struct src_rsc_ctrl_blk *ctl = blk;
372         int i;
373
374         if (ctl->dirty.bf.czbfs) {
375                 /* Clear Z-Buffer registers */
376                 for (i = 0; i < 8; i++)
377                         hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
378
379                 for (i = 0; i < 4; i++)
380                         hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
381
382                 for (i = 0; i < 8; i++)
383                         hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
384
385                 ctl->dirty.bf.czbfs = 0;
386         }
387         if (ctl->dirty.bf.mpr) {
388                 /* Take the parameter mixer resource in the same group as that
389                  * the idx src is in for simplicity. Unlike src, all conjugate
390                  * parameter mixer resources must be programmed for
391                  * corresponding conjugate src resources. */
392                 unsigned int pm_idx = src_param_pitch_mixer(idx);
393                 hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
394                 hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
395                 hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
396                 ctl->dirty.bf.mpr = 0;
397         }
398         if (ctl->dirty.bf.sa) {
399                 hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
400                 ctl->dirty.bf.sa = 0;
401         }
402         if (ctl->dirty.bf.la) {
403                 hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
404                 ctl->dirty.bf.la = 0;
405         }
406         if (ctl->dirty.bf.ca) {
407                 hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
408                 ctl->dirty.bf.ca = 0;
409         }
410
411         /* Write srccf register */
412         hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
413
414         if (ctl->dirty.bf.ccr) {
415                 hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
416                 ctl->dirty.bf.ccr = 0;
417         }
418         if (ctl->dirty.bf.ctl) {
419                 hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
420                 ctl->dirty.bf.ctl = 0;
421         }
422
423         return 0;
424 }
425
426 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
427 {
428         struct src_rsc_ctrl_blk *ctl = blk;
429
430         ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
431         ctl->dirty.bf.ca = 0;
432
433         return get_field(ctl->ca, SRCCA_CA);
434 }
435
436 static unsigned int src_get_dirty(void *blk)
437 {
438         return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
439 }
440
441 static unsigned int src_dirty_conj_mask(void)
442 {
443         return 0x20;
444 }
445
446 static int src_mgr_enbs_src(void *blk, unsigned int idx)
447 {
448         ((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
449         ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
450         ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
451         return 0;
452 }
453
454 static int src_mgr_enb_src(void *blk, unsigned int idx)
455 {
456         ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
457         ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
458         return 0;
459 }
460
461 static int src_mgr_dsb_src(void *blk, unsigned int idx)
462 {
463         ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
464         ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
465         return 0;
466 }
467
468 static int src_mgr_commit_write(struct hw *hw, void *blk)
469 {
470         struct src_mgr_ctrl_blk *ctl = blk;
471         int i;
472         unsigned int ret;
473
474         if (ctl->dirty.bf.enbsa) {
475                 do {
476                         ret = hw_read_20kx(hw, SRC_ENBSTAT);
477                 } while (ret & 0x1);
478                 hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
479                 ctl->dirty.bf.enbsa = 0;
480         }
481         for (i = 0; i < 8; i++) {
482                 if ((ctl->dirty.data & (0x1 << i))) {
483                         hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
484                         ctl->dirty.data &= ~(0x1 << i);
485                 }
486         }
487
488         return 0;
489 }
490
491 static int src_mgr_get_ctrl_blk(void **rblk)
492 {
493         struct src_mgr_ctrl_blk *blk;
494
495         *rblk = NULL;
496         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
497         if (!blk)
498                 return -ENOMEM;
499
500         *rblk = blk;
501
502         return 0;
503 }
504
505 static int src_mgr_put_ctrl_blk(void *blk)
506 {
507         kfree(blk);
508
509         return 0;
510 }
511
512 static int srcimp_mgr_get_ctrl_blk(void **rblk)
513 {
514         struct srcimp_mgr_ctrl_blk *blk;
515
516         *rblk = NULL;
517         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
518         if (!blk)
519                 return -ENOMEM;
520
521         *rblk = blk;
522
523         return 0;
524 }
525
526 static int srcimp_mgr_put_ctrl_blk(void *blk)
527 {
528         kfree(blk);
529
530         return 0;
531 }
532
533 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
534 {
535         struct srcimp_mgr_ctrl_blk *ctl = blk;
536
537         set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
538         ctl->dirty.bf.srcimap = 1;
539         return 0;
540 }
541
542 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
543 {
544         struct srcimp_mgr_ctrl_blk *ctl = blk;
545
546         set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
547         ctl->dirty.bf.srcimap = 1;
548         return 0;
549 }
550
551 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
552 {
553         struct srcimp_mgr_ctrl_blk *ctl = blk;
554
555         set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
556         ctl->dirty.bf.srcimap = 1;
557         return 0;
558 }
559
560 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
561 {
562         ((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
563         ((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
564         return 0;
565 }
566
567 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
568 {
569         struct srcimp_mgr_ctrl_blk *ctl = blk;
570
571         if (ctl->dirty.bf.srcimap) {
572                 hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
573                                                 ctl->srcimap.srcaim);
574                 ctl->dirty.bf.srcimap = 0;
575         }
576
577         return 0;
578 }
579
580 /*
581  * AMIXER control block definitions.
582  */
583
584 #define AMOPLO_M        0x00000003
585 #define AMOPLO_IV       0x00000004
586 #define AMOPLO_X        0x0003FFF0
587 #define AMOPLO_Y        0xFFFC0000
588
589 #define AMOPHI_SADR     0x000000FF
590 #define AMOPHI_SE       0x80000000
591
592 /* AMIXER resource register dirty flags */
593 union amixer_dirty {
594         struct {
595                 u16 amoplo:1;
596                 u16 amophi:1;
597                 u16 rsv:14;
598         } bf;
599         u16 data;
600 };
601
602 /* AMIXER resource control block */
603 struct amixer_rsc_ctrl_blk {
604         unsigned int            amoplo;
605         unsigned int            amophi;
606         union amixer_dirty      dirty;
607 };
608
609 static int amixer_set_mode(void *blk, unsigned int mode)
610 {
611         struct amixer_rsc_ctrl_blk *ctl = blk;
612
613         set_field(&ctl->amoplo, AMOPLO_M, mode);
614         ctl->dirty.bf.amoplo = 1;
615         return 0;
616 }
617
618 static int amixer_set_iv(void *blk, unsigned int iv)
619 {
620         struct amixer_rsc_ctrl_blk *ctl = blk;
621
622         set_field(&ctl->amoplo, AMOPLO_IV, iv);
623         ctl->dirty.bf.amoplo = 1;
624         return 0;
625 }
626
627 static int amixer_set_x(void *blk, unsigned int x)
628 {
629         struct amixer_rsc_ctrl_blk *ctl = blk;
630
631         set_field(&ctl->amoplo, AMOPLO_X, x);
632         ctl->dirty.bf.amoplo = 1;
633         return 0;
634 }
635
636 static int amixer_set_y(void *blk, unsigned int y)
637 {
638         struct amixer_rsc_ctrl_blk *ctl = blk;
639
640         set_field(&ctl->amoplo, AMOPLO_Y, y);
641         ctl->dirty.bf.amoplo = 1;
642         return 0;
643 }
644
645 static int amixer_set_sadr(void *blk, unsigned int sadr)
646 {
647         struct amixer_rsc_ctrl_blk *ctl = blk;
648
649         set_field(&ctl->amophi, AMOPHI_SADR, sadr);
650         ctl->dirty.bf.amophi = 1;
651         return 0;
652 }
653
654 static int amixer_set_se(void *blk, unsigned int se)
655 {
656         struct amixer_rsc_ctrl_blk *ctl = blk;
657
658         set_field(&ctl->amophi, AMOPHI_SE, se);
659         ctl->dirty.bf.amophi = 1;
660         return 0;
661 }
662
663 static int amixer_set_dirty(void *blk, unsigned int flags)
664 {
665         ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
666         return 0;
667 }
668
669 static int amixer_set_dirty_all(void *blk)
670 {
671         ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
672         return 0;
673 }
674
675 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
676 {
677         struct amixer_rsc_ctrl_blk *ctl = blk;
678
679         if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
680                 hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
681                 ctl->dirty.bf.amoplo = 0;
682                 hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
683                 ctl->dirty.bf.amophi = 0;
684         }
685
686         return 0;
687 }
688
689 static int amixer_get_y(void *blk)
690 {
691         struct amixer_rsc_ctrl_blk *ctl = blk;
692
693         return get_field(ctl->amoplo, AMOPLO_Y);
694 }
695
696 static unsigned int amixer_get_dirty(void *blk)
697 {
698         return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
699 }
700
701 static int amixer_rsc_get_ctrl_blk(void **rblk)
702 {
703         struct amixer_rsc_ctrl_blk *blk;
704
705         *rblk = NULL;
706         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
707         if (!blk)
708                 return -ENOMEM;
709
710         *rblk = blk;
711
712         return 0;
713 }
714
715 static int amixer_rsc_put_ctrl_blk(void *blk)
716 {
717         kfree(blk);
718
719         return 0;
720 }
721
722 static int amixer_mgr_get_ctrl_blk(void **rblk)
723 {
724         *rblk = NULL;
725
726         return 0;
727 }
728
729 static int amixer_mgr_put_ctrl_blk(void *blk)
730 {
731         return 0;
732 }
733
734 /*
735  * DAIO control block definitions.
