These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)                  \
65         printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *      be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *      regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87         REG_REQ_OK,
88         REG_REQ_IGNORE,
89         REG_REQ_INTERSECT,
90         REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94         .initiator = NL80211_REGDOM_SET_BY_CORE,
95         .alpha2[0] = '0',
96         .alpha2[1] = '0',
97         .intersect = false,
98         .processed = true,
99         .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107         (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 static void restore_regulatory_settings(bool reset_user);
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142         return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147         return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152         switch (dfs_region) {
153         case NL80211_DFS_UNSET:
154                 return "unset";
155         case NL80211_DFS_FCC:
156                 return "FCC";
157         case NL80211_DFS_ETSI:
158                 return "ETSI";
159         case NL80211_DFS_JP:
160                 return "JP";
161         }
162         return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167         const struct ieee80211_regdomain *regd = NULL;
168         const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170         regd = get_cfg80211_regdom();
171         if (!wiphy)
172                 goto out;
173
174         wiphy_regd = get_wiphy_regdom(wiphy);
175         if (!wiphy_regd)
176                 goto out;
177
178         if (wiphy_regd->dfs_region == regd->dfs_region)
179                 goto out;
180
181         REG_DBG_PRINT("%s: device specific dfs_region "
182                       "(%s) disagrees with cfg80211's "
183                       "central dfs_region (%s)\n",
184                       dev_name(&wiphy->dev),
185                       reg_dfs_region_str(wiphy_regd->dfs_region),
186                       reg_dfs_region_str(regd->dfs_region));
187
188 out:
189         return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194         if (!r)
195                 return;
196         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201         return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216         struct list_head list;
217         struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 /* We keep a static world regulatory domain in case of the absence of CRDA */
227 static const struct ieee80211_regdomain world_regdom = {
228         .n_reg_rules = 8,
229         .alpha2 =  "00",
230         .reg_rules = {
231                 /* IEEE 802.11b/g, channels 1..11 */
232                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
233                 /* IEEE 802.11b/g, channels 12..13. */
234                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
235                         NL80211_RRF_NO_IR),
236                 /* IEEE 802.11 channel 14 - Only JP enables
237                  * this and for 802.11b only */
238                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
239                         NL80211_RRF_NO_IR |
240                         NL80211_RRF_NO_OFDM),
241                 /* IEEE 802.11a, channel 36..48 */
242                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
243                         NL80211_RRF_NO_IR),
244
245                 /* IEEE 802.11a, channel 52..64 - DFS required */
246                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
247                         NL80211_RRF_NO_IR |
248                         NL80211_RRF_DFS),
249
250                 /* IEEE 802.11a, channel 100..144 - DFS required */
251                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
252                         NL80211_RRF_NO_IR |
253                         NL80211_RRF_DFS),
254
255                 /* IEEE 802.11a, channel 149..165 */
256                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
257                         NL80211_RRF_NO_IR),
258
259                 /* IEEE 802.11ad (60GHz), channels 1..3 */
260                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
261         }
262 };
263
264 /* protected by RTNL */
265 static const struct ieee80211_regdomain *cfg80211_world_regdom =
266         &world_regdom;
267
268 static char *ieee80211_regdom = "00";
269 static char user_alpha2[2];
270
271 module_param(ieee80211_regdom, charp, 0444);
272 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
273
274 static void reg_free_request(struct regulatory_request *request)
275 {
276         if (request == &core_request_world)
277                 return;
278
279         if (request != get_last_request())
280                 kfree(request);
281 }
282
283 static void reg_free_last_request(void)
284 {
285         struct regulatory_request *lr = get_last_request();
286
287         if (lr != &core_request_world && lr)
288                 kfree_rcu(lr, rcu_head);
289 }
290
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293         struct regulatory_request *lr;
294
295         lr = get_last_request();
296         if (lr == request)
297                 return;
298
299         reg_free_last_request();
300         rcu_assign_pointer(last_request, request);
301 }
302
303 static void reset_regdomains(bool full_reset,
304                              const struct ieee80211_regdomain *new_regdom)
305 {
306         const struct ieee80211_regdomain *r;
307
308         ASSERT_RTNL();
309
310         r = get_cfg80211_regdom();
311
312         /* avoid freeing static information or freeing something twice */
313         if (r == cfg80211_world_regdom)
314                 r = NULL;
315         if (cfg80211_world_regdom == &world_regdom)
316                 cfg80211_world_regdom = NULL;
317         if (r == &world_regdom)
318                 r = NULL;
319
320         rcu_free_regdom(r);
321         rcu_free_regdom(cfg80211_world_regdom);
322
323         cfg80211_world_regdom = &world_regdom;
324         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326         if (!full_reset)
327                 return;
328
329         reg_update_last_request(&core_request_world);
330 }
331
332 /*
333  * Dynamic world regulatory domain requested by the wireless
334  * core upon initialization
335  */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338         struct regulatory_request *lr;
339
340         lr = get_last_request();
341
342         WARN_ON(!lr);
343
344         reset_regdomains(false, rd);
345
346         cfg80211_world_regdom = rd;
347 }
348
349 bool is_world_regdom(const char *alpha2)
350 {
351         if (!alpha2)
352                 return false;
353         return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355
356 static bool is_alpha2_set(const char *alpha2)
357 {
358         if (!alpha2)
359                 return false;
360         return alpha2[0] && alpha2[1];
361 }
362
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365         if (!alpha2)
366                 return false;
367         /*
368          * Special case where regulatory domain was built by driver
369          * but a specific alpha2 cannot be determined
370          */
371         return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         /*
379          * Special case where regulatory domain is the
380          * result of an intersection between two regulatory domain
381          * structures
382          */
383         return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385
386 static bool is_an_alpha2(const char *alpha2)
387 {
388         if (!alpha2)
389                 return false;
390         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395         if (!alpha2_x || !alpha2_y)
396                 return false;
397         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399
400 static bool regdom_changes(const char *alpha2)
401 {
402         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404         if (!r)
405                 return true;
406         return !alpha2_equal(r->alpha2, alpha2);
407 }
408
409 /*
410  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412  * has ever been issued.
