212070e1de1ac03dc9f3624f3f355baf63d9715b
[kvmfornfv.git] / kernel / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
55 #include <net/inet_connection_sock.h>
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>    /* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>           /* for Unix socket types */
70 #include <net/af_unix.h>        /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/msg.h>
85 #include <linux/shm.h>
86
87 #include "avc.h"
88 #include "objsec.h"
89 #include "netif.h"
90 #include "netnode.h"
91 #include "netport.h"
92 #include "xfrm.h"
93 #include "netlabel.h"
94 #include "audit.h"
95 #include "avc_ss.h"
96
97 /* SECMARK reference count */
98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102
103 static int __init enforcing_setup(char *str)
104 {
105         unsigned long enforcing;
106         if (!kstrtoul(str, 0, &enforcing))
107                 selinux_enforcing = enforcing ? 1 : 0;
108         return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116 static int __init selinux_enabled_setup(char *str)
117 {
118         unsigned long enabled;
119         if (!kstrtoul(str, 0, &enabled))
120                 selinux_enabled = enabled ? 1 : 0;
121         return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /**
131  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
132  *
133  * Description:
134  * This function checks the SECMARK reference counter to see if any SECMARK
135  * targets are currently configured, if the reference counter is greater than
136  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
137  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
138  * policy capability is enabled, SECMARK is always considered enabled.
139  *
140  */
141 static int selinux_secmark_enabled(void)
142 {
143         return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
144 }
145
146 /**
147  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
148  *
149  * Description:
150  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
151  * (1) if any are enabled or false (0) if neither are enabled.  If the
152  * always_check_network policy capability is enabled, peer labeling
153  * is always considered enabled.
154  *
155  */
156 static int selinux_peerlbl_enabled(void)
157 {
158         return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
159 }
160
161 static int selinux_netcache_avc_callback(u32 event)
162 {
163         if (event == AVC_CALLBACK_RESET) {
164                 sel_netif_flush();
165                 sel_netnode_flush();
166                 sel_netport_flush();
167                 synchronize_net();
168         }
169         return 0;
170 }
171
172 /*
173  * initialise the security for the init task
174  */
175 static void cred_init_security(void)
176 {
177         struct cred *cred = (struct cred *) current->real_cred;
178         struct task_security_struct *tsec;
179
180         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
181         if (!tsec)
182                 panic("SELinux:  Failed to initialize initial task.\n");
183
184         tsec->osid = tsec->sid = SECINITSID_KERNEL;
185         cred->security = tsec;
186 }
187
188 /*
189  * get the security ID of a set of credentials
190  */
191 static inline u32 cred_sid(const struct cred *cred)
192 {
193         const struct task_security_struct *tsec;
194
195         tsec = cred->security;
196         return tsec->sid;
197 }
198
199 /*
200  * get the objective security ID of a task
201  */
202 static inline u32 task_sid(const struct task_struct *task)
203 {
204         u32 sid;
205
206         rcu_read_lock();
207         sid = cred_sid(__task_cred(task));
208         rcu_read_unlock();
209         return sid;
210 }
211
212 /*
213  * get the subjective security ID of the current task
214  */
215 static inline u32 current_sid(void)
216 {
217         const struct task_security_struct *tsec = current_security();
218
219         return tsec->sid;
220 }
221
222 /* Allocate and free functions for each kind of security blob. */
223
224 static int inode_alloc_security(struct inode *inode)
225 {
226         struct inode_security_struct *isec;
227         u32 sid = current_sid();
228
229         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
230         if (!isec)
231                 return -ENOMEM;
232
233         mutex_init(&isec->lock);
234         INIT_LIST_HEAD(&isec->list);
235         isec->inode = inode;
236         isec->sid = SECINITSID_UNLABELED;
237         isec->sclass = SECCLASS_FILE;
238         isec->task_sid = sid;
239         inode->i_security = isec;
240
241         return 0;
242 }
243
244 static void inode_free_rcu(struct rcu_head *head)
245 {
246         struct inode_security_struct *isec;
247
248         isec = container_of(head, struct inode_security_struct, rcu);
249         kmem_cache_free(sel_inode_cache, isec);
250 }
251
252 static void inode_free_security(struct inode *inode)
253 {
254         struct inode_security_struct *isec = inode->i_security;
255         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
256
257         spin_lock(&sbsec->isec_lock);
258         if (!list_empty(&isec->list))
259                 list_del_init(&isec->list);
260         spin_unlock(&sbsec->isec_lock);
261
262         /*
263          * The inode may still be referenced in a path walk and
264          * a call to selinux_inode_permission() can be made
265          * after inode_free_security() is called. Ideally, the VFS
266          * wouldn't do this, but fixing that is a much harder
267          * job. For now, simply free the i_security via RCU, and
268          * leave the current inode->i_security pointer intact.
269          * The inode will be freed after the RCU grace period too.
270          */
271         call_rcu(&isec->rcu, inode_free_rcu);
272 }
273
274 static int file_alloc_security(struct file *file)
275 {
276         struct file_security_struct *fsec;
277         u32 sid = current_sid();
278
279         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
280         if (!fsec)
281                 return -ENOMEM;
282
283         fsec->sid = sid;
284         fsec->fown_sid = sid;
285         file->f_security = fsec;
286
287         return 0;
288 }
289
290 static void file_free_security(struct file *file)
291 {
292         struct file_security_struct *fsec = file->f_security;
293         file->f_security = NULL;
294         kfree(fsec);
295 }
296
297 static int superblock_alloc_security(struct super_block *sb)
298 {
299         struct superblock_security_struct *sbsec;
300
301         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
302         if (!sbsec)
303                 return -ENOMEM;
304
305         mutex_init(&sbsec->lock);
306         INIT_LIST_HEAD(&sbsec->isec_head);
307         spin_lock_init(&sbsec->isec_lock);
308         sbsec->sb = sb;
309         sbsec->sid = SECINITSID_UNLABELED;
310         sbsec->def_sid = SECINITSID_FILE;
311         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
312         sb->s_security = sbsec;
313
314         return 0;
315 }
316
317 static void superblock_free_security(struct super_block *sb)
318 {
319         struct superblock_security_struct *sbsec = sb->s_security;
320         sb->s_security = NULL;
321         kfree(sbsec);
322 }
323
324 /* The file system's label must be initialized prior to use. */
325
326 static const char *labeling_behaviors[7] = {
327         "uses xattr",
328         "uses transition SIDs",
329         "uses task SIDs",
330         "uses genfs_contexts",
331         "not configured for labeling",
332         "uses mountpoint labeling",
333         "uses native labeling",
334 };
335
336 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
337
338 static inline int inode_doinit(struct inode *inode)
339 {
340         return inode_doinit_with_dentry(inode, NULL);
341 }
342
343 enum {
344         Opt_error = -1,
345         Opt_context = 1,
346         Opt_fscontext = 2,
347         Opt_defcontext = 3,
348         Opt_rootcontext = 4,
349         Opt_labelsupport = 5,
350         Opt_nextmntopt = 6,
351 };
352
353 #define NUM_SEL_MNT_OPTS        (Opt_nextmntopt - 1)
354
355 static const match_table_t tokens = {
356         {Opt_context, CONTEXT_STR "%s"},
357         {Opt_fscontext, FSCONTEXT_STR "%s"},
358         {Opt_defcontext, DEFCONTEXT_STR "%s"},
359         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
360         {Opt_labelsupport, LABELSUPP_STR},
361         {Opt_error, NULL},
362 };
363
364 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
365
366 static int may_context_mount_sb_relabel(u32 sid,
367                         struct superblock_security_struct *sbsec,
368                         const struct cred *cred)
369 {
370         const struct task_security_struct *tsec = cred->security;
371         int rc;
372
373         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
374                           FILESYSTEM__RELABELFROM, NULL);
375         if (rc)
376                 return rc;
377
378         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
379                           FILESYSTEM__RELABELTO, NULL);
380         return rc;
381 }
382
383 static int may_context_mount_inode_relabel(u32 sid,
384                         struct superblock_security_struct *sbsec,
385                         const struct cred *cred)
386 {
387         const struct task_security_struct *tsec = cred->security;
388         int rc;
389         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
390                           FILESYSTEM__RELABELFROM, NULL);
391         if (rc)
392                 return rc;
393
394         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
395                           FILESYSTEM__ASSOCIATE, NULL);
396         return rc;
397 }
398
399 static int selinux_is_sblabel_mnt(struct super_block *sb)
400 {
401         struct superblock_security_struct *sbsec = sb->s_security;
402
403         return sbsec->behavior == SECURITY_FS_USE_XATTR ||
404                 sbsec->behavior == SECURITY_FS_USE_TRANS ||
405                 sbsec->behavior == SECURITY_FS_USE_TASK ||
406                 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
407                 /* Special handling. Genfs but also in-core setxattr handler */
408                 !strcmp(sb->s_type->name, "sysfs") ||
409                 !strcmp(sb->s_type->name, "pstore") ||
410                 !strcmp(sb->s_type->name, "debugfs") ||
411                 !strcmp(sb->s_type->name, "rootfs");
412 }
413
414 static int sb_finish_set_opts(struct super_block *sb)
415 {
416         struct superblock_security_struct *sbsec = sb->s_security;
417         struct dentry *root = sb->s_root;
418         struct inode *root_inode = d_backing_inode(root);
419         int rc = 0;
420
421         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422                 /* Make sure that the xattr handler exists and that no
423                    error other than -ENODATA is returned by getxattr on
424                    the root directory.  -ENODATA is ok, as this may be
425                    the first boot of the SELinux kernel before we have
426                    assigned xattr values to the filesystem. */
427                 if (!root_inode->i_op->getxattr) {
428                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429                                "xattr support\n", sb->s_id, sb->s_type->name);
430                         rc = -EOPNOTSUPP;
431                         goto out;
432                 }
433                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434                 if (rc < 0 && rc != -ENODATA) {
435                         if (rc == -EOPNOTSUPP)
436                                 printk(KERN_WARNING "SELinux: (dev %s, type "
437                                        "%s) has no security xattr handler\n",
438                                        sb->s_id, sb->s_type->name);
439                         else
440                                 printk(KERN_WARNING "SELinux: (dev %s, type "
441                                        "%s) getxattr errno %d\n", sb->s_id,
442                                        sb->s_type->name, -rc);
443                         goto out;
444                 }
445         }
446
447         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449                        sb->s_id, sb->s_type->name);
450
451         sbsec->flags |= SE_SBINITIALIZED;
452         if (selinux_is_sblabel_mnt(sb))
453                 sbsec->flags |= SBLABEL_MNT;
454
455         /* Initialize the root inode. */
456         rc = inode_doinit_with_dentry(root_inode, root);
457
458         /* Initialize any other inodes associated with the superblock, e.g.
459            inodes created prior to initial policy load or inodes created
460            during get_sb by a pseudo filesystem that directly
461            populates itself. */
462         spin_lock(&sbsec->isec_lock);
463 next_inode:
464         if (!list_empty(&sbsec->isec_head)) {
465                 struct inode_security_struct *isec =
466                                 list_entry(sbsec->isec_head.next,
467                                            struct inode_security_struct, list);
468                 struct inode *inode = isec->inode;
469                 list_del_init(&isec->list);
470                 spin_unlock(&sbsec->isec_lock);
471                 inode = igrab(inode);
472                 if (inode) {
473                         if (!IS_PRIVATE(inode))
474                                 inode_doinit(inode);
475                         iput(inode);
476                 }
477                 spin_lock(&sbsec->isec_lock);
478                 goto next_inode;
479         }
480         spin_unlock(&sbsec->isec_lock);
481 out:
482         return rc;
483 }
484
485 /*
486  * This function should allow an FS to ask what it's mount security
487  * options were so it can use those later for submounts, displaying
488  * mount options, or whatever.
489  */
490 static int selinux_get_mnt_opts(const struct super_block *sb,
491                                 struct security_mnt_opts *opts)
492 {
493         int rc = 0, i;
494         struct superblock_security_struct *sbsec = sb->s_security;
495         char *context = NULL;
496         u32 len;
497         char tmp;
498
499         security_init_mnt_opts(opts);
500
501         if (!(sbsec->flags & SE_SBINITIALIZED))
502                 return -EINVAL;
503
504         if (!ss_initialized)
505                 return -EINVAL;
506
507         /* make sure we always check enough bits to cover the mask */
508         BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
509
510         tmp = sbsec->flags & SE_MNTMASK;
511         /* count the number of mount options for this sb */
512         for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
513                 if (tmp & 0x01)
514                         opts->num_mnt_opts++;
515                 tmp >>= 1;
516         }
517         /* Check if the Label support flag is set */
518         if (sbsec->flags & SBLABEL_MNT)
519                 opts->num_mnt_opts++;
520
521         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
522         if (!opts->mnt_opts) {
523                 rc = -ENOMEM;
524                 goto out_free;
525         }
526
527         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
528         if (!opts->mnt_opts_flags) {
529                 rc = -ENOMEM;
530                 goto out_free;
531         }
532
533         i = 0;
534         if (sbsec->flags & FSCONTEXT_MNT) {
535                 rc = security_sid_to_context(sbsec->sid, &context, &len);
536                 if (rc)
537                         goto out_free;
538                 opts->mnt_opts[i] = context;
539                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
540         }
541         if (sbsec->flags & CONTEXT_MNT) {
542                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
543                 if (rc)
544                         goto out_free;
545                 opts->mnt_opts[i] = context;
546                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
547         }
548         if (sbsec->flags & DEFCONTEXT_MNT) {
549                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
550                 if (rc)
551                         goto out_free;
552                 opts->mnt_opts[i] = context;
553                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
554         }
555         if (sbsec->flags & ROOTCONTEXT_MNT) {
556                 struct inode *root = d_backing_inode(sbsec->sb->s_root);
557                 struct inode_security_struct *isec = root->i_security;
558
559                 rc = security_sid_to_context(isec->sid, &context, &len);
560                 if (rc)
561                         goto out_free;
562                 opts->mnt_opts[i] = context;
563                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
564         }
565         if (sbsec->flags & SBLABEL_MNT) {
566                 opts->mnt_opts[i] = NULL;
567                 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
568         }
569
570         BUG_ON(i != opts->num_mnt_opts);
571
572         return 0;
573
574 out_free:
575         security_free_mnt_opts(opts);
576         return rc;
577 }
578
579 static int bad_option(struct superblock_security_struct *sbsec, char flag,
580                       u32 old_sid, u32 new_sid)
581 {
582         char mnt_flags = sbsec->flags & SE_MNTMASK;
583
584         /* check if the old mount command had the same options */
585         if (sbsec->flags & SE_SBINITIALIZED)
586                 if (!(sbsec->flags & flag) ||
587                     (old_sid != new_sid))
588                         return 1;
589
590         /* check if we were passed the same options twice,
591          * aka someone passed context=a,context=b
592          */
593         if (!(sbsec->flags & SE_SBINITIALIZED))
594                 if (mnt_flags & flag)
595                         return 1;
596         return 0;
597 }
598
599 /*
600  * Allow filesystems with binary mount data to explicitly set mount point
601  * labeling information.
602  */
603 static int selinux_set_mnt_opts(struct super_block *sb,
604                                 struct security_mnt_opts *opts,
605                                 unsigned long kern_flags,
606                                 unsigned long *set_kern_flags)
607 {
608         const struct cred *cred = current_cred();
609         int rc = 0, i;
610         struct superblock_security_struct *sbsec = sb->s_security;
611         const char *name = sb->s_type->name;
612         struct inode *inode = d_backing_inode(sbsec->sb->s_root);
613         struct inode_security_struct *root_isec = inode->i_security;
614         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
615         u32 defcontext_sid = 0;
616         char **mount_options = opts->mnt_opts;
617         int *flags = opts->mnt_opts_flags;
618         int num_opts = opts->num_mnt_opts;
619
620         mutex_lock(&sbsec->lock);
621
622         if (!ss_initialized) {
623                 if (!num_opts) {
624                         /* Defer initialization until selinux_complete_init,
625                            after the initial policy is loaded and the security
626                            server is ready to handle calls. */
627                         goto out;
628                 }
629                 rc = -EINVAL;
630                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
631                         "before the security server is initialized\n");
632                 goto out;
633         }
634         if (kern_flags && !set_kern_flags) {
635                 /* Specifying internal flags without providing a place to
636                  * place the results is not allowed */
637                 rc = -EINVAL;
638                 goto out;
639         }
640
641         /*
642          * Binary mount data FS will come through this function twice.  Once
643          * from an explicit call and once from the generic calls from the vfs.
644          * Since the generic VFS calls will not contain any security mount data
645          * we need to skip the double mount verification.
646          *
647          * This does open a hole in which we will not notice if the first
648          * mount using this sb set explict options and a second mount using
649          * this sb does not set any security options.  (The first options
650          * will be used for both mounts)
651          */
652         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
653             && (num_opts == 0))
654                 goto out;
655
656         /*
657          * parse the mount options, check if they are valid sids.
658          * also check if someone is trying to mount the same sb more
659          * than once with different security options.
660          */
661         for (i = 0; i < num_opts; i++) {
662                 u32 sid;
663
664                 if (flags[i] == SBLABEL_MNT)
665                         continue;
666                 rc = security_context_to_sid(mount_options[i],
667                                              strlen(mount_options[i]), &sid, GFP_KERNEL);
668                 if (rc) {
669                         printk(KERN_WARNING "SELinux: security_context_to_sid"
670                                "(%s) failed for (dev %s, type %s) errno=%d\n",
671                                mount_options[i], sb->s_id, name, rc);
672                         goto out;
673                 }
674                 switch (flags[i]) {
675                 case FSCONTEXT_MNT:
676                         fscontext_sid = sid;
677
678                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
679                                         fscontext_sid))
680                                 goto out_double_mount;
681
682                         sbsec->flags |= FSCONTEXT_MNT;
683                         break;
684                 case CONTEXT_MNT:
685                         context_sid = sid;
686
687                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
688                                         context_sid))
689                                 goto out_double_mount;
690
691                         sbsec->flags |= CONTEXT_MNT;
692                         break;
693                 case ROOTCONTEXT_MNT:
694                         rootcontext_sid = sid;
695
696                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
697                                         rootcontext_sid))
698                                 goto out_double_mount;
699
700                         sbsec->flags |= ROOTCONTEXT_MNT;
701
702                         break;
703                 case DEFCONTEXT_MNT:
704                         defcontext_sid = sid;
705
706                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
707                                         defcontext_sid))
708                                 goto out_double_mount;
709
710                         sbsec->flags |= DEFCONTEXT_MNT;
711
712                         break;
713                 default:
714                         rc = -EINVAL;
715                         goto out;
716                 }
717         }
718
719         if (sbsec->flags & SE_SBINITIALIZED) {
720                 /* previously mounted with options, but not on this attempt? */
721                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
722                         goto out_double_mount;
723                 rc = 0;
724                 goto out;
725         }
726
727         if (strcmp(sb->s_type->name, "proc") == 0)
728                 sbsec->flags |= SE_SBPROC;
729
730         if (!sbsec->behavior) {
731                 /*
732                  * Determine the labeling behavior to use for this
733                  * filesystem type.
734                  */
735                 rc = security_fs_use(sb);
736                 if (rc) {
737                         printk(KERN_WARNING
738                                 "%s: security_fs_use(%s) returned %d\n",
739                                         __func__, sb->s_type->name, rc);
740                         goto out;
741                 }
742         }
743         /* sets the context of the superblock for the fs being mounted. */
744         if (fscontext_sid) {
745                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
746                 if (rc)
747                         goto out;
748
749                 sbsec->sid = fscontext_sid;
750         }
751
752         /*
753          * Switch to using mount point labeling behavior.
754          * sets the label used on all file below the mountpoint, and will set
755          * the superblock context if not already set.