736  */
737
738 /* Receiver Sample Rate Tracker Control register */
739 #define SRTCTL_SRCO     0x000000FF
740 #define SRTCTL_SRCM     0x0000FF00
741 #define SRTCTL_RSR      0x00030000
742 #define SRTCTL_DRAT     0x00300000
743 #define SRTCTL_EC       0x01000000
744 #define SRTCTL_ET       0x10000000
745
746 /* DAIO Receiver register dirty flags */
747 union dai_dirty {
748         struct {
749                 u16 srt:1;
750                 u16 rsv:15;
751         } bf;
752         u16 data;
753 };
754
755 /* DAIO Receiver control block */
756 struct dai_ctrl_blk {
757         unsigned int    srt;
758         union dai_dirty dirty;
759 };
760
761 /* Audio Input Mapper RAM */
762 #define AIM_ARC         0x00000FFF
763 #define AIM_NXT         0x007F0000
764
765 struct daoimap {
766         unsigned int aim;
767         unsigned int idx;
768 };
769
770 /* Audio Transmitter Control and Status register */
771 #define ATXCTL_EN       0x00000001
772 #define ATXCTL_MODE     0x00000010
773 #define ATXCTL_CD       0x00000020
774 #define ATXCTL_RAW      0x00000100
775 #define ATXCTL_MT       0x00000200
776 #define ATXCTL_NUC      0x00003000
777 #define ATXCTL_BEN      0x00010000
778 #define ATXCTL_BMUX     0x00700000
779 #define ATXCTL_B24      0x01000000
780 #define ATXCTL_CPF      0x02000000
781 #define ATXCTL_RIV      0x10000000
782 #define ATXCTL_LIV      0x20000000
783 #define ATXCTL_RSAT     0x40000000
784 #define ATXCTL_LSAT     0x80000000
785
786 /* XDIF Transmitter register dirty flags */
787 union dao_dirty {
788         struct {
789                 u16 atxcsl:1;
790                 u16 rsv:15;
791         } bf;
792         u16 data;
793 };
794
795 /* XDIF Transmitter control block */
796 struct dao_ctrl_blk {
797         /* XDIF Transmitter Channel Status Low Register */
798         unsigned int    atxcsl;
799         union dao_dirty dirty;
800 };
801
802 /* Audio Receiver Control register */
803 #define ARXCTL_EN       0x00000001
804
805 /* DAIO manager register dirty flags */
806 union daio_mgr_dirty {
807         struct {
808                 u32 atxctl:8;
809                 u32 arxctl:8;
810                 u32 daoimap:1;
811                 u32 rsv:15;
812         } bf;
813         u32 data;
814 };
815
816 /* DAIO manager control block */
817 struct daio_mgr_ctrl_blk {
818         struct daoimap          daoimap;
819         unsigned int            txctl[8];
820         unsigned int            rxctl[8];
821         union daio_mgr_dirty    dirty;
822 };
823
824 static int dai_srt_set_srco(void *blk, unsigned int src)
825 {
826         struct dai_ctrl_blk *ctl = blk;
827
828         set_field(&ctl->srt, SRTCTL_SRCO, src);
829         ctl->dirty.bf.srt = 1;
830         return 0;
831 }
832
833 static int dai_srt_set_srcm(void *blk, unsigned int src)
834 {
835         struct dai_ctrl_blk *ctl = blk;
836
837         set_field(&ctl->srt, SRTCTL_SRCM, src);
838         ctl->dirty.bf.srt = 1;
839         return 0;
840 }
841
842 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
843 {
844         struct dai_ctrl_blk *ctl = blk;
845
846         set_field(&ctl->srt, SRTCTL_RSR, rsr);
847         ctl->dirty.bf.srt = 1;
848         return 0;
849 }
850
851 static int dai_srt_set_drat(void *blk, unsigned int drat)
852 {
853         struct dai_ctrl_blk *ctl = blk;
854
855         set_field(&ctl->srt, SRTCTL_DRAT, drat);
856         ctl->dirty.bf.srt = 1;
857         return 0;
858 }
859
860 static int dai_srt_set_ec(void *blk, unsigned int ec)
861 {
862         struct dai_ctrl_blk *ctl = blk;
863
864         set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
865         ctl->dirty.bf.srt = 1;
866         return 0;
867 }
868
869 static int dai_srt_set_et(void *blk, unsigned int et)
870 {
871         struct dai_ctrl_blk *ctl = blk;
872
873         set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
874         ctl->dirty.bf.srt = 1;
875         return 0;
876 }
877
878 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
879 {
880         struct dai_ctrl_blk *ctl = blk;
881
882         if (ctl->dirty.bf.srt) {
883                 hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
884                 ctl->dirty.bf.srt = 0;
885         }
886
887         return 0;
888 }
889
890 static int dai_get_ctrl_blk(void **rblk)
891 {
892         struct dai_ctrl_blk *blk;
893
894         *rblk = NULL;
895         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
896         if (!blk)
897                 return -ENOMEM;
898
899         *rblk = blk;
900
901         return 0;
902 }
903
904 static int dai_put_ctrl_blk(void *blk)
905 {
906         kfree(blk);
907
908         return 0;
909 }
910
911 static int dao_set_spos(void *blk, unsigned int spos)
912 {
913         ((struct dao_ctrl_blk *)blk)->atxcsl = spos;
914         ((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
915         return 0;
916 }
917
918 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
919 {
920         struct dao_ctrl_blk *ctl = blk;
921
922         if (ctl->dirty.bf.atxcsl) {
923                 if (idx < 4) {
924                         /* S/PDIF SPOSx */
925                         hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
926                                                         ctl->atxcsl);
927                 }
928                 ctl->dirty.bf.atxcsl = 0;
929         }
930
931         return 0;
932 }
933
934 static int dao_get_spos(void *blk, unsigned int *spos)
935 {
936         *spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
937         return 0;
938 }
939
940 static int dao_get_ctrl_blk(void **rblk)
941 {
942         struct dao_ctrl_blk *blk;
943
944         *rblk = NULL;
945         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
946         if (!blk)
947                 return -ENOMEM;
948
949         *rblk = blk;
950
951         return 0;
952 }
953
954 static int dao_put_ctrl_blk(void *blk)
955 {
956         kfree(blk);
957
958         return 0;
959 }
960
961 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
962 {
963         struct daio_mgr_ctrl_blk *ctl = blk;
964
965         set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
966         ctl->dirty.bf.arxctl |= (0x1 << idx);
967         return 0;
968 }
969
970 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
971 {
972         struct daio_mgr_ctrl_blk *ctl = blk;
973
974         set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
975
976         ctl->dirty.bf.arxctl |= (0x1 << idx);
977         return 0;
978 }
979
980 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
981 {
982         struct daio_mgr_ctrl_blk *ctl = blk;
983
984         set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
985         ctl->dirty.bf.atxctl |= (0x1 << idx);
986         return 0;
987 }
988
989 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
990 {
991         struct daio_mgr_ctrl_blk *ctl = blk;
992
993         set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
994         ctl->dirty.bf.atxctl |= (0x1 << idx);
995         return 0;
996 }
997
998 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
999 {
1000         struct daio_mgr_ctrl_blk *ctl = blk;
1001
1002         if (idx < 4) {
1003                 /* S/PDIF output */
1004                 switch ((conf & 0x7)) {
1005                 case 1:
1006                         set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
1007                         break;
1008                 case 2:
1009                         set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1010                         break;