756          */
757         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
758                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
759                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
760         }
761
762         if (context_sid) {
763                 if (!fscontext_sid) {
764                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
765                                                           cred);
766                         if (rc)
767                                 goto out;
768                         sbsec->sid = context_sid;
769                 } else {
770                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
771                                                              cred);
772                         if (rc)
773                                 goto out;
774                 }
775                 if (!rootcontext_sid)
776                         rootcontext_sid = context_sid;
777
778                 sbsec->mntpoint_sid = context_sid;
779                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
780         }
781
782         if (rootcontext_sid) {
783                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
784                                                      cred);
785                 if (rc)
786                         goto out;
787
788                 root_isec->sid = rootcontext_sid;
789                 root_isec->initialized = 1;
790         }
791
792         if (defcontext_sid) {
793                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
794                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
795                         rc = -EINVAL;
796                         printk(KERN_WARNING "SELinux: defcontext option is "
797                                "invalid for this filesystem type\n");
798                         goto out;
799                 }
800
801                 if (defcontext_sid != sbsec->def_sid) {
802                         rc = may_context_mount_inode_relabel(defcontext_sid,
803                                                              sbsec, cred);
804                         if (rc)
805                                 goto out;
806                 }
807
808                 sbsec->def_sid = defcontext_sid;
809         }
810
811         rc = sb_finish_set_opts(sb);
812 out:
813         mutex_unlock(&sbsec->lock);
814         return rc;
815 out_double_mount:
816         rc = -EINVAL;
817         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
818                "security settings for (dev %s, type %s)\n", sb->s_id, name);
819         goto out;
820 }
821
822 static int selinux_cmp_sb_context(const struct super_block *oldsb,
823                                     const struct super_block *newsb)
824 {
825         struct superblock_security_struct *old = oldsb->s_security;
826         struct superblock_security_struct *new = newsb->s_security;
827         char oldflags = old->flags & SE_MNTMASK;
828         char newflags = new->flags & SE_MNTMASK;
829
830         if (oldflags != newflags)
831                 goto mismatch;
832         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
833                 goto mismatch;
834         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
835                 goto mismatch;
836         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
837                 goto mismatch;
838         if (oldflags & ROOTCONTEXT_MNT) {
839                 struct inode_security_struct *oldroot = d_backing_inode(oldsb->s_root)->i_security;
840                 struct inode_security_struct *newroot = d_backing_inode(newsb->s_root)->i_security;
841                 if (oldroot->sid != newroot->sid)
842                         goto mismatch;
843         }
844         return 0;
845 mismatch:
846         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
847                             "different security settings for (dev %s, "
848                             "type %s)\n", newsb->s_id, newsb->s_type->name);
849         return -EBUSY;
850 }
851
852 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
853                                         struct super_block *newsb)
854 {
855         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
856         struct superblock_security_struct *newsbsec = newsb->s_security;
857
858         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
859         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
860         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
861
862         /*
863          * if the parent was able to be mounted it clearly had no special lsm
864          * mount options.  thus we can safely deal with this superblock later
865          */
866         if (!ss_initialized)
867                 return 0;
868
869         /* how can we clone if the old one wasn't set up?? */
870         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
871
872         /* if fs is reusing a sb, make sure that the contexts match */
873         if (newsbsec->flags & SE_SBINITIALIZED)
874                 return selinux_cmp_sb_context(oldsb, newsb);
875
876         mutex_lock(&newsbsec->lock);
877
878         newsbsec->flags = oldsbsec->flags;
879
880         newsbsec->sid = oldsbsec->sid;
881         newsbsec->def_sid = oldsbsec->def_sid;
882         newsbsec->behavior = oldsbsec->behavior;
883
884         if (set_context) {
885                 u32 sid = oldsbsec->mntpoint_sid;
886
887                 if (!set_fscontext)
888                         newsbsec->sid = sid;
889                 if (!set_rootcontext) {
890                         struct inode *newinode = d_backing_inode(newsb->s_root);
891                         struct inode_security_struct *newisec = newinode->i_security;
892                         newisec->sid = sid;
893                 }
894                 newsbsec->mntpoint_sid = sid;
895         }
896         if (set_rootcontext) {
897                 const struct inode *oldinode = d_backing_inode(oldsb->s_root);
898                 const struct inode_security_struct *oldisec = oldinode->i_security;
899                 struct inode *newinode = d_backing_inode(newsb->s_root);
900                 struct inode_security_struct *newisec = newinode->i_security;
901
902                 newisec->sid = oldisec->sid;
903         }
904
905         sb_finish_set_opts(newsb);
906         mutex_unlock(&newsbsec->lock);
907         return 0;
908 }
909
910 static int selinux_parse_opts_str(char *options,
911                                   struct security_mnt_opts *opts)
912 {
913         char *p;
914         char *context = NULL, *defcontext = NULL;
915         char *fscontext = NULL, *rootcontext = NULL;
916         int rc, num_mnt_opts = 0;
917
918         opts->num_mnt_opts = 0;
919
920         /* Standard string-based options. */
921         while ((p = strsep(&options, "|")) != NULL) {
922                 int token;
923                 substring_t args[MAX_OPT_ARGS];
924
925                 if (!*p)
926                         continue;
927
928                 token = match_token(p, tokens, args);
929
930                 switch (token) {
931                 case Opt_context:
932                         if (context || defcontext) {
933                                 rc = -EINVAL;
934                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
935                                 goto out_err;
936                         }
937                         context = match_strdup(&args[0]);
938                         if (!context) {
939                                 rc = -ENOMEM;
940                                 goto out_err;
941                         }
942                         break;
943
944                 case Opt_fscontext:
945                         if (fscontext) {
946                                 rc = -EINVAL;
947                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
948                                 goto out_err;
949                         }
950                         fscontext = match_strdup(&args[0]);
951                         if (!fscontext) {
952                                 rc = -ENOMEM;
953                                 goto out_err;
954                         }
955                         break;
956
957                 case Opt_rootcontext:
958                         if (rootcontext) {
959                                 rc = -EINVAL;
960                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
961                                 goto out_err;
962                         }
963                         rootcontext = match_strdup(&args[0]);
964                         if (!rootcontext) {
965                                 rc = -ENOMEM;
966                                 goto out_err;
967                         }
968                         break;
969
970                 case Opt_defcontext:
971                         if (context || defcontext) {
972                                 rc = -EINVAL;
973                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
974                                 goto out_err;
975                         }
976                         defcontext = match_strdup(&args[0]);
977                         if (!defcontext) {
978                                 rc = -ENOMEM;
979                                 goto out_err;
980                         }
981                         break;
982                 case Opt_labelsupport:
983                         break;
984                 default:
985                         rc = -EINVAL;
986                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
987                         goto out_err;
988
989                 }
990         }
991
992         rc = -ENOMEM;
993         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
994         if (!opts->mnt_opts)
995                 goto out_err;
996
997         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
998         if (!opts->mnt_opts_flags) {
999                 kfree(opts->mnt_opts);
1000                 goto out_err;
1001         }
1002
1003         if (fscontext) {
1004                 opts->mnt_opts[num_mnt_opts] = fscontext;
1005                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1006         }
1007         if (context) {
1008                 opts->mnt_opts[num_mnt_opts] = context;
1009                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1010         }
1011         if (rootcontext) {
1012                 opts->mnt_opts[num_mnt_opts] = rootcontext;
1013                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1014         }
1015         if (defcontext) {
1016                 opts->mnt_opts[num_mnt_opts] = defcontext;
1017                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1018         }
1019
1020         opts->num_mnt_opts = num_mnt_opts;
1021         return 0;
1022
1023 out_err:
1024         kfree(context);
1025         kfree(defcontext);
1026         kfree(fscontext);
1027         kfree(rootcontext);
1028         return rc;
1029 }
1030 /*
1031  * string mount options parsing and call set the sbsec
1032  */
1033 static int superblock_doinit(struct super_block *sb, void *data)
1034 {
1035         int rc = 0;
1036         char *options = data;
1037         struct security_mnt_opts opts;
1038
1039         security_init_mnt_opts(&opts);
1040
1041         if (!data)
1042                 goto out;
1043
1044         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1045
1046         rc = selinux_parse_opts_str(options, &opts);
1047         if (rc)
1048                 goto out_err;
1049
1050 out:
1051         rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1052
1053 out_err:
1054         security_free_mnt_opts(&opts);
1055         return rc;
1056 }
1057
1058 static void selinux_write_opts(struct seq_file *m,
1059                                struct security_mnt_opts *opts)
1060 {
1061         int i;
1062         char *prefix;
1063
1064         for (i = 0; i < opts->num_mnt_opts; i++) {
1065                 char *has_comma;
1066
1067                 if (opts->mnt_opts[i])
1068                         has_comma = strchr(opts->mnt_opts[i], ',');
1069                 else
1070                         has_comma = NULL;
1071
1072                 switch (opts->mnt_opts_flags[i]) {
1073                 case CONTEXT_MNT:
1074                         prefix = CONTEXT_STR;
1075                         break;
1076                 case FSCONTEXT_MNT:
1077                         prefix = FSCONTEXT_STR;
1078                         break;
1079                 case ROOTCONTEXT_MNT:
1080                         prefix = ROOTCONTEXT_STR;
1081                         break;
1082                 case DEFCONTEXT_MNT:
1083                         prefix = DEFCONTEXT_STR;
1084                         break;
1085                 case SBLABEL_MNT:
1086                         seq_putc(m, ',');
1087                         seq_puts(m, LABELSUPP_STR);
1088                         continue;
1089                 default:
1090                         BUG();
1091                         return;
1092                 };
1093                 /* we need a comma before each option */
1094                 seq_putc(m, ',');
1095                 seq_puts(m, prefix);
1096                 if (has_comma)
1097                         seq_putc(m, '\"');
1098                 seq_puts(m, opts->mnt_opts[i]);
1099                 if (has_comma)
1100                         seq_putc(m, '\"');
1101         }
1102 }
1103
1104 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1105 {
1106         struct security_mnt_opts opts;
1107         int rc;
1108
1109         rc = selinux_get_mnt_opts(sb, &opts);
1110         if (rc) {
1111                 /* before policy load we may get EINVAL, don't show anything */
1112                 if (rc == -EINVAL)
1113                         rc = 0;
1114                 return rc;
1115         }
1116
1117         selinux_write_opts(m, &opts);
1118
1119         security_free_mnt_opts(&opts);
1120
1121         return rc;
1122 }
1123
1124 static inline u16 inode_mode_to_security_class(umode_t mode)
1125 {
1126         switch (mode & S_IFMT) {
1127         case S_IFSOCK:
1128                 return SECCLASS_SOCK_FILE;
1129         case S_IFLNK:
1130                 return SECCLASS_LNK_FILE;
1131         case S_IFREG:
1132                 return SECCLASS_FILE;
1133         case S_IFBLK:
1134                 return SECCLASS_BLK_FILE;
1135         case S_IFDIR:
1136                 return SECCLASS_DIR;
1137         case S_IFCHR:
1138                 return SECCLASS_CHR_FILE;
1139         case S_IFIFO:
1140                 return SECCLASS_FIFO_FILE;
1141
1142         }
1143
1144         return SECCLASS_FILE;
1145 }
1146
1147 static inline int default_protocol_stream(int protocol)
1148 {
1149         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1150 }
1151
1152 static inline int default_protocol_dgram(int protocol)
1153 {
1154         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1155 }
1156
1157 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1158 {
1159         switch (family) {
1160         case PF_UNIX:
1161                 switch (type) {
1162                 case SOCK_STREAM:
1163                 case SOCK_SEQPACKET:
1164                         return SECCLASS_UNIX_STREAM_SOCKET;
1165                 case SOCK_DGRAM:
1166                         return SECCLASS_UNIX_DGRAM_SOCKET;
1167                 }
1168                 break;
1169         case PF_INET:
1170         case PF_INET6:
1171                 switch (type) {
1172                 case SOCK_STREAM:
1173                         if (default_protocol_stream(protocol))
1174                                 return SECCLASS_TCP_SOCKET;
1175                         else
1176                                 return SECCLASS_RAWIP_SOCKET;
1177                 case SOCK_DGRAM:
1178                         if (default_protocol_dgram(protocol))
1179                                 return SECCLASS_UDP_SOCKET;
1180                         else
1181                                 return SECCLASS_RAWIP_SOCKET;
1182                 case SOCK_DCCP:
1183                         return SECCLASS_DCCP_SOCKET;
1184                 default:
1185                         return SECCLASS_RAWIP_SOCKET;
1186                 }
1187                 break;
1188         case PF_NETLINK:
1189                 switch (protocol) {
1190                 case NETLINK_ROUTE:
1191                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1192                 case NETLINK_FIREWALL:
1193                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1194                 case NETLINK_SOCK_DIAG:
1195                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1196                 case NETLINK_NFLOG:
1197                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1198                 case NETLINK_XFRM:
1199                         return SECCLASS_NETLINK_XFRM_SOCKET;
1200                 case NETLINK_SELINUX:
1201                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1202                 case NETLINK_AUDIT:
1203                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1204                 case NETLINK_IP6_FW:
1205                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1206                 case NETLINK_DNRTMSG:
1207                         return SECCLASS_NETLINK_DNRT_SOCKET;
1208                 case NETLINK_KOBJECT_UEVENT:
1209                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1210                 default:
1211                         return SECCLASS_NETLINK_SOCKET;
1212                 }
1213         case PF_PACKET:
1214                 return SECCLASS_PACKET_SOCKET;
1215         case PF_KEY:
1216                 return SECCLASS_KEY_SOCKET;
1217         case PF_APPLETALK:
1218                 return SECCLASS_APPLETALK_SOCKET;
1219         }
1220
1221         return SECCLASS_SOCKET;
1222 }
1223
1224 #ifdef CONFIG_PROC_FS
1225 static int selinux_proc_get_sid(struct dentry *dentry,
1226                                 u16 tclass,
1227                                 u32 *sid)
1228 {
1229         int rc;
1230         char *buffer, *path;
1231
1232         buffer = (char *)__get_free_page(GFP_KERNEL);
1233         if (!buffer)
1234                 return -ENOMEM;
1235
1236         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1237         if (IS_ERR(path))
1238                 rc = PTR_ERR(path);
1239         else {
1240                 /* each process gets a /proc/PID/ entry. Strip off the
1241                  * PID part to get a valid selinux labeling.
1242                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1243                 while (path[1] >= '0' && path[1] <= '9') {
1244                         path[1] = '/';
1245                         path++;
1246                 }
1247                 rc = security_genfs_sid("proc", path, tclass, sid);
1248         }
1249         free_page((unsigned long)buffer);
1250         return rc;
1251 }
1252 #else
1253 static int selinux_proc_get_sid(struct dentry *dentry,
1254                                 u16 tclass,
1255                                 u32 *sid)
1256 {
1257         return -EINVAL;
1258 }
1259 #endif
1260
1261 /* The inode's security attributes must be initialized before first use. */
1262 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1263 {
1264         struct superblock_security_struct *sbsec = NULL;
1265         struct inode_security_struct *isec = inode->i_security;
1266         u32 sid;
1267         struct dentry *dentry;
1268 #define INITCONTEXTLEN 255
1269         char *context = NULL;
1270         unsigned len = 0;
1271         int rc = 0;
1272
1273         if (isec->initialized)
1274                 goto out;
1275
1276         mutex_lock(&isec->lock);
1277         if (isec->initialized)
1278                 goto out_unlock;
1279
1280         sbsec = inode->i_sb->s_security;
1281         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1282                 /* Defer initialization until selinux_complete_init,
1283                    after the initial policy is loaded and the security
1284                    server is ready to handle calls. */
1285                 spin_lock(&sbsec->isec_lock);
1286                 if (list_empty(&isec->list))
1287                         list_add(&isec->list, &sbsec->isec_head);
1288                 spin_unlock(&sbsec->isec_lock);
1289                 goto out_unlock;
1290         }
1291
1292         switch (sbsec->behavior) {
1293         case SECURITY_FS_USE_NATIVE:
1294                 break;
1295         case SECURITY_FS_USE_XATTR:
1296                 if (!inode->i_op->getxattr) {
1297                         isec->sid = sbsec->def_sid;
1298                         break;
1299                 }
1300
1301                 /* Need a dentry, since the xattr API requires one.
1302                    Life would be simpler if we could just pass the inode. */
1303                 if (opt_dentry) {
1304                         /* Called from d_instantiate or d_splice_alias. */
1305                         dentry = dget(opt_dentry);
1306                 } else {
1307                         /* Called from selinux_complete_init, try to find a dentry. */
1308                         dentry = d_find_alias(inode);
1309                 }
1310                 if (!dentry) {
1311                         /*
1312                          * this is can be hit on boot when a file is accessed
1313                          * before the policy is loaded.  When we load policy we
1314                          * may find inodes that have no dentry on the
1315                          * sbsec->isec_head list.  No reason to complain as these
1316                          * will get fixed up the next time we go through
1317                          * inode_doinit with a dentry, before these inodes could
1318                          * be used again by userspace.
1319                          */
1320                         goto out_unlock;
1321                 }
1322
1323                 len = INITCONTEXTLEN;
1324                 context = kmalloc(len+1, GFP_NOFS);
1325                 if (!context) {
1326                         rc = -ENOMEM;
1327                         dput(dentry);
1328                         goto out_unlock;
1329                 }
1330                 context[len] = '\0';
1331                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1332                                            context, len);
1333                 if (rc == -ERANGE) {
1334                         kfree(context);
1335
1336                         /* Need a larger buffer.  Query for the right size. */
1337                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1338                                                    NULL, 0);
1339                         if (rc < 0) {
1340                                 dput(dentry);
1341                                 goto out_unlock;
1342                         }
1343                         len = rc;
1344                         context = kmalloc(len+1, GFP_NOFS);
1345                         if (!context) {
1346                                 rc = -ENOMEM;
1347                                 dput(dentry);
1348                                 goto out_unlock;
1349                         }
1350                         context[len] = '\0';
1351                         rc = inode->i_op->getxattr(dentry,
1352                                                    XATTR_NAME_SELINUX,
1353                                                    context, len);
1354                 }
1355                 dput(dentry);
1356                 if (rc < 0) {
1357                         if (rc != -ENODATA) {
1358                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1359                                        "%d for dev=%s ino=%ld\n", __func__,
1360                                        -rc, inode->i_sb->s_id, inode->i_ino);
1361                                 kfree(context);
1362                                 goto out_unlock;
1363                         }
1364                         /* Map ENODATA to the default file SID */
1365                         sid = sbsec->def_sid;
1366                         rc = 0;
1367                 } else {
1368                         rc = security_context_to_sid_default(context, rc, &sid,
1369                                                              sbsec->def_sid,
1370                                                              GFP_NOFS);
1371                         if (rc) {
1372                                 char *dev = inode->i_sb->s_id;
1373                                 unsigned long ino = inode->i_ino;
1374
1375                                 if (rc == -EINVAL) {
1376                                         if (printk_ratelimit())
1377                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1378                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1379                                                         "filesystem in question.\n", ino, dev, context);
1380                                 } else {
1381                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1382                                                "returned %d for dev=%s ino=%ld\n",
1383                                                __func__, context, -rc, dev, ino);
1384                                 }
1385                                 kfree(context);
1386                                 /* Leave with the unlabeled SID */
1387                                 rc = 0;
1388                                 break;
1389                         }
1390                 }
1391                 kfree(context);
1392                 isec->sid = sid;
1393                 break;
1394         case SECURITY_FS_USE_TASK:
1395                 isec->sid = isec->task_sid;
1396                 break;
1397         case SECURITY_FS_USE_TRANS:
1398                 /* Default to the fs SID. */
1399                 isec->sid = sbsec->sid;
1400
1401                 /* Try to obtain a transition SID. */
1402                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1403                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1404                                              isec->sclass, NULL, &sid);
1405                 if (rc)
1406                         goto out_unlock;
1407                 isec->sid = sid;
1408                 break;
1409         case SECURITY_FS_USE_MNTPOINT:
1410                 isec->sid = sbsec->mntpoint_sid;
1411                 break;
1412         default:
1413                 /* Default to the fs superblock SID. */
1414                 isec->sid = sbsec->sid;
1415
1416                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1417                         /* We must have a dentry to determine the label on
1418                          * procfs inodes */
1419                         if (opt_dentry)
1420                                 /* Called from d_instantiate or
1421                                  * d_splice_alias. */
1422                                 dentry = dget(opt_dentry);
1423                         else
1424                                 /* Called from selinux_complete_init, try to
1425                                  * find a dentry. */
1426                                 dentry = d_find_alias(inode);
1427                         /*
1428                          * This can be hit on boot when a file is accessed
1429                          * before the policy is loaded.  When we load policy we
1430                          * may find inodes that have no dentry on the
1431                          * sbsec->isec_head list.  No reason to complain as
1432                          * these will get fixed up the next time we go through
1433                          * inode_doinit() with a dentry, before these inodes
1434                          * could be used again by userspace.
1435                          */
1436                         if (!dentry)
1437                                 goto out_unlock;
1438                         isec->sclass = inode_mode_to_security_class(inode->i_mode);
1439                         rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1440                         dput(dentry);
1441                         if (rc)
1442                                 goto out_unlock;
1443                         isec->sid = sid;
1444                 }
1445                 break;
1446         }
1447
1448         isec->initialized = 1;
1449
1450 out_unlock:
1451         mutex_unlock(&isec->lock);
1452 out:
1453         if (isec->sclass == SECCLASS_FILE)
1454                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1455         return rc;
1456 }
1457
1458 /* Convert a Linux signal to an access vector. */
1459 static inline u32 signal_to_av(int sig)
1460 {
1461         u32 perm = 0;
1462
1463         switch (sig) {
1464         case SIGCHLD:
1465                 /* Commonly granted from child to parent. */
1466                 perm = PROCESS__SIGCHLD;
1467                 break;
1468         case SIGKILL:
1469                 /* Cannot be caught or ignored */
1470                 perm = PROCESS__SIGKILL;
1471                 break;
1472         case SIGSTOP:
1473                 /* Cannot be caught or ignored */
1474                 perm = PROCESS__SIGSTOP;
1475                 break;
1476         default:
1477                 /* All other signals. */
1478                 perm = PROCESS__SIGNAL;
1479                 break;
1480         }
1481
1482         return perm;
1483 }
1484
1485 /*
1486  * Check permission between a pair of credentials
1487  * fork check, ptrace check, etc.
1488  */
1489 static int cred_has_perm(const struct cred *actor,
1490                          const struct cred *target,
1491                          u32 perms)
1492 {
1493         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1494
1495         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1496 }
1497
1498 /*
1499  * Check permission between a pair of tasks, e.g. signal checks,
1500  * fork check, ptrace check, etc.
1501  * tsk1 is the actor and tsk2 is the target
1502  * - this uses the default subjective creds of tsk1
1503  */
1504 static int task_has_perm(const struct task_struct *tsk1,
1505                          const struct task_struct *tsk2,
1506                          u32 perms)
1507 {
1508         const struct task_security_struct *__tsec1, *__tsec2;
1509         u32 sid1, sid2;
1510
1511         rcu_read_lock();
1512         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1513         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1514         rcu_read_unlock();
1515         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1516 }
1517
1518 /*
1519  * Check permission between current and another task, e.g. signal checks,
1520  * fork check, ptrace check, etc.
1521  * current is the actor and tsk2 is the target
1522  * - this uses current's subjective creds
1523  */
1524 static int current_has_perm(const struct task_struct *tsk,
1525                             u32 perms)
1526 {
1527         u32 sid, tsid;
1528
1529         sid = current_sid();
1530         tsid = task_sid(tsk);
1531         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1532 }
1533
1534 #if CAP_LAST_CAP > 63
1535 #error Fix SELinux to handle capabilities > 63.
1536 #endif
1537
1538 /* Check whether a task is allowed to use a capability. */
1539 static int cred_has_capability(const struct cred *cred,
1540                                int cap, int audit)
1541 {
1542         struct common_audit_data ad;
1543         struct av_decision avd;
1544         u16 sclass;
1545         u32 sid = cred_sid(cred);
1546         u32 av = CAP_TO_MASK(cap);
1547         int rc;
1548
1549         ad.type = LSM_AUDIT_DATA_CAP;
1550         ad.u.cap = cap;
1551
1552         switch (CAP_TO_INDEX(cap)) {
1553         case 0:
1554                 sclass = SECCLASS_CAPABILITY;
1555                 break;
1556         case 1:
1557                 sclass = SECCLASS_CAPABILITY2;
1558                 break;
1559         default:
1560                 printk(KERN_ERR
1561                        "SELinux:  out of range capability %d\n", cap);
1562                 BUG();
1563                 return -EINVAL;
1564         }
1565
1566         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1567         if (audit == SECURITY_CAP_AUDIT) {
1568                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1569                 if (rc2)
1570                         return rc2;
1571         }
1572         return rc;
1573 }
1574
1575 /* Check whether a task is allowed to use a system operation. */
1576 static int task_has_system(struct task_struct *tsk,
1577                            u32 perms)
1578 {
1579         u32 sid = task_sid(tsk);
1580
1581         return avc_has_perm(sid, SECINITSID_KERNEL,
1582                             SECCLASS_SYSTEM, perms, NULL);
1583 }
1584
1585 /* Check whether a task has a particular permission to an inode.