1011                 case 4:
1012                         set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1013                         break;
1014                 case 8:
1015                         set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1016                         break;
1017                 default:
1018                         break;
1019                 }
1020                 /* CDIF */
1021                 set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1022                 /* Non-audio */
1023                 set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1024                 /* Non-audio */
1025                 set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1026                 set_field(&ctl->txctl[idx], ATXCTL_RAW,
1027                           ((conf >> 3) & 0x1) ? 0 : 0);
1028                 ctl->dirty.bf.atxctl |= (0x1 << idx);
1029         } else {
1030                 /* I2S output */
1031                 /*idx %= 4; */
1032         }
1033         return 0;
1034 }
1035
1036 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1037 {
1038         struct daio_mgr_ctrl_blk *ctl = blk;
1039
1040         set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1041         ctl->dirty.bf.daoimap = 1;
1042         return 0;
1043 }
1044
1045 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1046 {
1047         struct daio_mgr_ctrl_blk *ctl = blk;
1048
1049         set_field(&ctl->daoimap.aim, AIM_NXT, next);
1050         ctl->dirty.bf.daoimap = 1;
1051         return 0;
1052 }
1053
1054 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1055 {
1056         ((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1057         ((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1058         return 0;
1059 }
1060
1061 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1062 {
1063         struct daio_mgr_ctrl_blk *ctl = blk;
1064         unsigned int data;
1065         int i;
1066
1067         for (i = 0; i < 8; i++) {
1068                 if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1069                         data = ctl->txctl[i];
1070                         hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1071                         ctl->dirty.bf.atxctl &= ~(0x1 << i);
1072                         mdelay(1);
1073                 }
1074                 if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1075                         data = ctl->rxctl[i];
1076                         hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1077                         ctl->dirty.bf.arxctl &= ~(0x1 << i);
1078                         mdelay(1);
1079                 }
1080         }
1081         if (ctl->dirty.bf.daoimap) {
1082                 hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1083                                                 ctl->daoimap.aim);
1084                 ctl->dirty.bf.daoimap = 0;
1085         }
1086
1087         return 0;
1088 }
1089
1090 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1091 {
1092         struct daio_mgr_ctrl_blk *blk;
1093         int i;
1094
1095         *rblk = NULL;
1096         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1097         if (!blk)
1098                 return -ENOMEM;
1099
1100         for (i = 0; i < 8; i++) {
1101                 blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1102                 blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1103         }
1104
1105         *rblk = blk;
1106
1107         return 0;
1108 }
1109
1110 static int daio_mgr_put_ctrl_blk(void *blk)
1111 {
1112         kfree(blk);
1113
1114         return 0;
1115 }
1116
1117 /* Timer interrupt */
1118 static int set_timer_irq(struct hw *hw, int enable)
1119 {
1120         hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1121         return 0;
1122 }
1123
1124 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1125 {
1126         if (ticks)
1127                 ticks |= TIMR_IE | TIMR_IP;
1128         hw_write_20kx(hw, TIMR, ticks);
1129         return 0;
1130 }
1131
1132 static unsigned int get_wc(struct hw *hw)
1133 {
1134         return hw_read_20kx(hw, WC);
1135 }
1136
1137 /* Card hardware initialization block */
1138 struct dac_conf {
1139         unsigned int msr; /* master sample rate in rsrs */
1140 };
1141
1142 struct adc_conf {
1143         unsigned int msr;       /* master sample rate in rsrs */
1144         unsigned char input;    /* the input source of ADC */
1145         unsigned char mic20db;  /* boost mic by 20db if input is microphone */
1146 };
1147
1148 struct daio_conf {
1149         unsigned int msr; /* master sample rate in rsrs */
1150 };
1151
1152 struct trn_conf {
1153         unsigned long vm_pgt_phys;
1154 };
1155
1156 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1157 {
1158         u32 data;
1159         int i;
1160
1161         /* Program I2S with proper sample rate and enable the correct I2S
1162          * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1163         if (1 == info->msr) {
1164                 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1165                 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1166                 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1167         } else if (2 == info->msr) {
1168                 if (hw->model != CTSB1270) {
1169                         hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1170                 } else {
1171                         /* PCM4220 on Titanium HD is different. */
1172                         hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
1173                 }
1174                 /* Specify all playing 96khz
1175                  * EA [0]       - Enabled
1176                  * RTA [4:5]    - 96kHz
1177                  * EB [8]       - Enabled
1178                  * RTB [12:13]  - 96kHz
1179                  * EC [16]      - Enabled
1180                  * RTC [20:21]  - 96kHz
1181                  * ED [24]      - Enabled
1182                  * RTD [28:29]  - 96kHz */
1183                 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1184                 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1185         } else if ((4 == info->msr) && (hw->model == CTSB1270)) {
1186                 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
1187                 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
1188                 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1189         } else {
1190                 dev_alert(hw->card->dev,
1191                           "ERROR!!! Invalid sampling rate!!!\n");
1192                 return -EINVAL;
1193         }
1194
1195         for (i = 0; i < 8; i++) {
1196                 if (i <= 3) {
1197                         /* This comment looks wrong since loop is over 4  */
1198                         /* channels and emu20k2 supports 4 spdif IOs.     */
1199                         /* 1st 3 channels are SPDIFs (SB0960) */
1200                         if (i == 3)
1201                                 data = 0x1001001;
1202                         else
1203                                 data = 0x1000001;
1204
1205                         hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1206                         hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1207
1208                         /* Initialize the SPDIF Out Channel status registers.