1586    The 'adp' parameter is optional and allows other audit
1587    data to be passed (e.g. the dentry). */
1588 static int inode_has_perm(const struct cred *cred,
1589                           struct inode *inode,
1590                           u32 perms,
1591                           struct common_audit_data *adp)
1592 {
1593         struct inode_security_struct *isec;
1594         u32 sid;
1595
1596         validate_creds(cred);
1597
1598         if (unlikely(IS_PRIVATE(inode)))
1599                 return 0;
1600
1601         sid = cred_sid(cred);
1602         isec = inode->i_security;
1603
1604         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1605 }
1606
1607 /* Same as inode_has_perm, but pass explicit audit data containing
1608    the dentry to help the auditing code to more easily generate the
1609    pathname if needed. */
1610 static inline int dentry_has_perm(const struct cred *cred,
1611                                   struct dentry *dentry,
1612                                   u32 av)
1613 {
1614         struct inode *inode = d_backing_inode(dentry);
1615         struct common_audit_data ad;
1616
1617         ad.type = LSM_AUDIT_DATA_DENTRY;
1618         ad.u.dentry = dentry;
1619         return inode_has_perm(cred, inode, av, &ad);
1620 }
1621
1622 /* Same as inode_has_perm, but pass explicit audit data containing
1623    the path to help the auditing code to more easily generate the
1624    pathname if needed. */
1625 static inline int path_has_perm(const struct cred *cred,
1626                                 const struct path *path,
1627                                 u32 av)
1628 {
1629         struct inode *inode = d_backing_inode(path->dentry);
1630         struct common_audit_data ad;
1631
1632         ad.type = LSM_AUDIT_DATA_PATH;
1633         ad.u.path = *path;
1634         return inode_has_perm(cred, inode, av, &ad);
1635 }
1636
1637 /* Same as path_has_perm, but uses the inode from the file struct. */
1638 static inline int file_path_has_perm(const struct cred *cred,
1639                                      struct file *file,
1640                                      u32 av)
1641 {
1642         struct common_audit_data ad;
1643
1644         ad.type = LSM_AUDIT_DATA_PATH;
1645         ad.u.path = file->f_path;
1646         return inode_has_perm(cred, file_inode(file), av, &ad);
1647 }
1648
1649 /* Check whether a task can use an open file descriptor to
1650    access an inode in a given way.  Check access to the
1651    descriptor itself, and then use dentry_has_perm to
1652    check a particular permission to the file.
1653    Access to the descriptor is implicitly granted if it
1654    has the same SID as the process.  If av is zero, then
1655    access to the file is not checked, e.g. for cases
1656    where only the descriptor is affected like seek. */
1657 static int file_has_perm(const struct cred *cred,
1658                          struct file *file,
1659                          u32 av)
1660 {
1661         struct file_security_struct *fsec = file->f_security;
1662         struct inode *inode = file_inode(file);
1663         struct common_audit_data ad;
1664         u32 sid = cred_sid(cred);
1665         int rc;
1666
1667         ad.type = LSM_AUDIT_DATA_PATH;
1668         ad.u.path = file->f_path;
1669
1670         if (sid != fsec->sid) {
1671                 rc = avc_has_perm(sid, fsec->sid,
1672                                   SECCLASS_FD,
1673                                   FD__USE,
1674                                   &ad);
1675                 if (rc)
1676                         goto out;
1677         }
1678
1679         /* av is zero if only checking access to the descriptor. */
1680         rc = 0;
1681         if (av)
1682                 rc = inode_has_perm(cred, inode, av, &ad);
1683
1684 out:
1685         return rc;
1686 }
1687
1688 /* Check whether a task can create a file. */
1689 static int may_create(struct inode *dir,
1690                       struct dentry *dentry,
1691                       u16 tclass)
1692 {
1693         const struct task_security_struct *tsec = current_security();
1694         struct inode_security_struct *dsec;
1695         struct superblock_security_struct *sbsec;
1696         u32 sid, newsid;
1697         struct common_audit_data ad;
1698         int rc;
1699
1700         dsec = dir->i_security;
1701         sbsec = dir->i_sb->s_security;
1702
1703         sid = tsec->sid;
1704         newsid = tsec->create_sid;
1705
1706         ad.type = LSM_AUDIT_DATA_DENTRY;
1707         ad.u.dentry = dentry;
1708
1709         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1710                           DIR__ADD_NAME | DIR__SEARCH,
1711                           &ad);
1712         if (rc)
1713                 return rc;
1714
1715         if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1716                 rc = security_transition_sid(sid, dsec->sid, tclass,
1717                                              &dentry->d_name, &newsid);
1718                 if (rc)
1719                         return rc;
1720         }
1721
1722         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1723         if (rc)
1724                 return rc;
1725
1726         return avc_has_perm(newsid, sbsec->sid,
1727                             SECCLASS_FILESYSTEM,
1728                             FILESYSTEM__ASSOCIATE, &ad);
1729 }
1730
1731 /* Check whether a task can create a key. */
1732 static int may_create_key(u32 ksid,
1733                           struct task_struct *ctx)
1734 {
1735         u32 sid = task_sid(ctx);
1736
1737         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1738 }
1739
1740 #define MAY_LINK        0
1741 #define MAY_UNLINK      1
1742 #define MAY_RMDIR       2
1743
1744 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1745 static int may_link(struct inode *dir,
1746                     struct dentry *dentry,
1747                     int kind)
1748
1749 {
1750         struct inode_security_struct *dsec, *isec;
1751         struct common_audit_data ad;
1752         u32 sid = current_sid();
1753         u32 av;
1754         int rc;
1755
1756         dsec = dir->i_security;
1757         isec = d_backing_inode(dentry)->i_security;
1758
1759         ad.type = LSM_AUDIT_DATA_DENTRY;
1760         ad.u.dentry = dentry;
1761
1762         av = DIR__SEARCH;
1763         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1764         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1765         if (rc)
1766                 return rc;
1767
1768         switch (kind) {
1769         case MAY_LINK:
1770                 av = FILE__LINK;
1771                 break;
1772         case MAY_UNLINK:
1773                 av = FILE__UNLINK;
1774                 break;
1775         case MAY_RMDIR:
1776                 av = DIR__RMDIR;
1777                 break;
1778         default:
1779                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1780                         __func__, kind);
1781                 return 0;
1782         }
1783
1784         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1785         return rc;
1786 }
1787
1788 static inline int may_rename(struct inode *old_dir,
1789                              struct dentry *old_dentry,
1790                              struct inode *new_dir,
1791                              struct dentry *new_dentry)
1792 {
1793         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1794         struct common_audit_data ad;
1795         u32 sid = current_sid();
1796         u32 av;
1797         int old_is_dir, new_is_dir;
1798         int rc;
1799
1800         old_dsec = old_dir->i_security;
1801         old_isec = d_backing_inode(old_dentry)->i_security;
1802         old_is_dir = d_is_dir(old_dentry);
1803         new_dsec = new_dir->i_security;
1804
1805         ad.type = LSM_AUDIT_DATA_DENTRY;
1806
1807         ad.u.dentry = old_dentry;
1808         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1809                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1810         if (rc)
1811                 return rc;
1812         rc = avc_has_perm(sid, old_isec->sid,
1813                           old_isec->sclass, FILE__RENAME, &ad);
1814         if (rc)
1815                 return rc;
1816         if (old_is_dir && new_dir != old_dir) {
1817                 rc = avc_has_perm(sid, old_isec->sid,
1818                                   old_isec->sclass, DIR__REPARENT, &ad);
1819                 if (rc)
1820                         return rc;
1821         }
1822
1823         ad.u.dentry = new_dentry;
1824         av = DIR__ADD_NAME | DIR__SEARCH;
1825         if (d_is_positive(new_dentry))
1826                 av |= DIR__REMOVE_NAME;
1827         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1828         if (rc)
1829                 return rc;
1830         if (d_is_positive(new_dentry)) {
1831                 new_isec = d_backing_inode(new_dentry)->i_security;
1832                 new_is_dir = d_is_dir(new_dentry);
1833                 rc = avc_has_perm(sid, new_isec->sid,
1834                                   new_isec->sclass,
1835                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1836                 if (rc)
1837                         return rc;
1838         }
1839
1840         return 0;
1841 }
1842
1843 /* Check whether a task can perform a filesystem operation. */
1844 static int superblock_has_perm(const struct cred *cred,
1845                                struct super_block *sb,
1846                                u32 perms,
1847                                struct common_audit_data *ad)
1848 {
1849         struct superblock_security_struct *sbsec;
1850         u32 sid = cred_sid(cred);
1851
1852         sbsec = sb->s_security;
1853         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1854 }
1855
1856 /* Convert a Linux mode and permission mask to an access vector. */
1857 static inline u32 file_mask_to_av(int mode, int mask)
1858 {
1859         u32 av = 0;
1860
1861         if (!S_ISDIR(mode)) {
1862                 if (mask & MAY_EXEC)
1863                         av |= FILE__EXECUTE;
1864                 if (mask & MAY_READ)
1865                         av |= FILE__READ;
1866
1867                 if (mask & MAY_APPEND)
1868                         av |= FILE__APPEND;
1869                 else if (mask & MAY_WRITE)
1870                         av |= FILE__WRITE;
1871
1872         } else {
1873                 if (mask & MAY_EXEC)
1874                         av |= DIR__SEARCH;
1875                 if (mask & MAY_WRITE)
1876                         av |= DIR__WRITE;
1877                 if (mask & MAY_READ)
1878                         av |= DIR__READ;
1879         }
1880
1881         return av;
1882 }
1883
1884 /* Convert a Linux file to an access vector. */
1885 static inline u32 file_to_av(struct file *file)
1886 {
1887         u32 av = 0;
1888
1889         if (file->f_mode & FMODE_READ)
1890                 av |= FILE__READ;
1891         if (file->f_mode & FMODE_WRITE) {
1892                 if (file->f_flags & O_APPEND)
1893                         av |= FILE__APPEND;
1894                 else
1895                         av |= FILE__WRITE;
1896         }
1897         if (!av) {
1898                 /*
1899                  * Special file opened with flags 3 for ioctl-only use.
1900                  */
1901                 av = FILE__IOCTL;
1902         }
1903
1904         return av;
1905 }
1906
1907 /*
1908  * Convert a file to an access vector and include the correct open
1909  * open permission.
1910  */
1911 static inline u32 open_file_to_av(struct file *file)
1912 {
1913         u32 av = file_to_av(file);
1914
1915         if (selinux_policycap_openperm)
1916                 av |= FILE__OPEN;
1917
1918         return av;
1919 }
1920
1921 /* Hook functions begin here. */
1922
1923 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1924 {
1925         u32 mysid = current_sid();
1926         u32 mgrsid = task_sid(mgr);
1927
1928         return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
1929                             BINDER__SET_CONTEXT_MGR, NULL);
1930 }
1931
1932 static int selinux_binder_transaction(struct task_struct *from,
1933                                       struct task_struct *to)
1934 {
1935         u32 mysid = current_sid();
1936         u32 fromsid = task_sid(from);
1937         u32 tosid = task_sid(to);
1938         int rc;
1939
1940         if (mysid != fromsid) {
1941                 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
1942                                   BINDER__IMPERSONATE, NULL);
1943                 if (rc)
1944                         return rc;
1945         }
1946
1947         return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
1948                             NULL);
1949 }
1950
1951 static int selinux_binder_transfer_binder(struct task_struct *from,
1952                                           struct task_struct *to)
1953 {
1954         u32 fromsid = task_sid(from);
1955         u32 tosid = task_sid(to);
1956
1957         return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
1958                             NULL);
1959 }
1960
1961 static int selinux_binder_transfer_file(struct task_struct *from,
1962                                         struct task_struct *to,
1963                                         struct file *file)
1964 {
1965         u32 sid = task_sid(to);
1966         struct file_security_struct *fsec = file->f_security;
1967         struct inode *inode = d_backing_inode(file->f_path.dentry);
1968         struct inode_security_struct *isec = inode->i_security;
1969         struct common_audit_data ad;
1970         int rc;
1971
1972         ad.type = LSM_AUDIT_DATA_PATH;
1973         ad.u.path = file->f_path;
1974
1975         if (sid != fsec->sid) {
1976                 rc = avc_has_perm(sid, fsec->sid,
1977                                   SECCLASS_FD,
1978                                   FD__USE,
1979                                   &ad);
1980                 if (rc)
1981                         return rc;
1982         }
1983
1984         if (unlikely(IS_PRIVATE(inode)))
1985                 return 0;
1986
1987         return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
1988                             &ad);
1989 }
1990
1991 static int selinux_ptrace_access_check(struct task_struct *child,
1992                                      unsigned int mode)
1993 {
1994         int rc;
1995
1996         rc = cap_ptrace_access_check(child, mode);
1997         if (rc)
1998                 return rc;
1999
2000         if (mode & PTRACE_MODE_READ) {
2001                 u32 sid = current_sid();
2002                 u32 csid = task_sid(child);
2003                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2004         }
2005
2006         return current_has_perm(child, PROCESS__PTRACE);
2007 }
2008
2009 static int selinux_ptrace_traceme(struct task_struct *parent)
2010 {
2011         int rc;
2012
2013         rc = cap_ptrace_traceme(parent);
2014         if (rc)
2015                 return rc;
2016
2017         return task_has_perm(parent, current, PROCESS__PTRACE);
2018 }
2019
2020 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2021                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
2022 {
2023         int error;
2024
2025         error = current_has_perm(target, PROCESS__GETCAP);
2026         if (error)
2027                 return error;
2028
2029         return cap_capget(target, effective, inheritable, permitted);
2030 }
2031
2032 static int selinux_capset(struct cred *new, const struct cred *old,
2033                           const kernel_cap_t *effective,
2034                           const kernel_cap_t *inheritable,
2035                           const kernel_cap_t *permitted)
2036 {
2037         int error;
2038
2039         error = cap_capset(new, old,
2040                                       effective, inheritable, permitted);
2041         if (error)
2042                 return error;
2043
2044         return cred_has_perm(old, new, PROCESS__SETCAP);
2045 }
2046
2047 /*
2048  * (This comment used to live with the selinux_task_setuid hook,
2049  * which was removed).
2050  *
2051  * Since setuid only affects the current process, and since the SELinux
2052  * controls are not based on the Linux identity attributes, SELinux does not
2053  * need to control this operation.  However, SELinux does control the use of
2054  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2055  */
2056
2057 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2058                            int cap, int audit)
2059 {
2060         int rc;
2061
2062         rc = cap_capable(cred, ns, cap, audit);
2063         if (rc)
2064                 return rc;
2065
2066         return cred_has_capability(cred, cap, audit);
2067 }
2068
2069 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2070 {
2071         const struct cred *cred = current_cred();
2072         int rc = 0;
2073
2074         if (!sb)
2075                 return 0;
2076
2077         switch (cmds) {
2078         case Q_SYNC:
2079         case Q_QUOTAON:
2080         case Q_QUOTAOFF:
2081         case Q_SETINFO:
2082         case Q_SETQUOTA:
2083                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2084                 break;
2085         case Q_GETFMT:
2086         case Q_GETINFO:
2087         case Q_GETQUOTA:
2088                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2089                 break;
2090         default:
2091                 rc = 0;  /* let the kernel handle invalid cmds */
2092                 break;
2093         }
2094         return rc;
2095 }
2096
2097 static int selinux_quota_on(struct dentry *dentry)
2098 {
2099         const struct cred *cred = current_cred();
2100
2101         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2102 }
2103
2104 static int selinux_syslog(int type)
2105 {
2106         int rc;
2107
2108         switch (type) {
2109         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2110         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2111                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2112                 break;
2113         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2114         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2115         /* Set level of messages printed to console */
2116         case SYSLOG_ACTION_CONSOLE_LEVEL:
2117                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2118                 break;
2119         case SYSLOG_ACTION_CLOSE:       /* Close log */
2120         case SYSLOG_ACTION_OPEN:        /* Open log */
2121         case SYSLOG_ACTION_READ:        /* Read from log */
2122         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2123         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2124         default:
2125                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2126                 break;
2127         }
2128         return rc;
2129 }
2130
2131 /*
2132  * Check that a process has enough memory to allocate a new virtual
2133  * mapping. 0 means there is enough memory for the allocation to
2134  * succeed and -ENOMEM implies there is not.
2135  *
2136  * Do not audit the selinux permission check, as this is applied to all
2137  * processes that allocate mappings.
2138  */
2139 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2140 {
2141         int rc, cap_sys_admin = 0;
2142
2143         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2144                              SECURITY_CAP_NOAUDIT);
2145         if (rc == 0)
2146                 cap_sys_admin = 1;
2147
2148         return __vm_enough_memory(mm, pages, cap_sys_admin);
2149 }
2150
2151 /* binprm security operations */
2152
2153 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2154                             const struct task_security_struct *old_tsec,
2155                             const struct task_security_struct *new_tsec)
2156 {
2157         int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2158         int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2159         int rc;
2160
2161         if (!nnp && !nosuid)
2162                 return 0; /* neither NNP nor nosuid */
2163
2164         if (new_tsec->sid == old_tsec->sid)
2165                 return 0; /* No change in credentials */
2166
2167         /*
2168          * The only transitions we permit under NNP or nosuid
2169          * are transitions to bounded SIDs, i.e. SIDs that are
2170          * guaranteed to only be allowed a subset of the permissions
2171          * of the current SID.
2172          */
2173         rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2174         if (rc) {
2175                 /*
2176                  * On failure, preserve the errno values for NNP vs nosuid.
2177                  * NNP:  Operation not permitted for caller.
2178                  * nosuid:  Permission denied to file.
2179                  */
2180                 if (nnp)
2181                         return -EPERM;
2182                 else
2183                         return -EACCES;
2184         }
2185         return 0;
2186 }
2187
2188 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2189 {
2190         const struct task_security_struct *old_tsec;
2191         struct task_security_struct *new_tsec;
2192         struct inode_security_struct *isec;
2193         struct common_audit_data ad;
2194         struct inode *inode = file_inode(bprm->file);
2195         int rc;
2196
2197         rc = cap_bprm_set_creds(bprm);
2198         if (rc)
2199                 return rc;
2200
2201         /* SELinux context only depends on initial program or script and not
2202          * the script interpreter */
2203         if (bprm->cred_prepared)
2204                 return 0;
2205
2206         old_tsec = current_security();
2207         new_tsec = bprm->cred->security;
2208         isec = inode->i_security;
2209
2210         /* Default to the current task SID. */
2211         new_tsec->sid = old_tsec->sid;
2212         new_tsec->osid = old_tsec->sid;
2213
2214         /* Reset fs, key, and sock SIDs on execve. */
2215         new_tsec->create_sid = 0;
2216         new_tsec->keycreate_sid = 0;
2217         new_tsec->sockcreate_sid = 0;
2218
2219         if (old_tsec->exec_sid) {
2220                 new_tsec->sid = old_tsec->exec_sid;
2221                 /* Reset exec SID on execve. */
2222                 new_tsec->exec_sid = 0;
2223
2224                 /* Fail on NNP or nosuid if not an allowed transition. */
2225                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2226                 if (rc)
2227                         return rc;
2228         } else {
2229                 /* Check for a default transition on this program. */
2230                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2231                                              SECCLASS_PROCESS, NULL,
2232                                              &new_tsec->sid);
2233                 if (rc)
2234                         return rc;
2235
2236                 /*
2237                  * Fallback to old SID on NNP or nosuid if not an allowed
2238                  * transition.
2239                  */
2240                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2241                 if (rc)
2242                         new_tsec->sid = old_tsec->sid;
2243         }
2244
2245         ad.type = LSM_AUDIT_DATA_PATH;
2246         ad.u.path = bprm->file->f_path;
2247
2248         if (new_tsec->sid == old_tsec->sid) {
2249                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2250                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2251                 if (rc)
2252                         return rc;
2253         } else {
2254                 /* Check permissions for the transition. */
2255                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2256                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2257                 if (rc)
2258                         return rc;
2259
2260                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2261                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2262                 if (rc)
2263                         return rc;
2264
2265                 /* Check for shared state */
2266                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2267                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268                                           SECCLASS_PROCESS, PROCESS__SHARE,
2269                                           NULL);
2270                         if (rc)
2271                                 return -EPERM;
2272                 }
2273
2274                 /* Make sure that anyone attempting to ptrace over a task that
2275                  * changes its SID has the appropriate permit */
2276                 if (bprm->unsafe &
2277                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2278                         struct task_struct *tracer;
2279                         struct task_security_struct *sec;
2280                         u32 ptsid = 0;
2281
2282                         rcu_read_lock();
2283                         tracer = ptrace_parent(current);
2284                         if (likely(tracer != NULL)) {
2285                                 sec = __task_cred(tracer)->security;
2286                                 ptsid = sec->sid;
2287                         }
2288                         rcu_read_unlock();
2289
2290                         if (ptsid != 0) {
2291                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2292                                                   SECCLASS_PROCESS,
2293                                                   PROCESS__PTRACE, NULL);
2294                                 if (rc)
2295                                         return -EPERM;
2296                         }
2297                 }
2298
2299                 /* Clear any possibly unsafe personality bits on exec: */
2300                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2301         }
2302
2303         return 0;
2304 }
2305
2306 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2307 {
2308         const struct task_security_struct *tsec = current_security();
2309         u32 sid, osid;
2310         int atsecure = 0;
2311
2312         sid = tsec->sid;
2313         osid = tsec->osid;
2314
2315         if (osid != sid) {
2316                 /* Enable secure mode for SIDs transitions unless
2317                    the noatsecure permission is granted between
2318                    the two SIDs, i.e. ahp returns 0. */
2319                 atsecure = avc_has_perm(osid, sid,
2320                                         SECCLASS_PROCESS,
2321                                         PROCESS__NOATSECURE, NULL);
2322         }
2323
2324         return (atsecure || cap_bprm_secureexec(bprm));
2325 }
2326
2327 static int match_file(const void *p, struct file *file, unsigned fd)
2328 {
2329         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2330 }
2331
2332 /* Derived from fs/exec.c:flush_old_files. */
2333 static inline void flush_unauthorized_files(const struct cred *cred,
2334                                             struct files_struct *files)
2335 {
2336         struct file *file, *devnull = NULL;
2337         struct tty_struct *tty;
2338         int drop_tty = 0;
2339         unsigned n;
2340
2341         tty = get_current_tty();
2342         if (tty) {
2343                 spin_lock(&tty_files_lock);
2344                 if (!list_empty(&tty->tty_files)) {
2345                         struct tty_file_private *file_priv;
2346
2347                         /* Revalidate access to controlling tty.