1209                          * The value specified here is based on the typical
1210                          * values provided in the specification, namely: Clock
1211                          * Accuracy of 1000ppm, Sample Rate of 48KHz,
1212                          * unspecified source number, Generation status = 1,
1213                          * Category code = 0x12 (Digital Signal Mixer),
1214                          * Mode = 0, Emph = 0, Copy Permitted, AN = 0
1215                          * (indicating that we're transmitting digital audio,
1216                          * and the Professional Use bit is 0. */
1217
1218                         hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1219                                         0x02109204); /* Default to 48kHz */
1220
1221                         hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1222                 } else {
1223                         /* Again, loop is over 4 channels not 5. */
1224                         /* Next 5 channels are I2S (SB0960) */
1225                         data = 0x11;
1226                         hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1227                         if (2 == info->msr) {
1228                                 /* Four channels per sample period */
1229                                 data |= 0x1000;
1230                         } else if (4 == info->msr) {
1231                                 /* FIXME: check this against the chip spec */
1232                                 data |= 0x2000;
1233                         }
1234                         hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1235                 }
1236         }
1237
1238         return 0;
1239 }
1240
1241 /* TRANSPORT operations */
1242 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1243 {
1244         u32 vmctl, data;
1245         u32 ptp_phys_low, ptp_phys_high;
1246         int i;
1247
1248         /* Set up device page table */
1249         if ((~0UL) == info->vm_pgt_phys) {
1250                 dev_alert(hw->card->dev,
1251                           "Wrong device page table page address!!!\n");
1252                 return -1;
1253         }
1254
1255         vmctl = 0x80000C0F;  /* 32-bit, 4k-size page */
1256         ptp_phys_low = (u32)info->vm_pgt_phys;
1257         ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1258         if (sizeof(void *) == 8) /* 64bit address */
1259                 vmctl |= (3 << 8);
1260         /* Write page table physical address to all PTPAL registers */
1261         for (i = 0; i < 64; i++) {
1262                 hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1263                 hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1264         }
1265         /* Enable virtual memory transfer */
1266         hw_write_20kx(hw, VMEM_CTL, vmctl);
1267         /* Enable transport bus master and queueing of request */
1268         hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1269         hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1270         /* Enable transport ring */
1271         data = hw_read_20kx(hw, TRANSPORT_ENB);
1272         hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1273
1274         return 0;
1275 }
1276
1277 /* Card initialization */
1278 #define GCTL_AIE        0x00000001
1279 #define GCTL_UAA        0x00000002
1280 #define GCTL_DPC        0x00000004
1281 #define GCTL_DBP        0x00000008
1282 #define GCTL_ABP        0x00000010
1283 #define GCTL_TBP        0x00000020
1284 #define GCTL_SBP        0x00000040
1285 #define GCTL_FBP        0x00000080
1286 #define GCTL_ME         0x00000100
1287 #define GCTL_AID        0x00001000
1288
1289 #define PLLCTL_SRC      0x00000007
1290 #define PLLCTL_SPE      0x00000008
1291 #define PLLCTL_RD       0x000000F0
1292 #define PLLCTL_FD       0x0001FF00
1293 #define PLLCTL_OD       0x00060000
1294 #define PLLCTL_B        0x00080000
1295 #define PLLCTL_AS       0x00100000
1296 #define PLLCTL_LF       0x03E00000
1297 #define PLLCTL_SPS      0x1C000000
1298 #define PLLCTL_AD       0x60000000
1299
1300 #define PLLSTAT_CCS     0x00000007
1301 #define PLLSTAT_SPL     0x00000008
1302 #define PLLSTAT_CRD     0x000000F0
1303 #define PLLSTAT_CFD     0x0001FF00
1304 #define PLLSTAT_SL      0x00020000
1305 #define PLLSTAT_FAS     0x00040000
1306 #define PLLSTAT_B       0x00080000
1307 #define PLLSTAT_PD      0x00100000
1308 #define PLLSTAT_OCA     0x00200000
1309 #define PLLSTAT_NCA     0x00400000
1310
1311 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1312 {
1313         unsigned int pllenb;
1314         unsigned int pllctl;
1315         unsigned int pllstat;
1316         int i;
1317
1318         pllenb = 0xB;
1319         hw_write_20kx(hw, PLL_ENB, pllenb);
1320         pllctl = 0x20C00000;
1321         set_field(&pllctl, PLLCTL_B, 0);
1322         set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
1323         set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
1324         hw_write_20kx(hw, PLL_CTL, pllctl);
1325         mdelay(40);
1326
1327         pllctl = hw_read_20kx(hw, PLL_CTL);
1328         set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
1329         hw_write_20kx(hw, PLL_CTL, pllctl);
1330         mdelay(40);
1331
1332         for (i = 0; i < 1000; i++) {
1333                 pllstat = hw_read_20kx(hw, PLL_STAT);
1334                 if (get_field(pllstat, PLLSTAT_PD))
1335                         continue;
1336
1337                 if (get_field(pllstat, PLLSTAT_B) !=
1338                                         get_field(pllctl, PLLCTL_B))
1339                         continue;
1340
1341                 if (get_field(pllstat, PLLSTAT_CCS) !=
1342                                         get_field(pllctl, PLLCTL_SRC))
1343                         continue;
1344
1345                 if (get_field(pllstat, PLLSTAT_CRD) !=
1346                                         get_field(pllctl, PLLCTL_RD))
1347                         continue;
1348
1349                 if (get_field(pllstat, PLLSTAT_CFD) !=
1350                                         get_field(pllctl, PLLCTL_FD))
1351                         continue;
1352
1353                 break;
1354         }
1355         if (i >= 1000) {
1356                 dev_alert(hw->card->dev,
1357                           "PLL initialization failed!!!\n");
1358                 return -EBUSY;
1359         }
1360
1361         return 0;
1362 }
1363
1364 static int hw_auto_init(struct hw *hw)
1365 {
1366         unsigned int gctl;
1367         int i;
1368
1369         gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1370         set_field(&gctl, GCTL_AIE, 0);
1371         hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1372         set_field(&gctl, GCTL_AIE, 1);
1373         hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1374         mdelay(10);
1375         for (i = 0; i < 400000; i++) {
1376                 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1377                 if (get_field(gctl, GCTL_AID))
1378                         break;
1379         }
1380         if (!get_field(gctl, GCTL_AID)) {
1381                 dev_alert(hw->card->dev, "Card Auto-init failed!!!\n");
1382                 return -EBUSY;
1383         }
1384
1385         return 0;
1386 }
1387
1388 /* DAC operations */
1389
1390 #define CS4382_MC1              0x1
1391 #define CS4382_MC2              0x2
1392 #define CS4382_MC3              0x3
1393 #define CS4382_FC               0x4
1394 #define CS4382_IC               0x5
1395 #define CS4382_XC1              0x6
1396 #define CS4382_VCA1             0x7
1397 #define CS4382_VCB1             0x8
1398 #define CS4382_XC2              0x9
1399 #define CS4382_VCA2             0xA
1400 #define CS4382_VCB2             0xB
1401 #define CS4382_XC3              0xC
1402 #define CS4382_VCA3             0xD
1403 #define CS4382_VCB3             0xE
1404 #define CS4382_XC4              0xF
1405 #define CS4382_VCA4             0x10
1406 #define CS4382_VCB4             0x11
1407 #define CS4382_CREV             0x12
1408
1409 /* I2C status */
1410 #define STATE_LOCKED            0x00
1411 #define STATE_UNLOCKED          0xAA
1412 #define DATA_READY              0x800000    /* Used with I2C_IF_STATUS */
1413 #define DATA_ABORT              0x10000     /* Used with I2C_IF_STATUS */
1414
1415 #define I2C_STATUS_DCM  0x00000001
1416 #define I2C_STATUS_BC   0x00000006
1417 #define I2C_STATUS_APD  0x00000008
1418 #define I2C_STATUS_AB   0x00010000
1419 #define I2C_STATUS_DR   0x00800000
1420
1421 #define I2C_ADDRESS_PTAD        0x0000FFFF
1422 #define I2C_ADDRESS_SLAD        0x007F0000
1423
1424 struct regs_cs4382 {
1425         u32 mode_control_1;
1426         u32 mode_control_2;
1427         u32 mode_control_3;
1428
1429         u32 filter_control;
1430         u32 invert_control;
1431
1432         u32 mix_control_P1;
1433         u32 vol_control_A1;
1434         u32 vol_control_B1;
1435
1436         u32 mix_control_P2;
1437         u32 vol_control_A2;
1438         u32 vol_control_B2;
1439
1440         u32 mix_control_P3;
1441         u32 vol_control_A3;
1442         u32 vol_control_B3;
1443
1444         u32 mix_control_P4;
1445         u32 vol_control_A4;
1446         u32 vol_control_B4;
1447 };
1448
1449 static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1450 {
1451         u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] =  {0xB3, 0xD4};
1452
1453         /* Send keys for forced BIOS mode */
1454         hw_write_20kx(hw, I2C_IF_WLOCK,
1455                         UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1456         hw_write_20kx(hw, I2C_IF_WLOCK,
1457                         UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1458         /* Check whether the chip is unlocked */
1459         if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1460                 return 0;