2348                            Use file_path_has_perm on the tty path directly
2349                            rather than using file_has_perm, as this particular
2350                            open file may belong to another process and we are
2351                            only interested in the inode-based check here. */
2352                         file_priv = list_first_entry(&tty->tty_files,
2353                                                 struct tty_file_private, list);
2354                         file = file_priv->file;
2355                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2356                                 drop_tty = 1;
2357                 }
2358                 spin_unlock(&tty_files_lock);
2359                 tty_kref_put(tty);
2360         }
2361         /* Reset controlling tty. */
2362         if (drop_tty)
2363                 no_tty();
2364
2365         /* Revalidate access to inherited open files. */
2366         n = iterate_fd(files, 0, match_file, cred);
2367         if (!n) /* none found? */
2368                 return;
2369
2370         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2371         if (IS_ERR(devnull))
2372                 devnull = NULL;
2373         /* replace all the matching ones with this */
2374         do {
2375                 replace_fd(n - 1, devnull, 0);
2376         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2377         if (devnull)
2378                 fput(devnull);
2379 }
2380
2381 /*
2382  * Prepare a process for imminent new credential changes due to exec
2383  */
2384 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2385 {
2386         struct task_security_struct *new_tsec;
2387         struct rlimit *rlim, *initrlim;
2388         int rc, i;
2389
2390         new_tsec = bprm->cred->security;
2391         if (new_tsec->sid == new_tsec->osid)
2392                 return;
2393
2394         /* Close files for which the new task SID is not authorized. */
2395         flush_unauthorized_files(bprm->cred, current->files);
2396
2397         /* Always clear parent death signal on SID transitions. */
2398         current->pdeath_signal = 0;
2399
2400         /* Check whether the new SID can inherit resource limits from the old
2401          * SID.  If not, reset all soft limits to the lower of the current
2402          * task's hard limit and the init task's soft limit.
2403          *
2404          * Note that the setting of hard limits (even to lower them) can be
2405          * controlled by the setrlimit check.  The inclusion of the init task's
2406          * soft limit into the computation is to avoid resetting soft limits
2407          * higher than the default soft limit for cases where the default is
2408          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2409          */
2410         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2411                           PROCESS__RLIMITINH, NULL);
2412         if (rc) {
2413                 /* protect against do_prlimit() */
2414                 task_lock(current);
2415                 for (i = 0; i < RLIM_NLIMITS; i++) {
2416                         rlim = current->signal->rlim + i;
2417                         initrlim = init_task.signal->rlim + i;
2418                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2419                 }
2420                 task_unlock(current);
2421                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2422         }
2423 }
2424
2425 /*
2426  * Clean up the process immediately after the installation of new credentials
2427  * due to exec
2428  */
2429 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2430 {
2431         const struct task_security_struct *tsec = current_security();
2432         struct itimerval itimer;
2433         u32 osid, sid;
2434         int rc, i;
2435
2436         osid = tsec->osid;
2437         sid = tsec->sid;
2438
2439         if (sid == osid)
2440                 return;
2441
2442         /* Check whether the new SID can inherit signal state from the old SID.
2443          * If not, clear itimers to avoid subsequent signal generation and
2444          * flush and unblock signals.
2445          *
2446          * This must occur _after_ the task SID has been updated so that any
2447          * kill done after the flush will be checked against the new SID.
2448          */
2449         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2450         if (rc) {
2451                 memset(&itimer, 0, sizeof itimer);
2452                 for (i = 0; i < 3; i++)
2453                         do_setitimer(i, &itimer, NULL);
2454                 spin_lock_irq(&current->sighand->siglock);
2455                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2456                         __flush_signals(current);
2457                         flush_signal_handlers(current, 1);
2458                         sigemptyset(&current->blocked);
2459                 }
2460                 spin_unlock_irq(&current->sighand->siglock);
2461         }
2462
2463         /* Wake up the parent if it is waiting so that it can recheck
2464          * wait permission to the new task SID. */
2465         read_lock(&tasklist_lock);
2466         __wake_up_parent(current, current->real_parent);
2467         read_unlock(&tasklist_lock);
2468 }
2469
2470 /* superblock security operations */
2471
2472 static int selinux_sb_alloc_security(struct super_block *sb)
2473 {
2474         return superblock_alloc_security(sb);
2475 }
2476
2477 static void selinux_sb_free_security(struct super_block *sb)
2478 {
2479         superblock_free_security(sb);
2480 }
2481
2482 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2483 {
2484         if (plen > olen)
2485                 return 0;
2486
2487         return !memcmp(prefix, option, plen);
2488 }
2489
2490 static inline int selinux_option(char *option, int len)
2491 {
2492         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2493                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2494                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2495                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2496                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2497 }
2498
2499 static inline void take_option(char **to, char *from, int *first, int len)
2500 {
2501         if (!*first) {
2502                 **to = ',';
2503                 *to += 1;
2504         } else
2505                 *first = 0;
2506         memcpy(*to, from, len);
2507         *to += len;
2508 }
2509
2510 static inline void take_selinux_option(char **to, char *from, int *first,
2511                                        int len)
2512 {
2513         int current_size = 0;
2514
2515         if (!*first) {
2516                 **to = '|';
2517                 *to += 1;
2518         } else
2519                 *first = 0;
2520
2521         while (current_size < len) {
2522                 if (*from != '"') {
2523                         **to = *from;
2524                         *to += 1;
2525                 }
2526                 from += 1;
2527                 current_size += 1;
2528         }
2529 }
2530
2531 static int selinux_sb_copy_data(char *orig, char *copy)
2532 {
2533         int fnosec, fsec, rc = 0;
2534         char *in_save, *in_curr, *in_end;
2535         char *sec_curr, *nosec_save, *nosec;
2536         int open_quote = 0;
2537
2538         in_curr = orig;
2539         sec_curr = copy;
2540
2541         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2542         if (!nosec) {
2543                 rc = -ENOMEM;
2544                 goto out;
2545         }
2546
2547         nosec_save = nosec;
2548         fnosec = fsec = 1;
2549         in_save = in_end = orig;
2550
2551         do {
2552                 if (*in_end == '"')
2553                         open_quote = !open_quote;
2554                 if ((*in_end == ',' && open_quote == 0) ||
2555                                 *in_end == '\0') {
2556                         int len = in_end - in_curr;
2557
2558                         if (selinux_option(in_curr, len))
2559                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2560                         else
2561                                 take_option(&nosec, in_curr, &fnosec, len);
2562
2563                         in_curr = in_end + 1;
2564                 }
2565         } while (*in_end++);
2566
2567         strcpy(in_save, nosec_save);
2568         free_page((unsigned long)nosec_save);
2569 out:
2570         return rc;
2571 }
2572
2573 static int selinux_sb_remount(struct super_block *sb, void *data)
2574 {
2575         int rc, i, *flags;
2576         struct security_mnt_opts opts;
2577         char *secdata, **mount_options;
2578         struct superblock_security_struct *sbsec = sb->s_security;
2579
2580         if (!(sbsec->flags & SE_SBINITIALIZED))
2581                 return 0;
2582
2583         if (!data)
2584                 return 0;
2585
2586         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2587                 return 0;
2588
2589         security_init_mnt_opts(&opts);
2590         secdata = alloc_secdata();
2591         if (!secdata)
2592                 return -ENOMEM;
2593         rc = selinux_sb_copy_data(data, secdata);
2594         if (rc)
2595                 goto out_free_secdata;
2596
2597         rc = selinux_parse_opts_str(secdata, &opts);
2598         if (rc)
2599                 goto out_free_secdata;
2600
2601         mount_options = opts.mnt_opts;
2602         flags = opts.mnt_opts_flags;
2603
2604         for (i = 0; i < opts.num_mnt_opts; i++) {
2605                 u32 sid;
2606                 size_t len;
2607
2608                 if (flags[i] == SBLABEL_MNT)
2609                         continue;
2610                 len = strlen(mount_options[i]);
2611                 rc = security_context_to_sid(mount_options[i], len, &sid,
2612                                              GFP_KERNEL);
2613                 if (rc) {
2614                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2615                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2616                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2617                         goto out_free_opts;
2618                 }
2619                 rc = -EINVAL;
2620                 switch (flags[i]) {
2621                 case FSCONTEXT_MNT:
2622                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2623                                 goto out_bad_option;
2624                         break;
2625                 case CONTEXT_MNT:
2626                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2627                                 goto out_bad_option;
2628                         break;
2629                 case ROOTCONTEXT_MNT: {
2630                         struct inode_security_struct *root_isec;
2631                         root_isec = d_backing_inode(sb->s_root)->i_security;
2632
2633                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2634                                 goto out_bad_option;
2635                         break;
2636                 }
2637                 case DEFCONTEXT_MNT:
2638                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2639                                 goto out_bad_option;
2640                         break;
2641                 default:
2642                         goto out_free_opts;
2643                 }
2644         }
2645
2646         rc = 0;
2647 out_free_opts:
2648         security_free_mnt_opts(&opts);
2649 out_free_secdata:
2650         free_secdata(secdata);
2651         return rc;
2652 out_bad_option:
2653         printk(KERN_WARNING "SELinux: unable to change security options "
2654                "during remount (dev %s, type=%s)\n", sb->s_id,
2655                sb->s_type->name);
2656         goto out_free_opts;
2657 }
2658
2659 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2660 {
2661         const struct cred *cred = current_cred();
2662         struct common_audit_data ad;
2663         int rc;
2664
2665         rc = superblock_doinit(sb, data);
2666         if (rc)
2667                 return rc;
2668
2669         /* Allow all mounts performed by the kernel */
2670         if (flags & MS_KERNMOUNT)
2671                 return 0;
2672
2673         ad.type = LSM_AUDIT_DATA_DENTRY;
2674         ad.u.dentry = sb->s_root;
2675         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2676 }
2677
2678 static int selinux_sb_statfs(struct dentry *dentry)
2679 {
2680         const struct cred *cred = current_cred();
2681         struct common_audit_data ad;
2682
2683         ad.type = LSM_AUDIT_DATA_DENTRY;
2684         ad.u.dentry = dentry->d_sb->s_root;
2685         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2686 }
2687
2688 static int selinux_mount(const char *dev_name,
2689                          struct path *path,
2690                          const char *type,
2691                          unsigned long flags,
2692                          void *data)
2693 {
2694         const struct cred *cred = current_cred();
2695
2696         if (flags & MS_REMOUNT)
2697                 return superblock_has_perm(cred, path->dentry->d_sb,
2698                                            FILESYSTEM__REMOUNT, NULL);
2699         else
2700                 return path_has_perm(cred, path, FILE__MOUNTON);
2701 }
2702
2703 static int selinux_umount(struct vfsmount *mnt, int flags)
2704 {
2705         const struct cred *cred = current_cred();
2706
2707         return superblock_has_perm(cred, mnt->mnt_sb,
2708                                    FILESYSTEM__UNMOUNT, NULL);
2709 }
2710
2711 /* inode security operations */
2712
2713 static int selinux_inode_alloc_security(struct inode *inode)
2714 {
2715         return inode_alloc_security(inode);
2716 }
2717
2718 static void selinux_inode_free_security(struct inode *inode)
2719 {
2720         inode_free_security(inode);
2721 }
2722
2723 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2724                                         struct qstr *name, void **ctx,
2725                                         u32 *ctxlen)
2726 {
2727         const struct cred *cred = current_cred();
2728         struct task_security_struct *tsec;
2729         struct inode_security_struct *dsec;
2730         struct superblock_security_struct *sbsec;
2731         struct inode *dir = d_backing_inode(dentry->d_parent);
2732         u32 newsid;
2733         int rc;
2734
2735         tsec = cred->security;
2736         dsec = dir->i_security;
2737         sbsec = dir->i_sb->s_security;
2738
2739         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2740                 newsid = tsec->create_sid;
2741         } else {
2742                 rc = security_transition_sid(tsec->sid, dsec->sid,
2743                                              inode_mode_to_security_class(mode),
2744                                              name,
2745                                              &newsid);
2746                 if (rc) {
2747                         printk(KERN_WARNING
2748                                 "%s: security_transition_sid failed, rc=%d\n",
2749                                __func__, -rc);
2750                         return rc;
2751                 }
2752         }
2753
2754         return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2755 }
2756
2757 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2758                                        const struct qstr *qstr,
2759                                        const char **name,
2760                                        void **value, size_t *len)
2761 {
2762         const struct task_security_struct *tsec = current_security();
2763         struct inode_security_struct *dsec;
2764         struct superblock_security_struct *sbsec;
2765         u32 sid, newsid, clen;
2766         int rc;
2767         char *context;
2768
2769         dsec = dir->i_security;
2770         sbsec = dir->i_sb->s_security;
2771
2772         sid = tsec->sid;
2773         newsid = tsec->create_sid;
2774
2775         if ((sbsec->flags & SE_SBINITIALIZED) &&
2776             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2777                 newsid = sbsec->mntpoint_sid;
2778         else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2779                 rc = security_transition_sid(sid, dsec->sid,
2780                                              inode_mode_to_security_class(inode->i_mode),
2781                                              qstr, &newsid);
2782                 if (rc) {
2783                         printk(KERN_WARNING "%s:  "
2784                                "security_transition_sid failed, rc=%d (dev=%s "
2785                                "ino=%ld)\n",
2786                                __func__,
2787                                -rc, inode->i_sb->s_id, inode->i_ino);
2788                         return rc;
2789                 }
2790         }
2791
2792         /* Possibly defer initialization to selinux_complete_init. */
2793         if (sbsec->flags & SE_SBINITIALIZED) {
2794                 struct inode_security_struct *isec = inode->i_security;
2795                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2796                 isec->sid = newsid;
2797                 isec->initialized = 1;
2798         }
2799
2800         if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2801                 return -EOPNOTSUPP;
2802
2803         if (name)
2804                 *name = XATTR_SELINUX_SUFFIX;
2805
2806         if (value && len) {
2807                 rc = security_sid_to_context_force(newsid, &context, &clen);
2808                 if (rc)
2809                         return rc;
2810                 *value = context;
2811                 *len = clen;
2812         }
2813
2814         return 0;
2815 }
2816
2817 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2818 {
2819         return may_create(dir, dentry, SECCLASS_FILE);
2820 }
2821
2822 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2823 {
2824         return may_link(dir, old_dentry, MAY_LINK);
2825 }
2826
2827 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2828 {
2829         return may_link(dir, dentry, MAY_UNLINK);
2830 }
2831
2832 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2833 {
2834         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2835 }
2836
2837 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2838 {
2839         return may_create(dir, dentry, SECCLASS_DIR);
2840 }
2841
2842 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2843 {
2844         return may_link(dir, dentry, MAY_RMDIR);
2845 }
2846
2847 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2848 {
2849         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2850 }
2851
2852 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2853                                 struct inode *new_inode, struct dentry *new_dentry)
2854 {
2855         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2856 }
2857
2858 static int selinux_inode_readlink(struct dentry *dentry)
2859 {
2860         const struct cred *cred = current_cred();
2861
2862         return dentry_has_perm(cred, dentry, FILE__READ);
2863 }
2864
2865 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2866 {
2867         const struct cred *cred = current_cred();
2868
2869         return dentry_has_perm(cred, dentry, FILE__READ);
2870 }
2871
2872 static noinline int audit_inode_permission(struct inode *inode,
2873                                            u32 perms, u32 audited, u32 denied,
2874                                            int result,
2875                                            unsigned flags)
2876 {
2877         struct common_audit_data ad;
2878         struct inode_security_struct *isec = inode->i_security;
2879         int rc;
2880
2881         ad.type = LSM_AUDIT_DATA_INODE;
2882         ad.u.inode = inode;
2883
2884         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2885                             audited, denied, result, &ad, flags);
2886         if (rc)
2887                 return rc;
2888         return 0;
2889 }
2890
2891 static int selinux_inode_permission(struct inode *inode, int mask)
2892 {
2893         const struct cred *cred = current_cred();
2894         u32 perms;
2895         bool from_access;
2896         unsigned flags = mask & MAY_NOT_BLOCK;
2897         struct inode_security_struct *isec;
2898         u32 sid;
2899         struct av_decision avd;
2900         int rc, rc2;
2901         u32 audited, denied;
2902
2903         from_access = mask & MAY_ACCESS;
2904         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2905
2906         /* No permission to check.  Existence test. */
2907         if (!mask)
2908                 return 0;
2909
2910         validate_creds(cred);
2911
2912         if (unlikely(IS_PRIVATE(inode)))
2913                 return 0;
2914
2915         perms = file_mask_to_av(inode->i_mode, mask);
2916
2917         sid = cred_sid(cred);
2918         isec = inode->i_security;
2919
2920         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2921         audited = avc_audit_required(perms, &avd, rc,
2922                                      from_access ? FILE__AUDIT_ACCESS : 0,
2923                                      &denied);
2924         if (likely(!audited))
2925                 return rc;
2926
2927         rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2928         if (rc2)
2929                 return rc2;
2930         return rc;
2931 }
2932
2933 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2934 {
2935         const struct cred *cred = current_cred();
2936         unsigned int ia_valid = iattr->ia_valid;
2937         __u32 av = FILE__WRITE;
2938
2939         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2940         if (ia_valid & ATTR_FORCE) {
2941                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2942                               ATTR_FORCE);
2943                 if (!ia_valid)
2944                         return 0;
2945         }
2946
2947         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2948                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2949                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2950
2951         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2952                 av |= FILE__OPEN;
2953
2954         return dentry_has_perm(cred, dentry, av);
2955 }
2956
2957 static int selinux_inode_getattr(const struct path *path)
2958 {
2959         return path_has_perm(current_cred(), path, FILE__GETATTR);
2960 }
2961
2962 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2963 {
2964         const struct cred *cred = current_cred();
2965
2966         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2967                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2968                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2969                         if (!capable(CAP_SETFCAP))
2970                                 return -EPERM;
2971                 } else if (!capable(CAP_SYS_ADMIN)) {
2972                         /* A different attribute in the security namespace.
2973                            Restrict to administrator. */
2974                         return -EPERM;
2975                 }
2976         }
2977
2978         /* Not an attribute we recognize, so just check the
2979            ordinary setattr permission. */
2980         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2981 }
2982
2983 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2984                                   const void *value, size_t size, int flags)
2985 {
2986         struct inode *inode = d_backing_inode(dentry);
2987         struct inode_security_struct *isec = inode->i_security;
2988         struct superblock_security_struct *sbsec;
2989         struct common_audit_data ad;
2990         u32 newsid, sid = current_sid();
2991         int rc = 0;
2992
2993         if (strcmp(name, XATTR_NAME_SELINUX))
2994                 return selinux_inode_setotherxattr(dentry, name);
2995
2996         sbsec = inode->i_sb->s_security;
2997         if (!(sbsec->flags & SBLABEL_MNT))
2998                 return -EOPNOTSUPP;
2999
3000         if (!inode_owner_or_capable(inode))
3001                 return -EPERM;
3002
3003         ad.type = LSM_AUDIT_DATA_DENTRY;
3004         ad.u.dentry = dentry;
3005
3006         rc = avc_has_perm(sid, isec->sid, isec->sclass,
3007                           FILE__RELABELFROM, &ad);
3008         if (rc)
3009                 return rc;
3010
3011         rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3012         if (rc == -EINVAL) {
3013                 if (!capable(CAP_MAC_ADMIN)) {
3014                         struct audit_buffer *ab;
3015                         size_t audit_size;
3016                         const char *str;
3017
3018                         /* We strip a nul only if it is at the end, otherwise the
3019                          * context contains a nul and we should audit that */
3020                         if (value) {
3021                                 str = value;
3022                                 if (str[size - 1] == '\0')
3023                                         audit_size = size - 1;
3024                                 else
3025                                         audit_size = size;
3026                         } else {
3027                                 str = "";
3028                                 audit_size = 0;
3029                         }
3030                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3031                         audit_log_format(ab, "op=setxattr invalid_context=");
3032                         audit_log_n_untrustedstring(ab, value, audit_size);
3033                         audit_log_end(ab);
3034
3035                         return rc;
3036                 }
3037                 rc = security_context_to_sid_force(value, size, &newsid);
3038         }
3039         if (rc)
3040                 return rc;
3041
3042         rc = avc_has_perm(sid, newsid, isec->sclass,
3043                           FILE__RELABELTO, &ad);
3044         if (rc)
3045                 return rc;
3046
3047         rc = security_validate_transition(isec->sid, newsid, sid,
3048                                           isec->sclass);
3049         if (rc)
3050                 return rc;
3051
3052         return avc_has_perm(newsid,
3053                             sbsec->sid,
3054                             SECCLASS_FILESYSTEM,
3055                             FILESYSTEM__ASSOCIATE,
3056                             &ad);
3057 }
3058
3059 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3060                                         const void *value, size_t size,
3061                                         int flags)
3062 {
3063         struct inode *inode = d_backing_inode(dentry);
3064         struct inode_security_struct *isec = inode->i_security;
3065         u32 newsid;
3066         int rc;
3067
3068         if (strcmp(name, XATTR_NAME_SELINUX)) {
3069                 /* Not an attribute we recognize, so nothing to do. */
3070                 return;
3071         }
3072
3073         rc = security_context_to_sid_force(value, size, &newsid);
3074         if (rc) {
3075                 printk(KERN_ERR "SELinux:  unable to map context to SID"
3076                        "for (%s, %lu), rc=%d\n",
3077                        inode->i_sb->s_id, inode->i_ino, -rc);
3078                 return;
3079         }
3080
3081         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3082         isec->sid = newsid;
3083         isec->initialized = 1;
3084
3085         return;
3086 }
3087
3088 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3089 {
3090         const struct cred *cred = current_cred();
3091
3092         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3093 }
3094
3095 static int selinux_inode_listxattr(struct dentry *dentry)
3096 {
3097         const struct cred *cred = current_cred();
3098
3099         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3100 }
3101
3102 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3103 {
3104         if (strcmp(name, XATTR_NAME_SELINUX))
3105                 return selinux_inode_setotherxattr(dentry, name);
3106
3107         /* No one is allowed to remove a SELinux security label.
3108            You can change the label, but all data must be labeled. */
3109         return -EACCES;
3110 }
3111
3112 /*
3113  * Copy the inode security context value to the user.
3114  *
3115  * Permission check is handled by selinux_inode_getxattr hook.
3116  */
3117 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3118 {
3119         u32 size;
3120         int error;
3121         char *context = NULL;
3122         struct inode_security_struct *isec = inode->i_security;
3123
3124         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3125                 return -EOPNOTSUPP;
3126
3127         /*
3128          * If the caller has CAP_MAC_ADMIN, then get the raw context
3129          * value even if it is not defined by current policy; otherwise,
3130          * use the in-core value under current policy.
3131          * Use the non-auditing forms of the permission checks since
3132          * getxattr may be called by unprivileged processes commonly
3133          * and lack of permission just means that we fall back to the
3134          * in-core context value, not a denial.
3135          */
3136         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3137                                 SECURITY_CAP_NOAUDIT);
3138         if (!error)
3139                 error = security_sid_to_context_force(isec->sid, &context,
3140                                                       &size);
3141         else
3142                 error = security_sid_to_context(isec->sid, &context, &size);
3143         if (error)
3144                 return error;
3145         error = size;
3146         if (alloc) {
3147                 *buffer = context;
3148                 goto out_nofree;
3149         }
3150         kfree(context);
3151 out_nofree:
3152         return error;
3153 }
3154
3155 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3156                                      const void *value, size_t size, int flags)
3157 {
3158         struct inode_security_struct *isec = inode->i_security;
3159         u32 newsid;
3160         int rc;
3161
3162         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3163                 return -EOPNOTSUPP;
3164
3165         if (!value || !size)
3166                 return -EACCES;
3167
3168         rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3169         if (rc)
3170                 return rc;
3171
3172         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3173         isec->sid = newsid;
3174         isec->initialized = 1;
3175         return 0;
3176 }
3177
3178 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3179 {
3180         const int len = sizeof(XATTR_NAME_SELINUX);
3181         if (buffer && len <= buffer_size)
3182                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3183         return len;
3184 }
3185
3186 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3187 {
3188         struct inode_security_struct *isec = inode->i_security;
3189         *secid = isec->sid;
3190 }
3191
3192 /* file security operations */
3193
3194 static int selinux_revalidate_file_permission(struct file *file, int mask)
3195 {
3196         const struct cred *cred = current_cred();
3197         struct inode *inode = file_inode(file);
3198
3199         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3200         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3201                 mask |= MAY_APPEND;
3202
3203         return file_has_perm(cred, file,
3204                              file_mask_to_av(inode->i_mode, mask));
3205 }
3206
3207 static int selinux_file_permission(struct file *file, int mask)
3208 {
3209         struct inode *inode = file_inode(file);
3210         struct file_security_struct *fsec = file->f_security;
3211         struct inode_security_struct *isec = inode->i_security;
3212         u32 sid = current_sid();
3213
3214         if (!mask)
3215                 /* No permission to check.  Existence test. */
3216                 return 0;
3217
3218         if (sid == fsec->sid && fsec->isid == isec->sid &&
3219             fsec->pseqno == avc_policy_seqno())
3220                 /* No change since file_open check. */
3221                 return 0;
3222
3223         return selinux_revalidate_file_permission(file, mask);
3224 }
3225
3226 static int selinux_file_alloc_security(struct file *file)
3227 {
3228         return file_alloc_security(file);
3229 }
3230
3231 static void selinux_file_free_security(struct file *file)
3232 {
3233         file_free_security(file);
3234 }
3235
3236 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3237                               unsigned long arg)
3238 {
3239         const struct cred *cred = current_cred();
3240         int error = 0;
3241
3242         switch (cmd) {
3243         case FIONREAD:
3244         /* fall through */
3245         case FIBMAP:
3246         /* fall through */
3247         case FIGETBSZ:
3248         /* fall through */
3249         case FS_IOC_GETFLAGS:
3250         /* fall through */
3251         case FS_IOC_GETVERSION:
3252                 error = file_has_perm(cred, file, FILE__GETATTR);
3253                 break;
3254
3255         case FS_IOC_SETFLAGS:
3256         /* fall through */
3257         case FS_IOC_SETVERSION:
3258                 error = file_has_perm(cred, file, FILE__SETATTR);
3259                 break;
3260
3261         /* sys_ioctl() checks */
3262         case FIONBIO:
3263         /* fall through */
3264         case FIOASYNC:
3265                 error = file_has_perm(cred, file, 0);
3266                 break;
3267
3268         case KDSKBENT:
3269         case KDSKBSENT:
3270                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3271                                             SECURITY_CAP_AUDIT);
3272                 break;
3273
3274         /* default case assumes that the command will go
3275          * to the file's ioctl() function.
3276          */
3277         default:
3278                 error = file_has_perm(cred, file, FILE__IOCTL);
3279         }
3280         return error;
3281 }
3282
3283 static int default_noexec;
3284
3285 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3286 {
3287         const struct cred *cred = current_cred();
3288         int rc = 0;
3289
3290         if (default_noexec &&
3291             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3292                 /*
3293                  * We are making executable an anonymous mapping or a
3294                  * private file mapping that will also be writable.
3295                  * This has an additional check.
3296                  */
3297                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3298                 if (rc)
3299                         goto error;
3300         }
3301
3302         if (file) {
3303                 /* read access is always possible with a mapping */
3304                 u32 av = FILE__READ;
3305
3306                 /* write access only matters if the mapping is shared */
3307                 if (shared && (prot & PROT_WRITE))
3308                         av |= FILE__WRITE;
3309
3310                 if (prot & PROT_EXEC)
3311                         av |= FILE__EXECUTE;
3312
3313                 return file_has_perm(cred, file, av);
3314         }
3315
3316 error:
3317         return rc;
3318 }
3319
3320 static int selinux_mmap_addr(unsigned long addr)
3321 {
3322         int rc;
3323
3324         /* do DAC check on address space usage */
3325         rc = cap_mmap_addr(addr);
3326         if (rc)
3327                 return rc;
3328
3329         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3330                 u32 sid = current_sid();
3331                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3332                                   MEMPROTECT__MMAP_ZERO, NULL);
3333         }
3334
3335         return rc;
3336 }
3337
3338 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3339                              unsigned long prot, unsigned long flags)
3340 {
3341         if (selinux_checkreqprot)
3342                 prot = reqprot;
3343
3344         return file_map_prot_check(file, prot,
3345                                    (flags & MAP_TYPE) == MAP_SHARED);
3346 }
3347
3348 static int selinux_file_mprotect(struct vm_area_struct *vma,
3349                                  unsigned long reqprot,
3350                                  unsigned long prot)
3351 {
3352         const struct cred *cred = current_cred();
3353
3354         if (selinux_checkreqprot)
3355                 prot = reqprot;
3356
3357         if (default_noexec &&
3358             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3359                 int rc = 0;
3360                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3361                     vma->vm_end <= vma->vm_mm->brk) {
3362                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3363                 } else if (!vma->vm_file &&
3364                            vma->vm_start <= vma->vm_mm->start_stack &&
3365                            vma->vm_end >= vma->vm_mm->start_stack) {
3366                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3367                 } else if (vma->vm_file && vma->anon_vma) {
3368                         /*
3369                          * We are making executable a file mapping that has
3370                          * had some COW done. Since pages might have been
3371                          * written, check ability to execute the possibly
3372                          * modified content.  This typically should only
3373                          * occur for text relocations.
3374                          */
3375                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3376                 }
3377                 if (rc)
3378                         return rc;
3379         }
3380
3381         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3382 }
3383
3384 static int selinux_file_lock(struct file *file, unsigned int cmd)
3385 {
3386         const struct cred *cred = current_cred();
3387
3388         return file_has_perm(cred, file, FILE__LOCK);
3389 }
3390
3391 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3392                               unsigned long arg)
3393 {
3394         const struct cred *cred = current_cred();
3395         int err = 0;
3396
3397         switch (cmd) {
3398         case F_SETFL:
3399                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3400                         err = file_has_perm(cred, file, FILE__WRITE);
3401                         break;
3402                 }
3403                 /* fall through */
3404         case F_SETOWN:
3405         case F_SETSIG:
3406         case F_GETFL:
3407         case F_GETOWN:
3408         case F_GETSIG:
3409         case F_GETOWNER_UIDS:
3410                 /* Just check FD__USE permission */
3411                 err = file_has_perm(cred, file, 0);
3412                 break;
3413         case F_GETLK:
3414         case F_SETLK:
3415         case F_SETLKW:
3416         case F_OFD_GETLK:
3417         case F_OFD_SETLK:
3418         case F_OFD_SETLKW:
3419 #if BITS_PER_LONG == 32
3420         case F_GETLK64:
3421         case F_SETLK64:
3422         case F_SETLKW64:
3423 #endif
3424                 err = file_has_perm(cred, file, FILE__LOCK);
3425                 break;
3426         }
3427
3428         return err;
3429 }
3430
3431 static void selinux_file_set_fowner(struct file *file)
3432 {
3433         struct file_security_struct *fsec;
3434
3435         fsec = file->f_security;
3436         fsec->fown_sid = current_sid();
3437 }
3438
3439 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3440                                        struct fown_struct *fown, int signum)
3441 {
3442         struct file *file;
3443         u32 sid = task_sid(tsk);
3444         u32 perm;
3445         struct file_security_struct *fsec;
3446
3447         /* struct fown_struct is never outside the context of a struct file */
3448         file = container_of(fown, struct file, f_owner);
3449
3450         fsec = file->f_security;
3451
3452         if (!signum)
3453                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3454         else
3455                 perm = signal_to_av(signum);
3456
3457         return avc_has_perm(fsec->fown_sid, sid,
3458                             SECCLASS_PROCESS, perm, NULL);
3459 }
3460
3461 static int selinux_file_receive(struct file *file)
3462 {
3463         const struct cred *cred = current_cred();
3464
3465         return file_has_perm(cred, file, file_to_av(file));
3466 }
3467
3468 static int selinux_file_open(struct file *file, const struct cred *cred)
3469 {
3470         struct file_security_struct *fsec;
3471         struct inode_security_struct *isec;
3472
3473         fsec = file->f_security;
3474         isec = file_inode(file)->i_security;
3475         /*
3476          * Save inode label and policy sequence number
3477          * at open-time so that selinux_file_permission
3478          * can determine whether revalidation is necessary.
3479          * Task label is already saved in the file security
3480          * struct as its SID.
3481          */
3482         fsec->isid = isec->sid;
3483         fsec->pseqno = avc_policy_seqno();
3484         /*
3485          * Since the inode label or policy seqno may have changed
3486          * between the selinux_inode_permission check and the saving
3487          * of state above, recheck that access is still permitted.
3488          * Otherwise, access might never be revalidated against the
3489          * new inode label or new policy.
3490          * This check is not redundant - do not remove.
3491          */
3492         return file_path_has_perm(cred, file, open_file_to_av(file));
3493 }
3494
3495 /* task security operations */
3496
3497 static int selinux_task_create(unsigned long clone_flags)
3498 {
3499         return current_has_perm(current, PROCESS__FORK);
3500 }
3501
3502 /*
3503  * allocate the SELinux part of blank credentials
3504  */
3505 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3506 {
3507         struct task_security_struct *tsec;
3508
3509         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3510         if (!tsec)
3511                 return -ENOMEM;
3512
3513         cred->security = tsec;
3514         return 0;
3515 }
3516
3517 /*
3518  * detach and free the LSM part of a set of credentials
3519  */
3520 static void selinux_cred_free(struct cred *cred)
3521 {
3522         struct task_security_struct *tsec = cred->security;
3523
3524         /*
3525          * cred->security == NULL if security_cred_alloc_blank() or
3526          * security_prepare_creds() returned an error.
3527          */
3528         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3529         cred->security = (void *) 0x7UL;
3530         kfree(tsec);
3531 }
3532
3533 /*
3534  * prepare a new set of credentials for modification
3535  */
3536 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3537                                 gfp_t gfp)
3538 {
3539         const struct task_security_struct *old_tsec;
3540         struct task_security_struct *tsec;
3541
3542         old_tsec = old->security;
3543
3544         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3545         if (!tsec)
3546                 return -ENOMEM;
3547
3548         new->security = tsec;
3549         return 0;
3550 }
3551
3552 /*
3553  * transfer the SELinux data to a blank set of creds
3554  */
3555 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3556 {
3557         const struct task_security_struct *old_tsec = old->security;
3558         struct task_security_struct *tsec = new->security;
3559
3560         *tsec = *old_tsec;
3561 }
3562
3563 /*
3564  * set the security data for a kernel service
3565  * - all the creation contexts are set to unlabelled
3566  */
3567 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3568 {
3569         struct task_security_struct *tsec = new->security;
3570         u32 sid = current_sid();
3571         int ret;
3572
3573         ret = avc_has_perm(sid, secid,
3574                            SECCLASS_KERNEL_SERVICE,
3575                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3576                            NULL);
3577         if (ret == 0) {
3578                 tsec->sid = secid;
3579                 tsec->create_sid = 0;
3580                 tsec->keycreate_sid = 0;
3581                 tsec->sockcreate_sid = 0;
3582         }
3583         return ret;
3584 }
3585
3586 /*
3587  * set the file creation context in a security record to the same as the
3588  * objective context of the specified inode
3589  */
3590 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3591 {
3592         struct inode_security_struct *isec = inode->i_security;
3593         struct task_security_struct *tsec = new->security;
3594         u32 sid = current_sid();
3595         int ret;
3596
3597         ret = avc_has_perm(sid, isec->sid,
3598                            SECCLASS_KERNEL_SERVICE,
3599                            KERNEL_SERVICE__CREATE_FILES_AS,
3600                            NULL);
3601
3602         if (ret == 0)
3603                 tsec->create_sid = isec->sid;
3604         return ret;
3605 }
3606
3607 static int selinux_kernel_module_request(char *kmod_name)
3608 {
3609         u32 sid;
3610         struct common_audit_data ad;
3611
3612         sid = task_sid(current);
3613
3614         ad.type = LSM_AUDIT_DATA_KMOD;
3615         ad.u.kmod_name = kmod_name;
3616
3617         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3618                             SYSTEM__MODULE_REQUEST, &ad);
3619 }
3620
3621 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3622 {
3623         return current_has_perm(p, PROCESS__SETPGID);
3624 }
3625
3626 static int selinux_task_getpgid(struct task_struct *p)
3627 {
3628         return current_has_perm(p, PROCESS__GETPGID);
3629 }
3630
3631 static int selinux_task_getsid(struct task_struct *p)
3632 {
3633         return current_has_perm(p, PROCESS__GETSESSION);
3634 }
3635
3636 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3637 {
3638         *secid = task_sid(p);
3639 }
3640
3641 static int selinux_task_setnice(struct task_struct *p, int nice)
3642 {
3643         int rc;
3644
3645         rc = cap_task_setnice(p, nice);
3646         if (rc)
3647                 return rc;
3648
3649         return current_has_perm(p, PROCESS__SETSCHED);
3650 }
3651
3652 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3653 {
3654         int rc;
3655
3656         rc = cap_task_setioprio(p, ioprio);
3657         if (rc)
3658                 return rc;
3659
3660         return current_has_perm(p, PROCESS__SETSCHED);
3661 }
3662
3663 static int selinux_task_getioprio(struct task_struct *p)
3664 {
3665         return current_has_perm(p, PROCESS__GETSCHED);
3666 }
3667
3668 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3669                 struct rlimit *new_rlim)
3670 {
3671         struct rlimit *old_rlim = p->signal->rlim + resource;
3672
3673         /* Control the ability to change the hard limit (whether
3674            lowering or raising it), so that the hard limit can
3675            later be used as a safe reset point for the soft limit
3676            upon context transitions.  See selinux_bprm_committing_creds. */
3677         if (old_rlim->rlim_max != new_rlim->rlim_max)
3678                 return current_has_perm(p, PROCESS__SETRLIMIT);
3679
3680         return 0;
3681 }
3682
3683 static int selinux_task_setscheduler(struct task_struct *p)
3684 {
3685         int rc;
3686
3687         rc = cap_task_setscheduler(p);
3688         if (rc)
3689                 return rc;
3690
3691         return current_has_perm(p, PROCESS__SETSCHED);
3692 }
3693
3694 static int selinux_task_getscheduler(struct task_struct *p)
3695 {
3696         return current_has_perm(p, PROCESS__GETSCHED);
3697 }
3698
3699 static int selinux_task_movememory(struct task_struct *p)
3700 {
3701         return current_has_perm(p, PROCESS__SETSCHED);
3702 }
3703
3704 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3705                                 int sig, u32 secid)
3706 {
3707         u32 perm;
3708         int rc;
3709
3710         if (!sig)
3711                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3712         else
3713                 perm = signal_to_av(sig);
3714         if (secid)
3715                 rc = avc_has_perm(secid, task_sid(p),
3716                                   SECCLASS_PROCESS, perm, NULL);
3717         else
3718                 rc = current_has_perm(p, perm);
3719         return rc;
3720 }
3721
3722 static int selinux_task_wait(struct task_struct *p)
3723 {
3724         return task_has_perm(p, current, PROCESS__SIGCHLD);
3725 }
3726
3727 static void selinux_task_to_inode(struct task_struct *p,
3728                                   struct inode *inode)
3729 {
3730         struct inode_security_struct *isec = inode->i_security;
3731         u32 sid = task_sid(p);
3732
3733         isec->sid = sid;
3734         isec->initialized = 1;
3735 }
3736
3737 /* Returns error only if unable to parse addresses */
3738 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3739                         struct common_audit_data *ad, u8 *proto)
3740 {
3741         int offset, ihlen, ret = -EINVAL;
3742         struct iphdr _iph, *ih;
3743
3744         offset = skb_network_offset(skb);
3745         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3746         if (ih == NULL)
3747                 goto out;
3748
3749         ihlen = ih->ihl * 4;
3750         if (ihlen < sizeof(_iph))
3751                 goto out;
3752
3753         ad->u.net->v4info.saddr = ih->saddr;
3754         ad->u.net->v4info.daddr = ih->daddr;
3755         ret = 0;
3756
3757         if (proto)
3758                 *proto = ih->protocol;
3759
3760         switch (ih->protocol) {
3761         case IPPROTO_TCP: {
3762                 struct tcphdr _tcph, *th;
3763
3764                 if (ntohs(ih->frag_off) & IP_OFFSET)
3765                         break;
3766
3767                 offset += ihlen;
3768                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3769                 if (th == NULL)
3770                         break;
3771
3772                 ad->u.net->sport = th->source;
3773                 ad->u.net->dport = th->dest;
3774                 break;
3775         }
3776
3777         case IPPROTO_UDP: {
3778                 struct udphdr _udph, *uh;
3779
3780                 if (ntohs(ih->frag_off) & IP_OFFSET)
3781                         break;
3782
3783                 offset += ihlen;
3784                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3785                 if (uh == NULL)
3786                         break;
3787
3788                 ad->u.net->sport = uh->source;
3789                 ad->u.net->dport = uh->dest;
3790                 break;
3791         }
3792
3793         case IPPROTO_DCCP: {
3794                 struct dccp_hdr _dccph, *dh;
3795
3796                 if (ntohs(ih->frag_off) & IP_OFFSET)
3797                         break;
3798
3799                 offset += ihlen;
3800                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3801                 if (dh == NULL)
3802                         break;
3803
3804                 ad->u.net->sport = dh->dccph_sport;
3805                 ad->u.net->dport = dh->dccph_dport;
3806                 break;
3807         }
3808
3809         default:
3810                 break;
3811         }
3812 out:
3813         return ret;
3814 }
3815
3816 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3817
3818 /* Returns error only if unable to parse addresses */
3819 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3820                         struct common_audit_data *ad, u8 *proto)
3821 {
3822         u8 nexthdr;
3823         int ret = -EINVAL, offset;
3824         struct ipv6hdr _ipv6h, *ip6;
3825         __be16 frag_off;
3826
3827         offset = skb_network_offset(skb);
3828         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3829         if (ip6 == NULL)
3830                 goto out;
3831
3832         ad->u.net->v6info.saddr = ip6->saddr;
3833         ad->u.net->v6info.daddr = ip6->daddr;
3834         ret = 0;
3835
3836         nexthdr = ip6->nexthdr;
3837         offset += sizeof(_ipv6h);
3838         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3839         if (offset < 0)
3840                 goto out;
3841
3842         if (proto)
3843                 *proto = nexthdr;
3844
3845         switch (nexthdr) {
3846         case IPPROTO_TCP: {
3847                 struct tcphdr _tcph, *th;
3848
3849                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3850                 if (th == NULL)
3851                         break;
3852
3853                 ad->u.net->sport = th->source;
3854                 ad->u.net->dport = th->dest;
3855                 break;
3856         }
3857
3858         case IPPROTO_UDP: {
3859                 struct udphdr _udph, *uh;
3860
3861                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3862                 if (uh == NULL)
3863                         break;
3864
3865                 ad->u.net->sport = uh->source;
3866                 ad->u.net->dport = uh->dest;
3867                 break;
3868         }
3869
3870         case IPPROTO_DCCP: {
3871                 struct dccp_hdr _dccph, *dh;
3872
3873                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3874                 if (dh == NULL)
3875                         break;
3876
3877                 ad->u.net->sport = dh->dccph_sport;
3878                 ad->u.net->dport = dh->dccph_dport;
3879                 break;
3880         }
3881
3882         /* includes fragments */
3883         default:
3884                 break;
3885         }
3886 out:
3887         return ret;
3888 }
3889
3890 #endif /* IPV6 */
3891
3892 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3893                              char **_addrp, int src, u8 *proto)
3894 {
3895         char *addrp;
3896         int ret;
3897
3898         switch (ad->u.net->family) {
3899         case PF_INET:
3900                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3901                 if (ret)
3902                         goto parse_error;
3903                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3904                                        &ad->u.net->v4info.daddr);
3905                 goto okay;
3906
3907 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3908         case PF_INET6:
3909                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3910                 if (ret)
3911                         goto parse_error;
3912                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3913                                        &ad->u.net->v6info.daddr);
3914                 goto okay;
3915 #endif  /* IPV6 */
3916         default:
3917                 addrp = NULL;
3918                 goto okay;
3919         }
3920
3921 parse_error:
3922         printk(KERN_WARNING
3923                "SELinux: failure in selinux_parse_skb(),"
3924                " unable to parse packet\n");
3925         return ret;
3926
3927 okay:
3928         if (_addrp)
3929                 *_addrp = addrp;
3930         return 0;
3931 }
3932
3933 /**
3934  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3935  * @skb: the packet
3936  * @family: protocol family
3937  * @sid: the packet's peer label SID
3938  *
3939  * Description:
3940  * Check the various different forms of network peer labeling and determine
3941  * the peer label/SID for the packet; most of the magic actually occurs in
3942  * the security server function security_net_peersid_cmp().  The function
3943  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3944  * or -EACCES if @sid is invalid due to inconsistencies with the different
3945  * peer labels.
3946  *
3947  */
3948 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3949 {
3950         int err;
3951         u32 xfrm_sid;
3952         u32 nlbl_sid;
3953         u32 nlbl_type;
3954
3955         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3956         if (unlikely(err))
3957                 return -EACCES;
3958         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3959         if (unlikely(err))
3960                 return -EACCES;
3961
3962         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3963         if (unlikely(err)) {
3964                 printk(KERN_WARNING
3965                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3966                        " unable to determine packet's peer label\n");
3967                 return -EACCES;
3968         }
3969
3970         return 0;
3971 }
3972
3973 /**
3974  * selinux_conn_sid - Determine the child socket label for a connection
3975  * @sk_sid: the parent socket's SID
3976  * @skb_sid: the packet's SID
3977  * @conn_sid: the resulting connection SID
3978  *
3979  * If @skb_sid is valid then the user:role:type information from @sk_sid is
3980  * combined with the MLS information from @skb_sid in order to create
3981  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3982  * of @sk_sid.  Returns zero on success, negative values on failure.