1461
1462         return -1;
1463 }
1464
1465 static int hw20k2_i2c_lock_chip(struct hw *hw)
1466 {
1467         /* Write twice */
1468         hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1469         hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1470         if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1471                 return 0;
1472
1473         return -1;
1474 }
1475
1476 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1477 {
1478         struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1479         int err;
1480         unsigned int i2c_status;
1481         unsigned int i2c_addr;
1482
1483         err = hw20k2_i2c_unlock_full_access(hw);
1484         if (err < 0)
1485                 return err;
1486
1487         hw20k2->addr_size = addr_size;
1488         hw20k2->data_size = data_size;
1489         hw20k2->dev_id = dev_id;
1490
1491         i2c_addr = 0;
1492         set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1493
1494         hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1495
1496         i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1497
1498         set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1499
1500         hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1501
1502         return 0;
1503 }
1504
1505 static int hw20k2_i2c_uninit(struct hw *hw)
1506 {
1507         unsigned int i2c_status;
1508         unsigned int i2c_addr;
1509
1510         i2c_addr = 0;
1511         set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1512
1513         hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1514
1515         i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1516
1517         set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1518
1519         hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1520
1521         return hw20k2_i2c_lock_chip(hw);
1522 }
1523
1524 static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1525 {
1526         int i = 0x400000;
1527         unsigned int ret;
1528
1529         do {
1530                 ret = hw_read_20kx(hw, I2C_IF_STATUS);
1531         } while ((!(ret & DATA_READY)) && --i);
1532
1533         return i;
1534 }
1535
1536 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1537 {
1538         struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1539         unsigned int i2c_status;
1540
1541         i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1542         set_field(&i2c_status, I2C_STATUS_BC,
1543                   (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1544         hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1545         if (!hw20k2_i2c_wait_data_ready(hw))
1546                 return -1;
1547
1548         hw_write_20kx(hw, I2C_IF_WDATA, addr);
1549         if (!hw20k2_i2c_wait_data_ready(hw))
1550                 return -1;
1551
1552         /* Force a read operation */
1553         hw_write_20kx(hw, I2C_IF_RDATA, 0);
1554         if (!hw20k2_i2c_wait_data_ready(hw))
1555                 return -1;
1556
1557         *datap = hw_read_20kx(hw, I2C_IF_RDATA);
1558
1559         return 0;
1560 }
1561
1562 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1563 {
1564         struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1565         unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1566         unsigned int i2c_status;
1567
1568         i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1569
1570         set_field(&i2c_status, I2C_STATUS_BC,
1571                   (4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1572                   0 : (hw20k2->addr_size + hw20k2->data_size));
1573
1574         hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1575         hw20k2_i2c_wait_data_ready(hw);
1576         /* Dummy write to trigger the write operation */
1577         hw_write_20kx(hw, I2C_IF_WDATA, 0);
1578         hw20k2_i2c_wait_data_ready(hw);
1579
1580         /* This is the real data */
1581         hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1582         hw20k2_i2c_wait_data_ready(hw);
1583
1584         return 0;
1585 }
1586
1587 static void hw_dac_stop(struct hw *hw)
1588 {
1589         u32 data;
1590         data = hw_read_20kx(hw, GPIO_DATA);
1591         data &= 0xFFFFFFFD;
1592         hw_write_20kx(hw, GPIO_DATA, data);
1593         mdelay(10);
1594 }
1595
1596 static void hw_dac_start(struct hw *hw)
1597 {
1598         u32 data;
1599         data = hw_read_20kx(hw, GPIO_DATA);
1600         data |= 0x2;
1601         hw_write_20kx(hw, GPIO_DATA, data);
1602         mdelay(50);
1603 }
1604
1605 static void hw_dac_reset(struct hw *hw)
1606 {
1607         hw_dac_stop(hw);
1608         hw_dac_start(hw);
1609 }
1610
1611 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1612 {
1613         int err;
1614         u32 data;
1615         int i;
1616         struct regs_cs4382 cs_read = {0};
1617         struct regs_cs4382 cs_def = {
1618                                    0x00000001,  /* Mode Control 1 */
1619                                    0x00000000,  /* Mode Control 2 */
1620                                    0x00000084,  /* Mode Control 3 */
1621                                    0x00000000,  /* Filter Control */
1622                                    0x00000000,  /* Invert Control */
1623                                    0x00000024,  /* Mixing Control Pair 1 */
1624                                    0x00000000,  /* Vol Control A1 */
1625                                    0x00000000,  /* Vol Control B1 */
1626                                    0x00000024,  /* Mixing Control Pair 2 */
1627                                    0x00000000,  /* Vol Control A2 */
1628                                    0x00000000,  /* Vol Control B2 */
1629                                    0x00000024,  /* Mixing Control Pair 3 */
1630                                    0x00000000,  /* Vol Control A3 */
1631                                    0x00000000,  /* Vol Control B3 */
1632                                    0x00000024,  /* Mixing Control Pair 4 */
1633                                    0x00000000,  /* Vol Control A4 */
1634                                    0x00000000   /* Vol Control B4 */
1635                                  };
1636
1637         if (hw->model == CTSB1270) {
1638                 hw_dac_stop(hw);
1639                 data = hw_read_20kx(hw, GPIO_DATA);
1640                 data &= ~0x0600;
1641                 if (1 == info->msr)
1642                         data |= 0x0000; /* Single Speed Mode 0-50kHz */
1643                 else if (2 == info->msr)
1644                         data |= 0x0200; /* Double Speed Mode 50-100kHz */
1645                 else
1646                         data |= 0x0600; /* Quad Speed Mode 100-200kHz */
1647                 hw_write_20kx(hw, GPIO_DATA, data);
1648                 hw_dac_start(hw);
1649                 return 0;
1650         }
1651
1652         /* Set DAC reset bit as output */
1653         data = hw_read_20kx(hw, GPIO_CTRL);
1654         data |= 0x02;
1655         hw_write_20kx(hw, GPIO_CTRL, data);
1656
1657         err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1658         if (err < 0)
1659                 goto End;
1660
1661         for (i = 0; i < 2; i++) {
1662                 /* Reset DAC twice just in-case the chip
1663                  * didn't initialized properly */
1664                 hw_dac_reset(hw);
1665                 hw_dac_reset(hw);
1666
1667                 if (hw20k2_i2c_read(hw, CS4382_MC1,  &cs_read.mode_control_1))
1668                         continue;
1669
1670                 if (hw20k2_i2c_read(hw, CS4382_MC2,  &cs_read.mode_control_2))
1671                         continue;
1672
1673                 if (hw20k2_i2c_read(hw, CS4382_MC3,  &cs_read.mode_control_3))
1674                         continue;
1675
1676                 if (hw20k2_i2c_read(hw, CS4382_FC,   &cs_read.filter_control))
1677                         continue;
1678
1679                 if (hw20k2_i2c_read(hw, CS4382_IC,   &cs_read.invert_control))
1680                         continue;
1681
1682                 if (hw20k2_i2c_read(hw, CS4382_XC1,  &cs_read.mix_control_P1))
1683                         continue;
1684
1685                 if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1686                         continue;
1687
1688                 if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1689                         continue;
1690
1691                 if (hw20k2_i2c_read(hw, CS4382_XC2,  &cs_read.mix_control_P2))
1692                         continue;
1693
1694                 if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1695                         continue;
1696
1697                 if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1698                         continue;
1699
1700                 if (hw20k2_i2c_read(hw, CS4382_XC3,  &cs_read.mix_control_P3))
1701                         continue;
1702
1703                 if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1704                         continue;
1705
1706                 if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1707                         continue;
1708
1709                 if (hw20k2_i2c_read(hw, CS4382_XC4,  &cs_read.mix_control_P4))
1710                         continue;
1711
1712                 if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1713                         continue;
1714
1715                 if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1716                         continue;
1717
1718                 if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1719                         continue;
1720                 else
1721                         break;
1722         }
1723
1724         if (i >= 2)
1725                 goto End;
1726
1727         /* Note: Every I2C write must have some delay.