3983  *
3984  */
3985 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3986 {
3987         int err = 0;
3988
3989         if (skb_sid != SECSID_NULL)
3990                 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3991         else
3992                 *conn_sid = sk_sid;
3993
3994         return err;
3995 }
3996
3997 /* socket security operations */
3998
3999 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4000                                  u16 secclass, u32 *socksid)
4001 {
4002         if (tsec->sockcreate_sid > SECSID_NULL) {
4003                 *socksid = tsec->sockcreate_sid;
4004                 return 0;
4005         }
4006
4007         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4008                                        socksid);
4009 }
4010
4011 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4012 {
4013         struct sk_security_struct *sksec = sk->sk_security;
4014         struct common_audit_data ad;
4015         struct lsm_network_audit net = {0,};
4016         u32 tsid = task_sid(task);
4017
4018         if (sksec->sid == SECINITSID_KERNEL)
4019                 return 0;
4020
4021         ad.type = LSM_AUDIT_DATA_NET;
4022         ad.u.net = &net;
4023         ad.u.net->sk = sk;
4024
4025         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4026 }
4027
4028 static int selinux_socket_create(int family, int type,
4029                                  int protocol, int kern)
4030 {
4031         const struct task_security_struct *tsec = current_security();
4032         u32 newsid;
4033         u16 secclass;
4034         int rc;
4035
4036         if (kern)
4037                 return 0;
4038
4039         secclass = socket_type_to_security_class(family, type, protocol);
4040         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4041         if (rc)
4042                 return rc;
4043
4044         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4045 }
4046
4047 static int selinux_socket_post_create(struct socket *sock, int family,
4048                                       int type, int protocol, int kern)
4049 {
4050         const struct task_security_struct *tsec = current_security();
4051         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4052         struct sk_security_struct *sksec;
4053         int err = 0;
4054
4055         isec->sclass = socket_type_to_security_class(family, type, protocol);
4056
4057         if (kern)
4058                 isec->sid = SECINITSID_KERNEL;
4059         else {
4060                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4061                 if (err)
4062                         return err;
4063         }
4064
4065         isec->initialized = 1;
4066
4067         if (sock->sk) {
4068                 sksec = sock->sk->sk_security;
4069                 sksec->sid = isec->sid;
4070                 sksec->sclass = isec->sclass;
4071                 err = selinux_netlbl_socket_post_create(sock->sk, family);
4072         }
4073
4074         return err;
4075 }
4076
4077 /* Range of port numbers used to automatically bind.
4078    Need to determine whether we should perform a name_bind
4079    permission check between the socket and the port number. */
4080
4081 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4082 {
4083         struct sock *sk = sock->sk;
4084         u16 family;
4085         int err;
4086
4087         err = sock_has_perm(current, sk, SOCKET__BIND);
4088         if (err)
4089                 goto out;
4090
4091         /*
4092          * If PF_INET or PF_INET6, check name_bind permission for the port.
4093          * Multiple address binding for SCTP is not supported yet: we just
4094          * check the first address now.
4095          */
4096         family = sk->sk_family;
4097         if (family == PF_INET || family == PF_INET6) {
4098                 char *addrp;
4099                 struct sk_security_struct *sksec = sk->sk_security;
4100                 struct common_audit_data ad;
4101                 struct lsm_network_audit net = {0,};
4102                 struct sockaddr_in *addr4 = NULL;
4103                 struct sockaddr_in6 *addr6 = NULL;
4104                 unsigned short snum;
4105                 u32 sid, node_perm;
4106
4107                 if (family == PF_INET) {
4108                         addr4 = (struct sockaddr_in *)address;
4109                         snum = ntohs(addr4->sin_port);
4110                         addrp = (char *)&addr4->sin_addr.s_addr;
4111                 } else {
4112                         addr6 = (struct sockaddr_in6 *)address;
4113                         snum = ntohs(addr6->sin6_port);
4114                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4115                 }
4116
4117                 if (snum) {
4118                         int low, high;
4119
4120                         inet_get_local_port_range(sock_net(sk), &low, &high);
4121
4122                         if (snum < max(PROT_SOCK, low) || snum > high) {
4123                                 err = sel_netport_sid(sk->sk_protocol,
4124                                                       snum, &sid);
4125                                 if (err)
4126                                         goto out;
4127                                 ad.type = LSM_AUDIT_DATA_NET;
4128                                 ad.u.net = &net;
4129                                 ad.u.net->sport = htons(snum);
4130                                 ad.u.net->family = family;
4131                                 err = avc_has_perm(sksec->sid, sid,
4132                                                    sksec->sclass,
4133                                                    SOCKET__NAME_BIND, &ad);
4134                                 if (err)
4135                                         goto out;
4136                         }
4137                 }
4138
4139                 switch (sksec->sclass) {
4140                 case SECCLASS_TCP_SOCKET:
4141                         node_perm = TCP_SOCKET__NODE_BIND;
4142                         break;
4143
4144                 case SECCLASS_UDP_SOCKET:
4145                         node_perm = UDP_SOCKET__NODE_BIND;
4146                         break;
4147
4148                 case SECCLASS_DCCP_SOCKET:
4149                         node_perm = DCCP_SOCKET__NODE_BIND;
4150                         break;
4151
4152                 default:
4153                         node_perm = RAWIP_SOCKET__NODE_BIND;
4154                         break;
4155                 }
4156
4157                 err = sel_netnode_sid(addrp, family, &sid);
4158                 if (err)
4159                         goto out;
4160
4161                 ad.type = LSM_AUDIT_DATA_NET;
4162                 ad.u.net = &net;
4163                 ad.u.net->sport = htons(snum);
4164                 ad.u.net->family = family;
4165
4166                 if (family == PF_INET)
4167                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4168                 else
4169                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4170
4171                 err = avc_has_perm(sksec->sid, sid,
4172                                    sksec->sclass, node_perm, &ad);
4173                 if (err)
4174                         goto out;
4175         }
4176 out:
4177         return err;
4178 }
4179
4180 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4181 {
4182         struct sock *sk = sock->sk;
4183         struct sk_security_struct *sksec = sk->sk_security;
4184         int err;
4185
4186         err = sock_has_perm(current, sk, SOCKET__CONNECT);
4187         if (err)
4188                 return err;
4189
4190         /*
4191          * If a TCP or DCCP socket, check name_connect permission for the port.
4192          */
4193         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4194             sksec->sclass == SECCLASS_DCCP_SOCKET) {
4195                 struct common_audit_data ad;
4196                 struct lsm_network_audit net = {0,};
4197                 struct sockaddr_in *addr4 = NULL;
4198                 struct sockaddr_in6 *addr6 = NULL;
4199                 unsigned short snum;
4200                 u32 sid, perm;
4201
4202                 if (sk->sk_family == PF_INET) {
4203                         addr4 = (struct sockaddr_in *)address;
4204                         if (addrlen < sizeof(struct sockaddr_in))
4205                                 return -EINVAL;
4206                         snum = ntohs(addr4->sin_port);
4207                 } else {
4208                         addr6 = (struct sockaddr_in6 *)address;
4209                         if (addrlen < SIN6_LEN_RFC2133)
4210                                 return -EINVAL;
4211                         snum = ntohs(addr6->sin6_port);
4212                 }
4213
4214                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4215                 if (err)
4216                         goto out;
4217
4218                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4219                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4220
4221                 ad.type = LSM_AUDIT_DATA_NET;
4222                 ad.u.net = &net;
4223                 ad.u.net->dport = htons(snum);
4224                 ad.u.net->family = sk->sk_family;
4225                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4226                 if (err)
4227                         goto out;
4228         }
4229
4230         err = selinux_netlbl_socket_connect(sk, address);
4231
4232 out:
4233         return err;
4234 }
4235
4236 static int selinux_socket_listen(struct socket *sock, int backlog)
4237 {
4238         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4239 }
4240
4241 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4242 {
4243         int err;
4244         struct inode_security_struct *isec;
4245         struct inode_security_struct *newisec;
4246
4247         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4248         if (err)
4249                 return err;
4250
4251         newisec = SOCK_INODE(newsock)->i_security;
4252
4253         isec = SOCK_INODE(sock)->i_security;
4254         newisec->sclass = isec->sclass;
4255         newisec->sid = isec->sid;
4256         newisec->initialized = 1;
4257
4258         return 0;
4259 }
4260
4261 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4262                                   int size)
4263 {
4264         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4265 }
4266
4267 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4268                                   int size, int flags)
4269 {
4270         return sock_has_perm(current, sock->sk, SOCKET__READ);
4271 }
4272
4273 static int selinux_socket_getsockname(struct socket *sock)
4274 {
4275         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4276 }
4277
4278 static int selinux_socket_getpeername(struct socket *sock)
4279 {
4280         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4281 }
4282
4283 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4284 {
4285         int err;
4286
4287         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4288         if (err)
4289                 return err;
4290
4291         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4292 }
4293
4294 static int selinux_socket_getsockopt(struct socket *sock, int level,
4295                                      int optname)
4296 {
4297         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4298 }
4299
4300 static int selinux_socket_shutdown(struct socket *sock, int how)
4301 {
4302         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4303 }
4304
4305 static int selinux_socket_unix_stream_connect(struct sock *sock,
4306                                               struct sock *other,
4307                                               struct sock *newsk)
4308 {
4309         struct sk_security_struct *sksec_sock = sock->sk_security;
4310         struct sk_security_struct *sksec_other = other->sk_security;
4311         struct sk_security_struct *sksec_new = newsk->sk_security;
4312         struct common_audit_data ad;
4313         struct lsm_network_audit net = {0,};
4314         int err;
4315
4316         ad.type = LSM_AUDIT_DATA_NET;
4317         ad.u.net = &net;
4318         ad.u.net->sk = other;
4319
4320         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4321                            sksec_other->sclass,
4322                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4323         if (err)
4324                 return err;
4325
4326         /* server child socket */
4327         sksec_new->peer_sid = sksec_sock->sid;
4328         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4329                                     &sksec_new->sid);
4330         if (err)
4331                 return err;
4332
4333         /* connecting socket */
4334         sksec_sock->peer_sid = sksec_new->sid;
4335
4336         return 0;
4337 }
4338
4339 static int selinux_socket_unix_may_send(struct socket *sock,
4340                                         struct socket *other)
4341 {
4342         struct sk_security_struct *ssec = sock->sk->sk_security;
4343         struct sk_security_struct *osec = other->sk->sk_security;
4344         struct common_audit_data ad;
4345         struct lsm_network_audit net = {0,};
4346
4347         ad.type = LSM_AUDIT_DATA_NET;
4348         ad.u.net = &net;
4349         ad.u.net->sk = other->sk;
4350
4351         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4352                             &ad);
4353 }
4354
4355 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4356                                     char *addrp, u16 family, u32 peer_sid,
4357                                     struct common_audit_data *ad)
4358 {
4359         int err;
4360         u32 if_sid;
4361         u32 node_sid;
4362
4363         err = sel_netif_sid(ns, ifindex, &if_sid);
4364         if (err)
4365                 return err;
4366         err = avc_has_perm(peer_sid, if_sid,
4367                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4368         if (err)
4369                 return err;
4370
4371         err = sel_netnode_sid(addrp, family, &node_sid);
4372         if (err)
4373                 return err;
4374         return avc_has_perm(peer_sid, node_sid,
4375                             SECCLASS_NODE, NODE__RECVFROM, ad);
4376 }
4377
4378 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4379                                        u16 family)
4380 {
4381         int err = 0;
4382         struct sk_security_struct *sksec = sk->sk_security;
4383         u32 sk_sid = sksec->sid;
4384         struct common_audit_data ad;
4385         struct lsm_network_audit net = {0,};
4386         char *addrp;
4387
4388         ad.type = LSM_AUDIT_DATA_NET;
4389         ad.u.net = &net;
4390         ad.u.net->netif = skb->skb_iif;
4391         ad.u.net->family = family;
4392         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4393         if (err)
4394                 return err;
4395
4396         if (selinux_secmark_enabled()) {
4397                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4398                                    PACKET__RECV, &ad);
4399                 if (err)
4400                         return err;
4401         }
4402
4403         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4404         if (err)
4405                 return err;
4406         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4407
4408         return err;
4409 }
4410
4411 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4412 {
4413         int err;
4414         struct sk_security_struct *sksec = sk->sk_security;
4415         u16 family = sk->sk_family;
4416         u32 sk_sid = sksec->sid;
4417         struct common_audit_data ad;
4418         struct lsm_network_audit net = {0,};
4419         char *addrp;
4420         u8 secmark_active;
4421         u8 peerlbl_active;
4422
4423         if (family != PF_INET && family != PF_INET6)
4424                 return 0;
4425
4426         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4427         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4428                 family = PF_INET;
4429
4430         /* If any sort of compatibility mode is enabled then handoff processing
4431          * to the selinux_sock_rcv_skb_compat() function to deal with the
4432          * special handling.  We do this in an attempt to keep this function
4433          * as fast and as clean as possible. */
4434         if (!selinux_policycap_netpeer)
4435                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4436
4437         secmark_active = selinux_secmark_enabled();
4438         peerlbl_active = selinux_peerlbl_enabled();
4439         if (!secmark_active && !peerlbl_active)
4440                 return 0;
4441
4442         ad.type = LSM_AUDIT_DATA_NET;
4443         ad.u.net = &net;
4444         ad.u.net->netif = skb->skb_iif;
4445         ad.u.net->family = family;
4446         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4447         if (err)
4448                 return err;
4449
4450         if (peerlbl_active) {
4451                 u32 peer_sid;
4452
4453                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4454                 if (err)
4455                         return err;
4456                 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4457                                                addrp, family, peer_sid, &ad);
4458                 if (err) {
4459                         selinux_netlbl_err(skb, err, 0);
4460                         return err;
4461                 }
4462                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4463                                    PEER__RECV, &ad);
4464                 if (err) {
4465                         selinux_netlbl_err(skb, err, 0);
4466                         return err;
4467                 }
4468         }
4469
4470         if (secmark_active) {
4471                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4472                                    PACKET__RECV, &ad);
4473                 if (err)
4474                         return err;
4475         }
4476
4477         return err;
4478 }
4479
4480 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4481                                             int __user *optlen, unsigned len)
4482 {
4483         int err = 0;
4484         char *scontext;
4485         u32 scontext_len;
4486         struct sk_security_struct *sksec = sock->sk->sk_security;
4487         u32 peer_sid = SECSID_NULL;
4488
4489         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4490             sksec->sclass == SECCLASS_TCP_SOCKET)
4491                 peer_sid = sksec->peer_sid;
4492         if (peer_sid == SECSID_NULL)
4493                 return -ENOPROTOOPT;
4494
4495         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4496         if (err)
4497                 return err;
4498
4499         if (scontext_len > len) {
4500                 err = -ERANGE;
4501                 goto out_len;
4502         }
4503
4504         if (copy_to_user(optval, scontext, scontext_len))
4505                 err = -EFAULT;
4506
4507 out_len:
4508         if (put_user(scontext_len, optlen))
4509                 err = -EFAULT;
4510         kfree(scontext);
4511         return err;
4512 }
4513
4514 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4515 {
4516         u32 peer_secid = SECSID_NULL;
4517         u16 family;
4518
4519         if (skb && skb->protocol == htons(ETH_P_IP))
4520                 family = PF_INET;
4521         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4522                 family = PF_INET6;
4523         else if (sock)
4524                 family = sock->sk->sk_family;
4525         else
4526                 goto out;
4527
4528         if (sock && family == PF_UNIX)
4529                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4530         else if (skb)
4531                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4532
4533 out:
4534         *secid = peer_secid;
4535         if (peer_secid == SECSID_NULL)
4536                 return -EINVAL;
4537         return 0;
4538 }
4539
4540 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4541 {
4542         struct sk_security_struct *sksec;
4543
4544         sksec = kzalloc(sizeof(*sksec), priority);
4545         if (!sksec)
4546                 return -ENOMEM;
4547
4548         sksec->peer_sid = SECINITSID_UNLABELED;
4549         sksec->sid = SECINITSID_UNLABELED;
4550         selinux_netlbl_sk_security_reset(sksec);
4551         sk->sk_security = sksec;
4552
4553         return 0;
4554 }
4555
4556 static void selinux_sk_free_security(struct sock *sk)
4557 {
4558         struct sk_security_struct *sksec = sk->sk_security;
4559
4560         sk->sk_security = NULL;
4561         selinux_netlbl_sk_security_free(sksec);
4562         kfree(sksec);
4563 }
4564
4565 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4566 {
4567         struct sk_security_struct *sksec = sk->sk_security;
4568         struct sk_security_struct *newsksec = newsk->sk_security;
4569
4570         newsksec->sid = sksec->sid;
4571         newsksec->peer_sid = sksec->peer_sid;
4572         newsksec->sclass = sksec->sclass;
4573
4574         selinux_netlbl_sk_security_reset(newsksec);
4575 }
4576
4577 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4578 {
4579         if (!sk)
4580                 *secid = SECINITSID_ANY_SOCKET;
4581         else {
4582                 struct sk_security_struct *sksec = sk->sk_security;
4583
4584                 *secid = sksec->sid;
4585         }
4586 }
4587
4588 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4589 {
4590         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4591         struct sk_security_struct *sksec = sk->sk_security;
4592
4593         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4594             sk->sk_family == PF_UNIX)
4595                 isec->sid = sksec->sid;
4596         sksec->sclass = isec->sclass;
4597 }
4598
4599 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4600                                      struct request_sock *req)
4601 {
4602         struct sk_security_struct *sksec = sk->sk_security;
4603         int err;
4604         u16 family = req->rsk_ops->family;
4605         u32 connsid;
4606         u32 peersid;
4607
4608         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4609         if (err)
4610                 return err;
4611         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4612         if (err)
4613                 return err;
4614         req->secid = connsid;
4615         req->peer_secid = peersid;
4616
4617         return selinux_netlbl_inet_conn_request(req, family);
4618 }
4619
4620 static void selinux_inet_csk_clone(struct sock *newsk,
4621                                    const struct request_sock *req)
4622 {
4623         struct sk_security_struct *newsksec = newsk->sk_security;
4624
4625         newsksec->sid = req->secid;
4626         newsksec->peer_sid = req->peer_secid;
4627         /* NOTE: Ideally, we should also get the isec->sid for the
4628            new socket in sync, but we don't have the isec available yet.
4629            So we will wait until sock_graft to do it, by which
4630            time it will have been created and available. */
4631
4632         /* We don't need to take any sort of lock here as we are the only
4633          * thread with access to newsksec */
4634         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4635 }
4636
4637 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4638 {
4639         u16 family = sk->sk_family;
4640         struct sk_security_struct *sksec = sk->sk_security;
4641
4642         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4643         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4644                 family = PF_INET;
4645
4646         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4647 }
4648
4649 static int selinux_secmark_relabel_packet(u32 sid)
4650 {
4651         const struct task_security_struct *__tsec;
4652         u32 tsid;
4653
4654         __tsec = current_security();
4655         tsid = __tsec->sid;
4656
4657         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4658 }
4659
4660 static void selinux_secmark_refcount_inc(void)
4661 {
4662         atomic_inc(&selinux_secmark_refcount);
4663 }
4664
4665 static void selinux_secmark_refcount_dec(void)
4666 {
4667         atomic_dec(&selinux_secmark_refcount);
4668 }
4669
4670 static void selinux_req_classify_flow(const struct request_sock *req,
4671                                       struct flowi *fl)
4672 {
4673         fl->flowi_secid = req->secid;
4674 }
4675
4676 static int selinux_tun_dev_alloc_security(void **security)
4677 {
4678         struct tun_security_struct *tunsec;
4679
4680         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4681         if (!tunsec)
4682                 return -ENOMEM;
4683         tunsec->sid = current_sid();
4684
4685         *security = tunsec;
4686         return 0;
4687 }
4688
4689 static void selinux_tun_dev_free_security(void *security)
4690 {
4691         kfree(security);
4692 }
4693
4694 static int selinux_tun_dev_create(void)
4695 {
4696         u32 sid = current_sid();
4697
4698         /* we aren't taking into account the "sockcreate" SID since the socket
4699          * that is being created here is not a socket in the traditional sense,
4700          * instead it is a private sock, accessible only to the kernel, and
4701          * representing a wide range of network traffic spanning multiple
4702          * connections unlike traditional sockets - check the TUN driver to
4703          * get a better understanding of why this socket is special */
4704
4705         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4706                             NULL);
4707 }
4708
4709 static int selinux_tun_dev_attach_queue(void *security)
4710 {
4711         struct tun_security_struct *tunsec = security;
4712
4713         return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4714                             TUN_SOCKET__ATTACH_QUEUE, NULL);
4715 }
4716
4717 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4718 {
4719         struct tun_security_struct *tunsec = security;
4720         struct sk_security_struct *sksec = sk->sk_security;
4721
4722         /* we don't currently perform any NetLabel based labeling here and it
4723          * isn't clear that we would want to do so anyway; while we could apply
4724          * labeling without the support of the TUN user the resulting labeled
4725          * traffic from the other end of the connection would almost certainly
4726          * cause confusion to the TUN user that had no idea network labeling
4727          * protocols were being used */
4728
4729         sksec->sid = tunsec->sid;
4730         sksec->sclass = SECCLASS_TUN_SOCKET;
4731
4732         return 0;
4733 }
4734
4735 static int selinux_tun_dev_open(void *security)
4736 {
4737         struct tun_security_struct *tunsec = security;
4738         u32 sid = current_sid();
4739         int err;
4740
4741         err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4742                            TUN_SOCKET__RELABELFROM, NULL);
4743         if (err)
4744                 return err;
4745         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4746                            TUN_SOCKET__RELABELTO, NULL);
4747         if (err)
4748                 return err;
4749         tunsec->sid = sid;
4750
4751         return 0;
4752 }
4753
4754 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4755 {
4756         int err = 0;
4757         u32 perm;
4758         struct nlmsghdr *nlh;
4759         struct sk_security_struct *sksec = sk->sk_security;
4760
4761         if (skb->len < NLMSG_HDRLEN) {
4762                 err = -EINVAL;
4763                 goto out;
4764         }
4765         nlh = nlmsg_hdr(skb);
4766
4767         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4768         if (err) {
4769                 if (err == -EINVAL) {
4770                         printk(KERN_WARNING
4771                                "SELinux: unrecognized netlink message:"
4772                                " protocol=%hu nlmsg_type=%hu sclass=%hu\n",
4773                                sk->sk_protocol, nlh->nlmsg_type, sksec->sclass);
4774                         if (!selinux_enforcing || security_get_allow_unknown())
4775                                 err = 0;
4776                 }
4777
4778                 /* Ignore */
4779                 if (err == -ENOENT)
4780                         err = 0;
4781                 goto out;
4782         }
4783
4784         err = sock_has_perm(current, sk, perm);
4785 out:
4786         return err;
4787 }
4788
4789 #ifdef CONFIG_NETFILTER
4790
4791 static unsigned int selinux_ip_forward(struct sk_buff *skb,
4792                                        const struct net_device *indev,
4793                                        u16 family)
4794 {
4795         int err;
4796         char *addrp;
4797         u32 peer_sid;
4798         struct common_audit_data ad;
4799         struct lsm_network_audit net = {0,};
4800         u8 secmark_active;
4801         u8 netlbl_active;
4802         u8 peerlbl_active;
4803
4804         if (!selinux_policycap_netpeer)
4805                 return NF_ACCEPT;
4806
4807         secmark_active = selinux_secmark_enabled();
4808         netlbl_active = netlbl_enabled();
4809         peerlbl_active = selinux_peerlbl_enabled();
4810         if (!secmark_active && !peerlbl_active)
4811                 return NF_ACCEPT;
4812
4813         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4814                 return NF_DROP;
4815
4816         ad.type = LSM_AUDIT_DATA_NET;
4817         ad.u.net = &net;
4818         ad.u.net->netif = indev->ifindex;
4819         ad.u.net->family = family;
4820         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4821                 return NF_DROP;
4822
4823         if (peerlbl_active) {
4824                 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4825                                                addrp, family, peer_sid, &ad);
4826                 if (err) {
4827                         selinux_netlbl_err(skb, err, 1);
4828                         return NF_DROP;
4829                 }
4830         }
4831
4832         if (secmark_active)
4833                 if (avc_has_perm(peer_sid, skb->secmark,
4834                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4835                         return NF_DROP;
4836
4837         if (netlbl_active)
4838                 /* we do this in the FORWARD path and not the POST_ROUTING
4839                  * path because we want to make sure we apply the necessary
4840                  * labeling before IPsec is applied so we can leverage AH
4841                  * protection */
4842                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4843                         return NF_DROP;
4844
4845         return NF_ACCEPT;
4846 }
4847
4848 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4849                                          struct sk_buff *skb,
4850                                          const struct nf_hook_state *state)
4851 {
4852         return selinux_ip_forward(skb, state->in, PF_INET);
4853 }
4854
4855 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4856 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4857                                          struct sk_buff *skb,
4858                                          const struct nf_hook_state *state)
4859 {
4860         return selinux_ip_forward(skb, state->in, PF_INET6);
4861 }
4862 #endif  /* IPV6 */
4863
4864 static unsigned int selinux_ip_output(struct sk_buff *skb,
4865                                       u16 family)
4866 {
4867         struct sock *sk;
4868         u32 sid;
4869
4870         if (!netlbl_enabled())
4871                 return NF_ACCEPT;
4872
4873         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4874          * because we want to make sure we apply the necessary labeling
4875          * before IPsec is applied so we can leverage AH protection */
4876         sk = skb->sk;
4877         if (sk) {
4878                 struct sk_security_struct *sksec;
4879
4880                 if (sk->sk_state == TCP_LISTEN)
4881                         /* if the socket is the listening state then this
4882                          * packet is a SYN-ACK packet which means it needs to
4883                          * be labeled based on the connection/request_sock and
4884                          * not the parent socket.  unfortunately, we can't
4885                          * lookup the request_sock yet as it isn't queued on
4886                          * the parent socket until after the SYN-ACK is sent.