1728          * This is not a requirement but the delay works here... */
1729         hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1730         hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1731         if (1 == info->msr) {
1732                 hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1733                 hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1734                 hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1735                 hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1736         } else if (2 == info->msr) {
1737                 hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1738                 hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1739                 hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1740                 hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1741         } else {
1742                 hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1743                 hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1744                 hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1745                 hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1746         }
1747
1748         return 0;
1749 End:
1750
1751         hw20k2_i2c_uninit(hw);
1752         return -1;
1753 }
1754
1755 /* ADC operations */
1756 #define MAKE_WM8775_ADDR(addr, data)    (u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1757 #define MAKE_WM8775_DATA(data)  (u32)(data&0xFF)
1758
1759 #define WM8775_IC       0x0B
1760 #define WM8775_MMC      0x0C
1761 #define WM8775_AADCL    0x0E
1762 #define WM8775_AADCR    0x0F
1763 #define WM8775_ADCMC    0x15
1764 #define WM8775_RESET    0x17
1765
1766 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1767 {
1768         u32 data;
1769         if (hw->model == CTSB1270) {
1770                 /* Titanium HD has two ADC chips, one for line in and one */
1771                 /* for MIC. We don't need to switch the ADC input. */
1772                 return 1;
1773         }
1774         data = hw_read_20kx(hw, GPIO_DATA);
1775         switch (type) {
1776         case ADC_MICIN:
1777                 data = (data & (0x1 << 14)) ? 1 : 0;
1778                 break;
1779         case ADC_LINEIN:
1780                 data = (data & (0x1 << 14)) ? 0 : 1;
1781                 break;
1782         default:
1783                 data = 0;
1784         }
1785         return data;
1786 }
1787
1788 #define MIC_BOOST_0DB 0xCF
1789 #define MIC_BOOST_STEPS_PER_DB 2
1790
1791 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
1792 {
1793         u32 adcmc, gain;
1794
1795         if (input > 3)
1796                 input = 3;
1797
1798         adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
1799
1800         hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
1801                                 MAKE_WM8775_DATA(adcmc));
1802
1803         if (gain_in_db < -103)
1804                 gain_in_db = -103;
1805         if (gain_in_db > 24)
1806                 gain_in_db = 24;
1807
1808         gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
1809
1810         hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
1811                                 MAKE_WM8775_DATA(gain));
1812         /* ...so there should be no need for the following. */
1813         hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
1814                                 MAKE_WM8775_DATA(gain));
1815 }
1816
1817 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1818 {
1819         u32 data;
1820         data = hw_read_20kx(hw, GPIO_DATA);
1821         switch (type) {
1822         case ADC_MICIN:
1823                 data |= (0x1 << 14);
1824                 hw_write_20kx(hw, GPIO_DATA, data);
1825                 hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
1826                 break;
1827         case ADC_LINEIN:
1828                 data &= ~(0x1 << 14);
1829                 hw_write_20kx(hw, GPIO_DATA, data);
1830                 hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
1831                 break;
1832         default:
1833                 break;
1834         }
1835
1836         return 0;
1837 }
1838
1839 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1840 {
1841         int err;
1842         u32 data, ctl;
1843
1844         /*  Set ADC reset bit as output */
1845         data = hw_read_20kx(hw, GPIO_CTRL);
1846         data |= (0x1 << 15);
1847         hw_write_20kx(hw, GPIO_CTRL, data);
1848
1849         /* Initialize I2C */
1850         err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1851         if (err < 0) {
1852                 dev_alert(hw->card->dev, "Failure to acquire I2C!!!\n");
1853                 goto error;
1854         }
1855
1856         /* Reset the ADC (reset is active low). */
1857         data = hw_read_20kx(hw, GPIO_DATA);
1858         data &= ~(0x1 << 15);
1859         hw_write_20kx(hw, GPIO_DATA, data);
1860
1861         if (hw->model == CTSB1270) {
1862                 /* Set up the PCM4220 ADC on Titanium HD */
1863                 data &= ~0x0C;
1864                 if (1 == info->msr)
1865                         data |= 0x00; /* Single Speed Mode 32-50kHz */
1866                 else if (2 == info->msr)
1867                         data |= 0x08; /* Double Speed Mode 50-108kHz */
1868                 else
1869                         data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
1870                 hw_write_20kx(hw, GPIO_DATA, data);
1871         }
1872
1873         mdelay(10);
1874         /* Return the ADC to normal operation. */
1875         data |= (0x1 << 15);
1876         hw_write_20kx(hw, GPIO_DATA, data);
1877         mdelay(50);
1878
1879         /* I2C write to register offset 0x0B to set ADC LRCLK polarity */
1880         /* invert bit, interface format to I2S, word length to 24-bit, */
1881         /* enable ADC high pass filter. Fixes bug 5323?         */
1882         hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
1883                          MAKE_WM8775_DATA(0x26));
1884
1885         /* Set the master mode (256fs) */
1886         if (1 == info->msr) {
1887                 /* slave mode, 128x oversampling 256fs */
1888                 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1889                                                 MAKE_WM8775_DATA(0x02));
1890         } else if ((2 == info->msr) || (4 == info->msr)) {
1891                 /* slave mode, 64x oversampling, 256fs */
1892                 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1893                                                 MAKE_WM8775_DATA(0x0A));
1894         } else {
1895                 dev_alert(hw->card->dev,
1896                           "Invalid master sampling rate (msr %d)!!!\n",
1897                           info->msr);
1898                 err = -EINVAL;
1899                 goto error;
1900         }
1901
1902         if (hw->model != CTSB1270) {
1903                 /* Configure GPIO bit 14 change to line-in/mic-in */
1904                 ctl = hw_read_20kx(hw, GPIO_CTRL);
1905                 ctl |= 0x1 << 14;
1906                 hw_write_20kx(hw, GPIO_CTRL, ctl);
1907                 hw_adc_input_select(hw, ADC_LINEIN);
1908         } else {
1909                 hw_wm8775_input_select(hw, 0, 0);
1910         }
1911
1912         return 0;
1913 error:
1914         hw20k2_i2c_uninit(hw);
1915         return err;
1916 }
1917
1918 static struct capabilities hw_capabilities(struct hw *hw)
1919 {
1920         struct capabilities cap;
1921
1922         cap.digit_io_switch = 0;