4887                          * the "solution" is to simply pass the packet as-is
4888                          * as any IP option based labeling should be copied
4889                          * from the initial connection request (in the IP
4890                          * layer).  it is far from ideal, but until we get a
4891                          * security label in the packet itself this is the
4892                          * best we can do. */
4893                         return NF_ACCEPT;
4894
4895                 /* standard practice, label using the parent socket */
4896                 sksec = sk->sk_security;
4897                 sid = sksec->sid;
4898         } else
4899                 sid = SECINITSID_KERNEL;
4900         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4901                 return NF_DROP;
4902
4903         return NF_ACCEPT;
4904 }
4905
4906 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4907                                         struct sk_buff *skb,
4908                                         const struct nf_hook_state *state)
4909 {
4910         return selinux_ip_output(skb, PF_INET);
4911 }
4912
4913 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4914                                                 int ifindex,
4915                                                 u16 family)
4916 {
4917         struct sock *sk = skb->sk;
4918         struct sk_security_struct *sksec;
4919         struct common_audit_data ad;
4920         struct lsm_network_audit net = {0,};
4921         char *addrp;
4922         u8 proto;
4923
4924         if (sk == NULL)
4925                 return NF_ACCEPT;
4926         sksec = sk->sk_security;
4927
4928         ad.type = LSM_AUDIT_DATA_NET;
4929         ad.u.net = &net;
4930         ad.u.net->netif = ifindex;
4931         ad.u.net->family = family;
4932         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4933                 return NF_DROP;
4934
4935         if (selinux_secmark_enabled())
4936                 if (avc_has_perm(sksec->sid, skb->secmark,
4937                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4938                         return NF_DROP_ERR(-ECONNREFUSED);
4939
4940         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4941                 return NF_DROP_ERR(-ECONNREFUSED);
4942
4943         return NF_ACCEPT;
4944 }
4945
4946 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
4947                                          const struct net_device *outdev,
4948                                          u16 family)
4949 {
4950         u32 secmark_perm;
4951         u32 peer_sid;
4952         int ifindex = outdev->ifindex;
4953         struct sock *sk;
4954         struct common_audit_data ad;
4955         struct lsm_network_audit net = {0,};
4956         char *addrp;
4957         u8 secmark_active;
4958         u8 peerlbl_active;
4959
4960         /* If any sort of compatibility mode is enabled then handoff processing
4961          * to the selinux_ip_postroute_compat() function to deal with the
4962          * special handling.  We do this in an attempt to keep this function
4963          * as fast and as clean as possible. */
4964         if (!selinux_policycap_netpeer)
4965                 return selinux_ip_postroute_compat(skb, ifindex, family);
4966
4967         secmark_active = selinux_secmark_enabled();
4968         peerlbl_active = selinux_peerlbl_enabled();
4969         if (!secmark_active && !peerlbl_active)
4970                 return NF_ACCEPT;
4971
4972         sk = skb->sk;
4973
4974 #ifdef CONFIG_XFRM
4975         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4976          * packet transformation so allow the packet to pass without any checks
4977          * since we'll have another chance to perform access control checks
4978          * when the packet is on it's final way out.
4979          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4980          *       is NULL, in this case go ahead and apply access control.
4981          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4982          *       TCP listening state we cannot wait until the XFRM processing
4983          *       is done as we will miss out on the SA label if we do;
4984          *       unfortunately, this means more work, but it is only once per
4985          *       connection. */
4986         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4987             !(sk != NULL && sk->sk_state == TCP_LISTEN))
4988                 return NF_ACCEPT;
4989 #endif
4990
4991         if (sk == NULL) {
4992                 /* Without an associated socket the packet is either coming
4993                  * from the kernel or it is being forwarded; check the packet
4994                  * to determine which and if the packet is being forwarded
4995                  * query the packet directly to determine the security label. */
4996                 if (skb->skb_iif) {
4997                         secmark_perm = PACKET__FORWARD_OUT;
4998                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4999                                 return NF_DROP;
5000                 } else {
5001                         secmark_perm = PACKET__SEND;
5002                         peer_sid = SECINITSID_KERNEL;
5003                 }
5004         } else if (sk->sk_state == TCP_LISTEN) {
5005                 /* Locally generated packet but the associated socket is in the
5006                  * listening state which means this is a SYN-ACK packet.  In
5007                  * this particular case the correct security label is assigned
5008                  * to the connection/request_sock but unfortunately we can't
5009                  * query the request_sock as it isn't queued on the parent
5010                  * socket until after the SYN-ACK packet is sent; the only
5011                  * viable choice is to regenerate the label like we do in
5012                  * selinux_inet_conn_request().  See also selinux_ip_output()
5013                  * for similar problems. */
5014                 u32 skb_sid;
5015                 struct sk_security_struct *sksec = sk->sk_security;
5016                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5017                         return NF_DROP;
5018                 /* At this point, if the returned skb peerlbl is SECSID_NULL
5019                  * and the packet has been through at least one XFRM
5020                  * transformation then we must be dealing with the "final"
5021                  * form of labeled IPsec packet; since we've already applied
5022                  * all of our access controls on this packet we can safely
5023                  * pass the packet. */
5024                 if (skb_sid == SECSID_NULL) {
5025                         switch (family) {
5026                         case PF_INET:
5027                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5028                                         return NF_ACCEPT;
5029                                 break;
5030                         case PF_INET6:
5031                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5032                                         return NF_ACCEPT;
5033                                 break;
5034                         default:
5035                                 return NF_DROP_ERR(-ECONNREFUSED);
5036                         }
5037                 }
5038                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5039                         return NF_DROP;
5040                 secmark_perm = PACKET__SEND;
5041         } else {
5042                 /* Locally generated packet, fetch the security label from the
5043                  * associated socket. */
5044                 struct sk_security_struct *sksec = sk->sk_security;
5045                 peer_sid = sksec->sid;
5046                 secmark_perm = PACKET__SEND;
5047         }
5048
5049         ad.type = LSM_AUDIT_DATA_NET;
5050         ad.u.net = &net;
5051         ad.u.net->netif = ifindex;
5052         ad.u.net->family = family;
5053         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5054                 return NF_DROP;
5055
5056         if (secmark_active)
5057                 if (avc_has_perm(peer_sid, skb->secmark,
5058                                  SECCLASS_PACKET, secmark_perm, &ad))
5059                         return NF_DROP_ERR(-ECONNREFUSED);
5060
5061         if (peerlbl_active) {
5062                 u32 if_sid;
5063                 u32 node_sid;
5064
5065                 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5066                         return NF_DROP;
5067                 if (avc_has_perm(peer_sid, if_sid,
5068                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
5069                         return NF_DROP_ERR(-ECONNREFUSED);
5070
5071                 if (sel_netnode_sid(addrp, family, &node_sid))
5072                         return NF_DROP;
5073                 if (avc_has_perm(peer_sid, node_sid,
5074                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5075                         return NF_DROP_ERR(-ECONNREFUSED);
5076         }
5077
5078         return NF_ACCEPT;
5079 }
5080
5081 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5082                                            struct sk_buff *skb,
5083                                            const struct nf_hook_state *state)
5084 {
5085         return selinux_ip_postroute(skb, state->out, PF_INET);
5086 }
5087
5088 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5089 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5090                                            struct sk_buff *skb,
5091                                            const struct nf_hook_state *state)
5092 {
5093         return selinux_ip_postroute(skb, state->out, PF_INET6);
5094 }
5095 #endif  /* IPV6 */
5096
5097 #endif  /* CONFIG_NETFILTER */
5098
5099 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5100 {
5101         int err;
5102
5103         err = cap_netlink_send(sk, skb);
5104         if (err)
5105                 return err;
5106
5107         return selinux_nlmsg_perm(sk, skb);
5108 }
5109
5110 static int ipc_alloc_security(struct task_struct *task,
5111                               struct kern_ipc_perm *perm,
5112                               u16 sclass)
5113 {
5114         struct ipc_security_struct *isec;
5115         u32 sid;
5116
5117         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5118         if (!isec)
5119                 return -ENOMEM;
5120
5121         sid = task_sid(task);
5122         isec->sclass = sclass;
5123         isec->sid = sid;
5124         perm->security = isec;
5125
5126         return 0;
5127 }
5128
5129 static void ipc_free_security(struct kern_ipc_perm *perm)
5130 {
5131         struct ipc_security_struct *isec = perm->security;
5132         perm->security = NULL;
5133         kfree(isec);
5134 }
5135
5136 static int msg_msg_alloc_security(struct msg_msg *msg)
5137 {
5138         struct msg_security_struct *msec;
5139
5140         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5141         if (!msec)
5142                 return -ENOMEM;
5143
5144         msec->sid = SECINITSID_UNLABELED;
5145         msg->security = msec;
5146
5147         return 0;
5148 }
5149
5150 static void msg_msg_free_security(struct msg_msg *msg)
5151 {
5152         struct msg_security_struct *msec = msg->security;
5153
5154         msg->security = NULL;
5155         kfree(msec);
5156 }
5157
5158 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5159                         u32 perms)
5160 {
5161         struct ipc_security_struct *isec;
5162         struct common_audit_data ad;
5163         u32 sid = current_sid();
5164
5165         isec = ipc_perms->security;
5166
5167         ad.type = LSM_AUDIT_DATA_IPC;
5168         ad.u.ipc_id = ipc_perms->key;
5169
5170         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5171 }
5172
5173 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5174 {
5175         return msg_msg_alloc_security(msg);
5176 }
5177
5178 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5179 {
5180         msg_msg_free_security(msg);
5181 }
5182
5183 /* message queue security operations */
5184 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5185 {
5186         struct ipc_security_struct *isec;
5187         struct common_audit_data ad;
5188         u32 sid = current_sid();
5189         int rc;
5190
5191         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5192         if (rc)
5193                 return rc;
5194
5195         isec = msq->q_perm.security;
5196
5197         ad.type = LSM_AUDIT_DATA_IPC;
5198         ad.u.ipc_id = msq->q_perm.key;
5199
5200         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5201                           MSGQ__CREATE, &ad);
5202         if (rc) {
5203                 ipc_free_security(&msq->q_perm);
5204                 return rc;
5205         }
5206         return 0;
5207 }
5208
5209 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5210 {
5211         ipc_free_security(&msq->q_perm);
5212 }
5213
5214 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5215 {
5216         struct ipc_security_struct *isec;
5217         struct common_audit_data ad;
5218         u32 sid = current_sid();
5219
5220         isec = msq->q_perm.security;
5221
5222         ad.type = LSM_AUDIT_DATA_IPC;
5223         ad.u.ipc_id = msq->q_perm.key;
5224
5225         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5226                             MSGQ__ASSOCIATE, &ad);
5227 }
5228
5229 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5230 {
5231         int err;
5232         int perms;
5233
5234         switch (cmd) {
5235         case IPC_INFO:
5236         case MSG_INFO:
5237                 /* No specific object, just general system-wide information. */
5238                 return task_has_system(current, SYSTEM__IPC_INFO);
5239         case IPC_STAT:
5240         case MSG_STAT:
5241                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5242                 break;
5243         case IPC_SET:
5244                 perms = MSGQ__SETATTR;
5245                 break;
5246         case IPC_RMID:
5247                 perms = MSGQ__DESTROY;
5248                 break;
5249         default:
5250                 return 0;
5251         }
5252
5253         err = ipc_has_perm(&msq->q_perm, perms);
5254         return err;
5255 }
5256
5257 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5258 {
5259         struct ipc_security_struct *isec;
5260         struct msg_security_struct *msec;
5261         struct common_audit_data ad;
5262         u32 sid = current_sid();
5263         int rc;
5264
5265         isec = msq->q_perm.security;
5266         msec = msg->security;
5267
5268         /*
5269          * First time through, need to assign label to the message
5270          */
5271         if (msec->sid == SECINITSID_UNLABELED) {
5272                 /*
5273                  * Compute new sid based on current process and
5274                  * message queue this message will be stored in
5275                  */
5276                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5277                                              NULL, &msec->sid);
5278                 if (rc)
5279                         return rc;
5280         }
5281
5282         ad.type = LSM_AUDIT_DATA_IPC;
5283         ad.u.ipc_id = msq->q_perm.key;
5284
5285         /* Can this process write to the queue? */
5286         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5287                           MSGQ__WRITE, &ad);
5288         if (!rc)
5289                 /* Can this process send the message */
5290                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5291                                   MSG__SEND, &ad);
5292         if (!rc)
5293                 /* Can the message be put in the queue? */
5294                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5295                                   MSGQ__ENQUEUE, &ad);
5296
5297         return rc;
5298 }
5299
5300 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5301                                     struct task_struct *target,
5302                                     long type, int mode)
5303 {
5304         struct ipc_security_struct *isec;
5305         struct msg_security_struct *msec;
5306         struct common_audit_data ad;
5307         u32 sid = task_sid(target);
5308         int rc;
5309
5310         isec = msq->q_perm.security;
5311         msec = msg->security;
5312
5313         ad.type = LSM_AUDIT_DATA_IPC;
5314         ad.u.ipc_id = msq->q_perm.key;
5315
5316         rc = avc_has_perm(sid, isec->sid,
5317                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5318         if (!rc)
5319                 rc = avc_has_perm(sid, msec->sid,
5320                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5321         return rc;
5322 }
5323
5324 /* Shared Memory security operations */
5325 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5326 {
5327         struct ipc_security_struct *isec;
5328         struct common_audit_data ad;
5329         u32 sid = current_sid();
5330         int rc;
5331
5332         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5333         if (rc)
5334                 return rc;
5335
5336         isec = shp->shm_perm.security;
5337
5338         ad.type = LSM_AUDIT_DATA_IPC;
5339         ad.u.ipc_id = shp->shm_perm.key;
5340
5341         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5342                           SHM__CREATE, &ad);
5343         if (rc) {
5344                 ipc_free_security(&shp->shm_perm);
5345                 return rc;
5346         }
5347         return 0;
5348 }
5349
5350 static void selinux_shm_free_security(struct shmid_kernel *shp)
5351 {
5352         ipc_free_security(&shp->shm_perm);
5353 }
5354
5355 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5356 {
5357         struct ipc_security_struct *isec;
5358         struct common_audit_data ad;
5359         u32 sid = current_sid();
5360
5361         isec = shp->shm_perm.security;
5362
5363         ad.type = LSM_AUDIT_DATA_IPC;
5364         ad.u.ipc_id = shp->shm_perm.key;
5365
5366         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5367                             SHM__ASSOCIATE, &ad);
5368 }
5369
5370 /* Note, at this point, shp is locked down */
5371 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5372 {
5373         int perms;
5374         int err;
5375
5376         switch (cmd) {
5377         case IPC_INFO:
5378         case SHM_INFO:
5379                 /* No specific object, just general system-wide information. */
5380                 return task_has_system(current, SYSTEM__IPC_INFO);
5381         case IPC_STAT:
5382         case SHM_STAT:
5383                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5384                 break;
5385         case IPC_SET:
5386                 perms = SHM__SETATTR;
5387                 break;
5388         case SHM_LOCK:
5389         case SHM_UNLOCK:
5390                 perms = SHM__LOCK;
5391                 break;
5392         case IPC_RMID:
5393                 perms = SHM__DESTROY;
5394                 break;
5395         default:
5396                 return 0;
5397         }
5398
5399         err = ipc_has_perm(&shp->shm_perm, perms);
5400         return err;
5401 }
5402
5403 static int selinux_shm_shmat(struct shmid_kernel *shp,
5404                              char __user *shmaddr, int shmflg)
5405 {
5406         u32 perms;
5407
5408         if (shmflg & SHM_RDONLY)
5409                 perms = SHM__READ;
5410         else
5411                 perms = SHM__READ | SHM__WRITE;
5412
5413         return ipc_has_perm(&shp->shm_perm, perms);
5414 }
5415
5416 /* Semaphore security operations */
5417 static int selinux_sem_alloc_security(struct sem_array *sma)
5418 {
5419         struct ipc_security_struct *isec;
5420         struct common_audit_data ad;
5421         u32 sid = current_sid();
5422         int rc;
5423
5424         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5425         if (rc)
5426                 return rc;
5427
5428         isec = sma->sem_perm.security;
5429
5430         ad.type = LSM_AUDIT_DATA_IPC;
5431         ad.u.ipc_id = sma->sem_perm.key;
5432
5433         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5434                           SEM__CREATE, &ad);
5435         if (rc) {
5436                 ipc_free_security(&sma->sem_perm);
5437                 return rc;
5438         }
5439         return 0;
5440 }
5441
5442 static void selinux_sem_free_security(struct sem_array *sma)
5443 {
5444         ipc_free_security(&sma->sem_perm);
5445 }
5446
5447 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5448 {
5449         struct ipc_security_struct *isec;
5450         struct common_audit_data ad;
5451         u32 sid = current_sid();
5452
5453         isec = sma->sem_perm.security;
5454
5455         ad.type = LSM_AUDIT_DATA_IPC;
5456         ad.u.ipc_id = sma->sem_perm.key;
5457
5458         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5459                             SEM__ASSOCIATE, &ad);
5460 }
5461
5462 /* Note, at this point, sma is locked down */
5463 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5464 {
5465         int err;
5466         u32 perms;
5467
5468         switch (cmd) {
5469         case IPC_INFO:
5470         case SEM_INFO:
5471                 /* No specific object, just general system-wide information. */
5472                 return task_has_system(current, SYSTEM__IPC_INFO);
5473         case GETPID:
5474         case GETNCNT:
5475         case GETZCNT:
5476                 perms = SEM__GETATTR;
5477                 break;
5478         case GETVAL:
5479         case GETALL:
5480                 perms = SEM__READ;
5481                 break;
5482         case SETVAL:
5483         case SETALL:
5484                 perms = SEM__WRITE;
5485                 break;
5486         case IPC_RMID:
5487                 perms = SEM__DESTROY;
5488                 break;
5489         case IPC_SET:
5490                 perms = SEM__SETATTR;
5491                 break;
5492         case IPC_STAT:
5493         case SEM_STAT:
5494                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5495                 break;
5496         default:
5497                 return 0;
5498         }
5499
5500         err = ipc_has_perm(&sma->sem_perm, perms);
5501         return err;
5502 }
5503
5504 static int selinux_sem_semop(struct sem_array *sma,
5505                              struct sembuf *sops, unsigned nsops, int alter)
5506 {
5507         u32 perms;
5508
5509         if (alter)
5510                 perms = SEM__READ | SEM__WRITE;
5511         else
5512                 perms = SEM__READ;
5513
5514         return ipc_has_perm(&sma->sem_perm, perms);
5515 }
5516
5517 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5518 {
5519         u32 av = 0;
5520
5521         av = 0;
5522         if (flag & S_IRUGO)
5523                 av |= IPC__UNIX_READ;
5524         if (flag & S_IWUGO)
5525                 av |= IPC__UNIX_WRITE;
5526
5527         if (av == 0)
5528                 return 0;
5529
5530         return ipc_has_perm(ipcp, av);
5531 }
5532
5533 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5534 {
5535         struct ipc_security_struct *isec = ipcp->security;
5536         *secid = isec->sid;
5537 }
5538
5539 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5540 {
5541         if (inode)
5542                 inode_doinit_with_dentry(inode, dentry);
5543 }
5544
5545 static int selinux_getprocattr(struct task_struct *p,
5546                                char *name, char **value)
5547 {
5548         const struct task_security_struct *__tsec;
5549         u32 sid;
5550         int error;
5551         unsigned len;
5552
5553         if (current != p) {
5554                 error = current_has_perm(p, PROCESS__GETATTR);
5555                 if (error)
5556                         return error;
5557         }
5558
5559         rcu_read_lock();
5560         __tsec = __task_cred(p)->security;
5561
5562         if (!strcmp(name, "current"))
5563                 sid = __tsec->sid;
5564         else if (!strcmp(name, "prev"))
5565                 sid = __tsec->osid;
5566         else if (!strcmp(name, "exec"))
5567                 sid = __tsec->exec_sid;
5568         else if (!strcmp(name, "fscreate"))
5569                 sid = __tsec->create_sid;
5570         else if (!strcmp(name, "keycreate"))
5571                 sid = __tsec->keycreate_sid;
5572         else if (!strcmp(name, "sockcreate"))
5573                 sid = __tsec->sockcreate_sid;
5574         else
5575                 goto invalid;
5576         rcu_read_unlock();
5577
5578         if (!sid)
5579                 return 0;
5580
5581         error = security_sid_to_context(sid, value, &len);
5582         if (error)
5583                 return error;
5584         return len;
5585
5586 invalid:
5587         rcu_read_unlock();
5588         return -EINVAL;
5589 }
5590
5591 static int selinux_setprocattr(struct task_struct *p,
5592                                char *name, void *value, size_t size)
5593 {
5594         struct task_security_struct *tsec;
5595         struct task_struct *tracer;
5596         struct cred *new;
5597         u32 sid = 0, ptsid;
5598         int error;
5599         char *str = value;
5600
5601         if (current != p) {
5602                 /* SELinux only allows a process to change its own
5603                    security attributes. */
5604                 return -EACCES;
5605         }
5606
5607         /*
5608          * Basic control over ability to set these attributes at all.
5609          * current == p, but we'll pass them separately in case the
5610          * above restriction is ever removed.
5611          */
5612         if (!strcmp(name, "exec"))
5613                 error = current_has_perm(p, PROCESS__SETEXEC);
5614         else if (!strcmp(name, "fscreate"))
5615                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5616         else if (!strcmp(name, "keycreate"))
5617                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5618         else if (!strcmp(name, "sockcreate"))
5619                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5620         else if (!strcmp(name, "current"))
5621                 error = current_has_perm(p, PROCESS__SETCURRENT);
5622         else
5623                 error = -EINVAL;
5624         if (error)
5625                 return error;
5626
5627         /* Obtain a SID for the context, if one was specified. */
5628         if (size && str[1] && str[1] != '\n') {
5629                 if (str[size-1] == '\n') {
5630                         str[size-1] = 0;
5631                         size--;
5632                 }
5633                 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5634                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5635                         if (!capable(CAP_MAC_ADMIN)) {
5636                                 struct audit_buffer *ab;
5637                                 size_t audit_size;
5638
5639                                 /* We strip a nul only if it is at the end, otherwise the
5640                                  * context contains a nul and we should audit that */
5641                                 if (str[size - 1] == '\0')
5642                                         audit_size = size - 1;
5643                                 else
5644                                         audit_size = size;
5645                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5646                                 audit_log_format(ab, "op=fscreate invalid_context=");
5647                                 audit_log_n_untrustedstring(ab, value, audit_size);
5648                                 audit_log_end(ab);
5649
5650                                 return error;
5651                         }
5652                         error = security_context_to_sid_force(value, size,
5653                                                               &sid);
5654                 }
5655                 if (error)
5656                         return error;
5657         }
5658
5659         new = prepare_creds();
5660         if (!new)
5661                 return -ENOMEM;
5662
5663         /* Permission checking based on the specified context is
5664            performed during the actual operation (execve,
5665            open/mkdir/...), when we know the full context of the
5666            operation.  See selinux_bprm_set_creds for the execve
5667            checks and may_create for the file creation checks. The
5668            operation will then fail if the context is not permitted. */
5669         tsec = new->security;
5670         if (!strcmp(name, "exec")) {
5671                 tsec->exec_sid = sid;
5672         } else if (!strcmp(name, "fscreate")) {
5673                 tsec->create_sid = sid;
5674         } else if (!strcmp(name, "keycreate")) {
5675                 error = may_create_key(sid, p);
5676                 if (error)
5677                         goto abort_change;
5678                 tsec->keycreate_sid = sid;
5679         } else if (!strcmp(name, "sockcreate")) {
5680                 tsec->sockcreate_sid = sid;
5681         } else if (!strcmp(name, "current")) {
5682                 error = -EINVAL;
5683                 if (sid == 0)
5684                         goto abort_change;
5685
5686                 /* Only allow single threaded processes to change context */
5687                 error = -EPERM;
5688                 if (!current_is_single_threaded()) {
5689                         error = security_bounded_transition(tsec->sid, sid);
5690                         if (error)
5691                                 goto abort_change;
5692                 }
5693
5694                 /* Check permissions for the transition. */
5695                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5696                                      PROCESS__DYNTRANSITION, NULL);
5697                 if (error)
5698                         goto abort_change;
5699
5700                 /* Check for ptracing, and update the task SID if ok.
5701                    Otherwise, leave SID unchanged and fail. */
5702                 ptsid = 0;
5703                 rcu_read_lock();
5704                 tracer = ptrace_parent(p);
5705                 if (tracer)
5706                         ptsid = task_sid(tracer);
5707                 rcu_read_unlock();
5708
5709                 if (tracer) {
5710                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5711                                              PROCESS__PTRACE, NULL);
5712                         if (error)
5713                                 goto abort_change;
5714                 }
5715
5716                 tsec->sid = sid;
5717         } else {
5718                 error = -EINVAL;
5719                 goto abort_change;
5720         }
5721
5722         commit_creds(new);
5723         return size;
5724
5725 abort_change:
5726         abort_creds(new);
5727         return error;
5728 }
5729
5730 static int selinux_ismaclabel(const char *name)
5731 {
5732         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5733 }
5734
5735 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5736 {
5737         return security_sid_to_context(secid, secdata, seclen);
5738 }
5739
5740 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5741 {
5742         return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5743 }
5744
5745 static void selinux_release_secctx(char *secdata, u32 seclen)
5746 {
5747         kfree(secdata);
5748 }
5749
5750 /*
5751  *      called with inode->i_mutex locked
5752  */
5753 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5754 {
5755         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5756 }
5757
5758 /*
5759  *      called with inode->i_mutex locked
5760  */
5761 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5762 {
5763         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5764 }
5765
5766 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5767 {
5768         int len = 0;
5769         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5770                                                 ctx, true);
5771         if (len < 0)
5772                 return len;
5773         *ctxlen = len;
5774         return 0;
5775 }
5776 #ifdef CONFIG_KEYS
5777
5778 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5779                              unsigned long flags)
5780 {
5781         const struct task_security_struct *tsec;
5782         struct key_security_struct *ksec;
5783
5784         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5785         if (!ksec)
5786                 return -ENOMEM;
5787
5788         tsec = cred->security;
5789         if (tsec->keycreate_sid)
5790                 ksec->sid = tsec->keycreate_sid;
5791         else
5792                 ksec->sid = tsec->sid;
5793
5794         k->security = ksec;
5795         return 0;
5796 }
5797
5798 static void selinux_key_free(struct key *k)
5799 {
5800         struct key_security_struct *ksec = k->security;
5801
5802         k->security = NULL;
5803         kfree(ksec);
5804 }
5805
5806 static int selinux_key_permission(key_ref_t key_ref,
5807                                   const struct cred *cred,
5808                                   unsigned perm)
5809 {
5810         struct key *key;
5811         struct key_security_struct *ksec;
5812         u32 sid;
5813
5814         /* if no specific permissions are requested, we skip the
5815            permission check. No serious, additional covert channels
5816            appear to be created. */
5817         if (perm == 0)
5818                 return 0;
5819
5820         sid = cred_sid(cred);
5821
5822         key = key_ref_to_ptr(key_ref);
5823         ksec = key->security;
5824
5825         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5826 }
5827
5828 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5829 {
5830         struct key_security_struct *ksec = key->security;
5831         char *context = NULL;
5832         unsigned len;
5833         int rc;
5834
5835         rc = security_sid_to_context(ksec->sid, &context, &len);
5836         if (!rc)
5837                 rc = len;
5838         *_buffer = context;
5839         return rc;
5840 }
5841
5842 #endif
5843
5844 static struct security_operations selinux_ops = {
5845         .name =                         "selinux",
5846
5847         .binder_set_context_mgr =       selinux_binder_set_context_mgr,
5848         .binder_transaction =           selinux_binder_transaction,
5849         .binder_transfer_binder =       selinux_binder_transfer_binder,
5850         .binder_transfer_file =         selinux_binder_transfer_file,
5851
5852         .ptrace_access_check =          selinux_ptrace_access_check,
5853         .ptrace_traceme =               selinux_ptrace_traceme,
5854         .capget =                       selinux_capget,
5855         .capset =                       selinux_capset,
5856         .capable =                      selinux_capable,
5857         .quotactl =                     selinux_quotactl,
5858         .quota_on =                     selinux_quota_on,
5859         .syslog =                       selinux_syslog,
5860         .vm_enough_memory =             selinux_vm_enough_memory,
5861
5862         .netlink_send =                 selinux_netlink_send,
5863
5864         .bprm_set_creds =               selinux_bprm_set_creds,
5865         .bprm_committing_creds =        selinux_bprm_committing_creds,
5866         .bprm_committed_creds =         selinux_bprm_committed_creds,
5867         .bprm_secureexec =              selinux_bprm_secureexec,
5868
5869         .sb_alloc_security =            selinux_sb_alloc_security,
5870         .sb_free_security =             selinux_sb_free_security,
5871         .sb_copy_data =                 selinux_sb_copy_data,
5872         .sb_remount =                   selinux_sb_remount,
5873         .sb_kern_mount =                selinux_sb_kern_mount,
5874         .sb_show_options =              selinux_sb_show_options,
5875         .sb_statfs =                    selinux_sb_statfs,
5876         .sb_mount =                     selinux_mount,
5877         .sb_umount =                    selinux_umount,
5878         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5879         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5880         .sb_parse_opts_str =            selinux_parse_opts_str,
5881
5882         .dentry_init_security =         selinux_dentry_init_security,
5883
5884         .inode_alloc_security =         selinux_inode_alloc_security,
5885         .inode_free_security =          selinux_inode_free_security,
5886         .inode_init_security =          selinux_inode_init_security,
5887         .inode_create =                 selinux_inode_create,
5888         .inode_link =                   selinux_inode_link,
5889         .inode_unlink =                 selinux_inode_unlink,
5890         .inode_symlink =                selinux_inode_symlink,
5891         .inode_mkdir =                  selinux_inode_mkdir,
5892         .inode_rmdir =                  selinux_inode_rmdir,
5893         .inode_mknod =                  selinux_inode_mknod,
5894         .inode_rename =                 selinux_inode_rename,
5895         .inode_readlink =               selinux_inode_readlink,
5896         .inode_follow_link =            selinux_inode_follow_link,
5897         .inode_permission =             selinux_inode_permission,
5898         .inode_setattr =                selinux_inode_setattr,
5899         .inode_getattr =                selinux_inode_getattr,
5900         .inode_setxattr =               selinux_inode_setxattr,
5901         .inode_post_setxattr =          selinux_inode_post_setxattr,
5902         .inode_getxattr =               selinux_inode_getxattr,
5903         .inode_listxattr =              selinux_inode_listxattr,
5904         .inode_removexattr =            selinux_inode_removexattr,
5905         .inode_getsecurity =            selinux_inode_getsecurity,
5906         .inode_setsecurity =            selinux_inode_setsecurity,
5907         .inode_listsecurity =           selinux_inode_listsecurity,
5908         .inode_getsecid =               selinux_inode_getsecid,
5909
5910         .file_permission =              selinux_file_permission,
5911         .file_alloc_security =          selinux_file_alloc_security,
5912         .file_free_security =           selinux_file_free_security,
5913         .file_ioctl =                   selinux_file_ioctl,
5914         .mmap_file =                    selinux_mmap_file,
5915         .mmap_addr =                    selinux_mmap_addr,
5916         .file_mprotect =                selinux_file_mprotect,
5917         .file_lock =                    selinux_file_lock,
5918         .file_fcntl =                   selinux_file_fcntl,
5919         .file_set_fowner =              selinux_file_set_fowner,
5920         .file_send_sigiotask =          selinux_file_send_sigiotask,
5921         .file_receive =                 selinux_file_receive,
5922
5923         .file_open =                    selinux_file_open,
5924
5925         .task_create =                  selinux_task_create,
5926         .cred_alloc_blank =             selinux_cred_alloc_blank,
5927         .cred_free =                    selinux_cred_free,
5928         .cred_prepare =                 selinux_cred_prepare,
5929         .cred_transfer =                selinux_cred_transfer,
5930         .kernel_act_as =                selinux_kernel_act_as,
5931         .kernel_create_files_as =       selinux_kernel_create_files_as,
5932         .kernel_module_request =        selinux_kernel_module_request,
5933         .task_setpgid =                 selinux_task_setpgid,
5934         .task_getpgid =                 selinux_task_getpgid,
5935         .task_getsid =                  selinux_task_getsid,
5936         .task_getsecid =                selinux_task_getsecid,
5937         .task_setnice =                 selinux_task_setnice,
5938         .task_setioprio =               selinux_task_setioprio,
5939         .task_getioprio =               selinux_task_getioprio,
5940         .task_setrlimit =               selinux_task_setrlimit,
5941         .task_setscheduler =            selinux_task_setscheduler,
5942         .task_getscheduler =            selinux_task_getscheduler,
5943         .task_movememory =              selinux_task_movememory,
5944         .task_kill =                    selinux_task_kill,
5945         .task_wait =                    selinux_task_wait,
5946         .task_to_inode =                selinux_task_to_inode,
5947
5948         .ipc_permission =               selinux_ipc_permission,
5949         .ipc_getsecid =                 selinux_ipc_getsecid,
5950
5951         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5952         .msg_msg_free_security =        selinux_msg_msg_free_security,
5953
5954         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5955         .msg_queue_free_security =      selinux_msg_queue_free_security,
5956         .msg_queue_associate =          selinux_msg_queue_associate,
5957         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5958         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5959         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5960
5961         .shm_alloc_security =           selinux_shm_alloc_security,
5962         .shm_free_security =            selinux_shm_free_security,
5963         .shm_associate =                selinux_shm_associate,
5964         .shm_shmctl =                   selinux_shm_shmctl,
5965         .shm_shmat =                    selinux_shm_shmat,
5966
5967         .sem_alloc_security =           selinux_sem_alloc_security,
5968         .sem_free_security =            selinux_sem_free_security,
5969         .sem_associate =                selinux_sem_associate,
5970         .sem_semctl =                   selinux_sem_semctl,
5971         .sem_semop =                    selinux_sem_semop,
5972
5973         .d_instantiate =                selinux_d_instantiate,
5974
5975         .getprocattr =                  selinux_getprocattr,
5976         .setprocattr =                  selinux_setprocattr,
5977
5978         .ismaclabel =                   selinux_ismaclabel,
5979         .secid_to_secctx =              selinux_secid_to_secctx,
5980         .secctx_to_secid =              selinux_secctx_to_secid,
5981         .release_secctx =               selinux_release_secctx,
5982         .inode_notifysecctx =           selinux_inode_notifysecctx,
5983         .inode_setsecctx =              selinux_inode_setsecctx,
5984         .inode_getsecctx =              selinux_inode_getsecctx,
5985
5986         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5987         .unix_may_send =                selinux_socket_unix_may_send,
5988
5989         .socket_create =                selinux_socket_create,
5990         .socket_post_create =           selinux_socket_post_create,
5991         .socket_bind =                  selinux_socket_bind,
5992         .socket_connect =               selinux_socket_connect,
5993         .socket_listen =                selinux_socket_listen,
5994         .socket_accept =                selinux_socket_accept,
5995         .socket_sendmsg =               selinux_socket_sendmsg,
5996         .socket_recvmsg =               selinux_socket_recvmsg,
5997         .socket_getsockname =           selinux_socket_getsockname,
5998         .socket_getpeername =           selinux_socket_getpeername,
5999         .socket_getsockopt =            selinux_socket_getsockopt,
6000         .socket_setsockopt =            selinux_socket_setsockopt,
6001         .socket_shutdown =              selinux_socket_shutdown,
6002         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
6003         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
6004         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
6005         .sk_alloc_security =            selinux_sk_alloc_security,
6006         .sk_free_security =             selinux_sk_free_security,
6007         .sk_clone_security =            selinux_sk_clone_security,
6008         .sk_getsecid =                  selinux_sk_getsecid,
6009         .sock_graft =                   selinux_sock_graft,
6010         .inet_conn_request =            selinux_inet_conn_request,
6011         .inet_csk_clone =               selinux_inet_csk_clone,
6012         .inet_conn_established =        selinux_inet_conn_established,
6013         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
6014         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
6015         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
6016         .req_classify_flow =            selinux_req_classify_flow,
6017         .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
6018         .tun_dev_free_security =        selinux_tun_dev_free_security,
6019         .tun_dev_create =               selinux_tun_dev_create,
6020         .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
6021         .tun_dev_attach =               selinux_tun_dev_attach,
6022         .tun_dev_open =                 selinux_tun_dev_open,
6023
6024 #ifdef CONFIG_SECURITY_NETWORK_XFRM
6025         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
6026         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
6027         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
6028         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
6029         .xfrm_state_alloc =             selinux_xfrm_state_alloc,
6030         .xfrm_state_alloc_acquire =     selinux_xfrm_state_alloc_acquire,
6031         .xfrm_state_free_security =     selinux_xfrm_state_free,
6032         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
6033         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
6034         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
6035         .xfrm_decode_session =          selinux_xfrm_decode_session,
6036 #endif
6037
6038 #ifdef CONFIG_KEYS
6039         .key_alloc =                    selinux_key_alloc,
6040         .key_free =                     selinux_key_free,
6041         .key_permission =               selinux_key_permission,
6042         .key_getsecurity =              selinux_key_getsecurity,
6043 #endif
6044
6045 #ifdef CONFIG_AUDIT
6046         .audit_rule_init =              selinux_audit_rule_init,
6047         .audit_rule_known =             selinux_audit_rule_known,
6048         .audit_rule_match =             selinux_audit_rule_match,
6049         .audit_rule_free =              selinux_audit_rule_free,
6050 #endif
6051 };
6052
6053 static __init int selinux_init(void)
6054 {
6055         if (!security_module_enable(&selinux_ops)) {
6056                 selinux_enabled = 0;
6057                 return 0;
6058         }
6059
6060         if (!selinux_enabled) {
6061                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6062                 return 0;
6063         }
6064
6065         printk(KERN_INFO "SELinux:  Initializing.\n");
6066
6067         /* Set the security state for the initial task. */
6068         cred_init_security();
6069
6070         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6071
6072         sel_inode_cache = kmem_cache_create("selinux_inode_security",
6073                                             sizeof(struct inode_security_struct),
6074                                             0, SLAB_PANIC, NULL);
6075         avc_init();
6076
6077         if (register_security(&selinux_ops))
6078                 panic("SELinux: Unable to register with kernel.\n");
6079
6080         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6081                 panic("SELinux: Unable to register AVC netcache callback\n");
6082
6083         if (selinux_enforcing)
6084                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6085         else
6086                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6087
6088         return 0;
6089 }
6090
6091 static void delayed_superblock_init(struct super_block *sb, void *unused)
6092 {
6093         superblock_doinit(sb, NULL);
6094 }
6095
6096 void selinux_complete_init(void)
6097 {
6098         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6099
6100         /* Set up any superblocks initialized prior to the policy load. */
6101         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6102         iterate_supers(delayed_superblock_init, NULL);
6103 }
6104
6105 /* SELinux requires early initialization in order to label
6106    all processes and objects when they are created. */
6107 security_initcall(selinux_init);
6108
6109 #if defined(CONFIG_NETFILTER)
6110
6111 static struct nf_hook_ops selinux_nf_ops[] = {
6112         {
6113                 .hook =         selinux_ipv4_postroute,
6114                 .owner =        THIS_MODULE,
6115                 .pf =           NFPROTO_IPV4,
6116                 .hooknum =      NF_INET_POST_ROUTING,
6117                 .priority =     NF_IP_PRI_SELINUX_LAST,
6118         },
6119         {
6120                 .hook =         selinux_ipv4_forward,
6121                 .owner =        THIS_MODULE,
6122                 .pf =           NFPROTO_IPV4,
6123                 .hooknum =      NF_INET_FORWARD,
6124                 .priority =     NF_IP_PRI_SELINUX_FIRST,
6125         },
6126         {
6127                 .hook =         selinux_ipv4_output,
6128                 .owner =        THIS_MODULE,
6129                 .pf =           NFPROTO_IPV4,
6130                 .hooknum =      NF_INET_LOCAL_OUT,
6131                 .priority =     NF_IP_PRI_SELINUX_FIRST,
6132         },
6133 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6134         {
6135                 .hook =         selinux_ipv6_postroute,
6136                 .owner =        THIS_MODULE,
6137                 .pf =           NFPROTO_IPV6,
6138                 .hooknum =      NF_INET_POST_ROUTING,
6139                 .priority =     NF_IP6_PRI_SELINUX_LAST,
6140         },
6141         {
6142                 .hook =         selinux_ipv6_forward,
6143                 .owner =        THIS_MODULE,
6144                 .pf =           NFPROTO_IPV6,
6145                 .hooknum =      NF_INET_FORWARD,
6146                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
6147         },
6148 #endif  /* IPV6 */
6149 };
6150
6151 static int __init selinux_nf_ip_init(void)
6152 {
6153         int err;
6154
6155         if (!selinux_enabled)
6156                 return 0;
6157
6158         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6159
6160         err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6161         if (err)
6162                 panic("SELinux: nf_register_hooks: error %d\n", err);
6163
6164         return 0;
6165 }
6166
6167 __initcall(selinux_nf_ip_init);
6168
6169 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6170 static void selinux_nf_ip_exit(void)
6171 {
6172         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6173
6174         nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6175 }
6176 #endif
6177
6178 #else /* CONFIG_NETFILTER */
6179
6180 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6181 #define selinux_nf_ip_exit()
6182 #endif
6183
6184 #endif /* CONFIG_NETFILTER */
6185
6186 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6187 static int selinux_disabled;
6188
6189 int selinux_disable(void)
6190 {
6191         if (ss_initialized) {
6192                 /* Not permitted after initial policy load. */
6193                 return -EINVAL;
6194         }
6195
6196         if (selinux_disabled) {
6197                 /* Only do this once. */
6198                 return -EINVAL;
6199         }
6200
6201         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6202
6203         selinux_disabled = 1;
6204         selinux_enabled = 0;
6205
6206         reset_security_ops();
6207
6208         /* Try to destroy the avc node cache */
6209         avc_disable();
6210
6211         /* Unregister netfilter hooks. */
6212         selinux_nf_ip_exit();
6213
6214         /* Unregister selinuxfs. */
6215         exit_sel_fs();
6216
6217         return 0;
6218 }
6219 #endif