1923         cap.dedicated_mic = hw->model == CTSB1270;
1924         cap.output_switch = hw->model == CTSB1270;
1925         cap.mic_source_switch = hw->model == CTSB1270;
1926
1927         return cap;
1928 }
1929
1930 static int hw_output_switch_get(struct hw *hw)
1931 {
1932         u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
1933
1934         switch (data & 0x30) {
1935         case 0x00:
1936              return 0;
1937         case 0x10:
1938              return 1;
1939         case 0x20:
1940              return 2;
1941         default:
1942              return 3;
1943         }
1944 }
1945
1946 static int hw_output_switch_put(struct hw *hw, int position)
1947 {
1948         u32 data;
1949
1950         if (position == hw_output_switch_get(hw))
1951                 return 0;
1952
1953         /* Mute line and headphones (intended for anti-pop). */
1954         data = hw_read_20kx(hw, GPIO_DATA);
1955         data |= (0x03 << 11);
1956         hw_write_20kx(hw, GPIO_DATA, data);
1957
1958         data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
1959         switch (position) {
1960         case 0:
1961                 break;
1962         case 1:
1963                 data |= 0x10;
1964                 break;
1965         default:
1966                 data |= 0x20;
1967         }
1968         hw_write_20kx(hw, GPIO_EXT_DATA, data);
1969
1970         /* Unmute line and headphones. */
1971         data = hw_read_20kx(hw, GPIO_DATA);
1972         data &= ~(0x03 << 11);
1973         hw_write_20kx(hw, GPIO_DATA, data);
1974
1975         return 1;
1976 }
1977
1978 static int hw_mic_source_switch_get(struct hw *hw)
1979 {
1980         struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1981
1982         return hw20k2->mic_source;
1983 }
1984
1985 static int hw_mic_source_switch_put(struct hw *hw, int position)
1986 {
1987         struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1988
1989         if (position == hw20k2->mic_source)
1990                 return 0;
1991
1992         switch (position) {
1993         case 0:
1994                 hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
1995                 break;
1996         case 1:
1997                 hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
1998                 break;
1999         case 2:
2000                 hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
2001                 break;
2002         default:
2003                 return 0;
2004         }
2005
2006         hw20k2->mic_source = position;
2007
2008         return 1;
2009 }
2010
2011 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
2012 {
2013         struct hw *hw = dev_id;
2014         unsigned int status;
2015
2016         status = hw_read_20kx(hw, GIP);
2017         if (!status)
2018                 return IRQ_NONE;
2019
2020         if (hw->irq_callback)
2021                 hw->irq_callback(hw->irq_callback_data, status);
2022
2023         hw_write_20kx(hw, GIP, status);
2024         return IRQ_HANDLED;
2025 }
2026
2027 static int hw_card_start(struct hw *hw)
2028 {
2029         int err = 0;
2030         struct pci_dev *pci = hw->pci;
2031         unsigned int gctl;
2032
2033         err = pci_enable_device(pci);
2034         if (err < 0)
2035                 return err;
2036
2037         /* Set DMA transfer mask */
2038         if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 ||
2039             pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) {
2040                 dev_err(hw->card->dev,
2041                         "architecture does not support PCI busmaster DMA with mask 0x%llx\n",
2042                         CT_XFI_DMA_MASK);
2043                 err = -ENXIO;
2044                 goto error1;
2045         }
2046
2047         if (!hw->io_base) {
2048                 err = pci_request_regions(pci, "XFi");
2049                 if (err < 0)
2050                         goto error1;
2051
2052                 hw->io_base = pci_resource_start(hw->pci, 2);
2053                 hw->mem_base = ioremap(hw->io_base,
2054                                        pci_resource_len(hw->pci, 2));
2055                 if (!hw->mem_base) {
2056                         err = -ENOENT;
2057                         goto error2;
2058                 }
2059         }
2060
2061         /* Switch to 20k2 mode from UAA mode. */
2062         gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2063         set_field(&gctl, GCTL_UAA, 0);
2064         hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2065
2066         if (hw->irq < 0) {
2067                 err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
2068                                   KBUILD_MODNAME, hw);
2069                 if (err < 0) {
2070                         dev_err(hw->card->dev,
2071                                 "XFi: Cannot get irq %d\n", pci->irq);
2072                         goto error2;
2073                 }
2074                 hw->irq = pci->irq;
2075         }
2076
2077         pci_set_master(pci);
2078
2079         return 0;
2080
2081 /*error3:
2082         iounmap((void *)hw->mem_base);
2083         hw->mem_base = (unsigned long)NULL;*/
2084 error2:
2085         pci_release_regions(pci);
2086         hw->io_base = 0;
2087 error1:
2088         pci_disable_device(pci);
2089         return err;
2090 }
2091
2092 static int hw_card_stop(struct hw *hw)
2093 {
2094         unsigned int data;
2095
2096         /* disable transport bus master and queueing of request */
2097         hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
2098
2099         /* disable pll */
2100         data = hw_read_20kx(hw, PLL_ENB);
2101         hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
2102
2103         /* TODO: Disable interrupt and so on... */
2104         return 0;
2105 }
2106
2107 static int hw_card_shutdown(struct hw *hw)
2108 {
2109         if (hw->irq >= 0)
2110                 free_irq(hw->irq, hw);
2111
2112         hw->irq = -1;
2113         iounmap(hw->mem_base);
2114         hw->mem_base = NULL;
2115
2116         if (hw->io_base)
2117                 pci_release_regions(hw->pci);
2118
2119         hw->io_base = 0;
2120
2121         pci_disable_device(hw->pci);
2122
2123         return 0;
2124 }
2125
2126 static int hw_card_init(struct hw *hw, struct card_conf *info)
2127 {
2128         int err;
2129         unsigned int gctl;
2130         u32 data = 0;
2131         struct dac_conf dac_info = {0};
2132         struct adc_conf adc_info = {0};
2133         struct daio_conf daio_info = {0};
2134         struct trn_conf trn_info = {0};
2135
2136         /* Get PCI io port/memory base address and
2137          * do 20kx core switch if needed. */
2138         err = hw_card_start(hw);
2139         if (err)
2140                 return err;
2141
2142         /* PLL init */
2143         err = hw_pll_init(hw, info->rsr);
2144         if (err < 0)
2145                 return err;
2146
2147         /* kick off auto-init */
2148         err = hw_auto_init(hw);
2149         if (err < 0)
2150                 return err;
2151
2152         gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2153         set_field(&gctl, GCTL_DBP, 1);
2154         set_field(&gctl, GCTL_TBP, 1);
2155         set_field(&gctl, GCTL_FBP, 1);
2156         set_field(&gctl, GCTL_DPC, 0);
2157         hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2158
2159         /* Reset all global pending interrupts */
2160         hw_write_20kx(hw, GIE, 0);
2161         /* Reset all SRC pending interrupts */
2162         hw_write_20kx(hw, SRC_IP, 0);
2163
2164         if (hw->model != CTSB1270) {
2165                 /* TODO: detect the card ID and configure GPIO accordingly. */
2166                 /* Configures GPIO (0xD802 0x98028) */
2167                 /*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2168                 /* Configures GPIO (SB0880) */
2169                 /*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2170                 hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2171         } else {
2172                 hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
2173         }
2174         /* Enable audio ring */
2175         hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2176
2177         trn_info.vm_pgt_phys = info->vm_pgt_phys;
2178         err = hw_trn_init(hw, &trn_info);
2179         if (err < 0)
2180                 return err;
2181
2182         daio_info.msr = info->msr;
2183         err = hw_daio_init(hw, &daio_info);
2184         if (err < 0)
2185                 return err;
2186
2187         dac_info.msr = info->msr;
2188         err = hw_dac_init(hw, &dac_info);
2189         if (err < 0)
2190                 return err;
2191
2192         adc_info.msr = info->msr;
2193         adc_info.input = ADC_LINEIN;
2194         adc_info.mic20db = 0;
2195         err = hw_adc_init(hw, &adc_info);
2196         if (err < 0)
2197                 return err;
2198
2199         data = hw_read_20kx(hw, SRC_MCTL);
2200         data |= 0x1; /* Enables input from the audio ring */
2201         hw_write_20kx(hw, SRC_MCTL, data);
2202
2203         return 0;
2204 }
2205
2206 #ifdef CONFIG_PM_SLEEP
2207 static int hw_suspend(struct hw *hw)
2208 {
2209         hw_card_stop(hw);
2210         return 0;
2211 }
2212
2213 static int hw_resume(struct hw *hw, struct card_conf *info)
2214 {
2215         /* Re-initialize card hardware. */
2216         return hw_card_init(hw, info);
2217 }
2218 #endif
2219
2220 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2221 {
2222         return readl(hw->mem_base + reg);
2223 }
2224
2225 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2226 {
2227         writel(data, hw->mem_base + reg);
2228 }
2229
2230 static struct hw ct20k2_preset = {
2231         .irq = -1,
2232
2233         .card_init = hw_card_init,
2234         .card_stop = hw_card_stop,
2235         .pll_init = hw_pll_init,
2236         .is_adc_source_selected = hw_is_adc_input_selected,
2237         .select_adc_source = hw_adc_input_select,
2238         .capabilities = hw_capabilities,
2239         .output_switch_get = hw_output_switch_get,
2240         .output_switch_put = hw_output_switch_put,
2241         .mic_source_switch_get = hw_mic_source_switch_get,
2242         .mic_source_switch_put = hw_mic_source_switch_put,
2243 #ifdef CONFIG_PM_SLEEP
2244         .suspend = hw_suspend,
2245         .resume = hw_resume,
2246 #endif
2247
2248         .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2249         .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2250         .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2251         .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2252         .src_set_state = src_set_state,
2253         .src_set_bm = src_set_bm,
2254         .src_set_rsr = src_set_rsr,
2255         .src_set_sf = src_set_sf,
2256         .src_set_wr = src_set_wr,
2257         .src_set_pm = src_set_pm,
2258         .src_set_rom = src_set_rom,
2259         .src_set_vo = src_set_vo,
2260         .src_set_st = src_set_st,
2261         .src_set_ie = src_set_ie,
2262         .src_set_ilsz = src_set_ilsz,
2263         .src_set_bp = src_set_bp,
2264         .src_set_cisz = src_set_cisz,
2265         .src_set_ca = src_set_ca,
2266         .src_set_sa = src_set_sa,
2267         .src_set_la = src_set_la,
2268         .src_set_pitch = src_set_pitch,
2269         .src_set_dirty = src_set_dirty,
2270         .src_set_clear_zbufs = src_set_clear_zbufs,
2271         .src_set_dirty_all = src_set_dirty_all,
2272         .src_commit_write = src_commit_write,
2273         .src_get_ca = src_get_ca,
2274         .src_get_dirty = src_get_dirty,
2275         .src_dirty_conj_mask = src_dirty_conj_mask,
2276         .src_mgr_enbs_src = src_mgr_enbs_src,
2277         .src_mgr_enb_src = src_mgr_enb_src,
2278         .src_mgr_dsb_src = src_mgr_dsb_src,
2279         .src_mgr_commit_write = src_mgr_commit_write,
2280
2281         .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2282         .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2283         .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2284         .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2285         .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2286         .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2287         .srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2288
2289         .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2290         .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2291         .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2292         .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2293         .amixer_set_mode = amixer_set_mode,
2294         .amixer_set_iv = amixer_set_iv,
2295         .amixer_set_x = amixer_set_x,
2296         .amixer_set_y = amixer_set_y,
2297         .amixer_set_sadr = amixer_set_sadr,
2298         .amixer_set_se = amixer_set_se,
2299         .amixer_set_dirty = amixer_set_dirty,
2300         .amixer_set_dirty_all = amixer_set_dirty_all,
2301         .amixer_commit_write = amixer_commit_write,
2302         .amixer_get_y = amixer_get_y,
2303         .amixer_get_dirty = amixer_get_dirty,
2304
2305         .dai_get_ctrl_blk = dai_get_ctrl_blk,
2306         .dai_put_ctrl_blk = dai_put_ctrl_blk,
2307         .dai_srt_set_srco = dai_srt_set_srco,
2308         .dai_srt_set_srcm = dai_srt_set_srcm,
2309         .dai_srt_set_rsr = dai_srt_set_rsr,
2310         .dai_srt_set_drat = dai_srt_set_drat,
2311         .dai_srt_set_ec = dai_srt_set_ec,
2312         .dai_srt_set_et = dai_srt_set_et,
2313         .dai_commit_write = dai_commit_write,
2314
2315         .dao_get_ctrl_blk = dao_get_ctrl_blk,
2316         .dao_put_ctrl_blk = dao_put_ctrl_blk,
2317         .dao_set_spos = dao_set_spos,
2318         .dao_commit_write = dao_commit_write,
2319         .dao_get_spos = dao_get_spos,
2320
2321         .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2322         .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2323         .daio_mgr_enb_dai = daio_mgr_enb_dai,
2324         .daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2325         .daio_mgr_enb_dao = daio_mgr_enb_dao,
2326         .daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2327         .daio_mgr_dao_init = daio_mgr_dao_init,
2328         .daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2329         .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2330         .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2331         .daio_mgr_commit_write = daio_mgr_commit_write,
2332
2333         .set_timer_irq = set_timer_irq,
2334         .set_timer_tick = set_timer_tick,
2335         .get_wc = get_wc,
2336 };
2337
2338 int create_20k2_hw_obj(struct hw **rhw)
2339 {
2340         struct hw20k2 *hw20k2;
2341
2342         *rhw = NULL;
2343         hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2344         if (!hw20k2)
2345                 return -ENOMEM;
2346
2347         hw20k2->hw = ct20k2_preset;
2348         *rhw = &hw20k2->hw;
2349
2350         return 0;
2351 }
2352
2353 int destroy_20k2_hw_obj(struct hw *hw)
2354 {
2355         if (hw->io_base)
2356                 hw_card_shutdown(hw);
2357
2358         kfree(hw);
2359         return 0;
2360 }