413  */
414 static bool is_user_regdom_saved(void)
415 {
416         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417                 return false;
418
419         /* This would indicate a mistake on the design */
420         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421                  "Unexpected user alpha2: %c%c\n",
422                  user_alpha2[0], user_alpha2[1]))
423                 return false;
424
425         return true;
426 }
427
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431         struct ieee80211_regdomain *regd;
432         int size_of_regd;
433         unsigned int i;
434
435         size_of_regd =
436                 sizeof(struct ieee80211_regdomain) +
437                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439         regd = kzalloc(size_of_regd, GFP_KERNEL);
440         if (!regd)
441                 return ERR_PTR(-ENOMEM);
442
443         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445         for (i = 0; i < src_regd->n_reg_rules; i++)
446                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447                        sizeof(struct ieee80211_reg_rule));
448
449         return regd;
450 }
451
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_apply_request {
454         struct list_head list;
455         const struct ieee80211_regdomain *regdom;
456 };
457
458 static LIST_HEAD(reg_regdb_apply_list);
459 static DEFINE_MUTEX(reg_regdb_apply_mutex);
460
461 static void reg_regdb_apply(struct work_struct *work)
462 {
463         struct reg_regdb_apply_request *request;
464
465         rtnl_lock();
466
467         mutex_lock(&reg_regdb_apply_mutex);
468         while (!list_empty(&reg_regdb_apply_list)) {
469                 request = list_first_entry(&reg_regdb_apply_list,
470                                            struct reg_regdb_apply_request,
471                                            list);
472                 list_del(&request->list);
473
474                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
475                 kfree(request);
476         }
477         mutex_unlock(&reg_regdb_apply_mutex);
478
479         rtnl_unlock();
480 }
481
482 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
483
484 static int reg_query_builtin(const char *alpha2)
485 {
486         const struct ieee80211_regdomain *regdom = NULL;
487         struct reg_regdb_apply_request *request;
488         unsigned int i;
489
490         for (i = 0; i < reg_regdb_size; i++) {
491                 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
492                         regdom = reg_regdb[i];
493                         break;
494                 }
495         }
496
497         if (!regdom)
498                 return -ENODATA;
499
500         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
501         if (!request)
502                 return -ENOMEM;
503
504         request->regdom = reg_copy_regd(regdom);
505         if (IS_ERR_OR_NULL(request->regdom)) {
506                 kfree(request);
507                 return -ENOMEM;
508         }
509
510         mutex_lock(&reg_regdb_apply_mutex);
511         list_add_tail(&request->list, &reg_regdb_apply_list);
512         mutex_unlock(&reg_regdb_apply_mutex);
513
514         schedule_work(&reg_regdb_work);
515
516         return 0;
517 }
518
519 /* Feel free to add any other sanity checks here */
520 static void reg_regdb_size_check(void)
521 {
522         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
523         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
524 }
525 #else
526 static inline void reg_regdb_size_check(void) {}
527 static inline int reg_query_builtin(const char *alpha2)
528 {
529         return -ENODATA;
530 }
531 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
532
533 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
534 /* Max number of consecutive attempts to communicate with CRDA  */
535 #define REG_MAX_CRDA_TIMEOUTS 10
536
537 static u32 reg_crda_timeouts;
538
539 static void crda_timeout_work(struct work_struct *work);
540 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
541
542 static void crda_timeout_work(struct work_struct *work)
543 {
544         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
545         rtnl_lock();
546         reg_crda_timeouts++;
547         restore_regulatory_settings(true);
548         rtnl_unlock();
549 }
550
551 static void cancel_crda_timeout(void)
552 {
553         cancel_delayed_work(&crda_timeout);
554 }
555
556 static void cancel_crda_timeout_sync(void)
557 {
558         cancel_delayed_work_sync(&crda_timeout);
559 }
560
561 static void reset_crda_timeouts(void)
562 {
563         reg_crda_timeouts = 0;
564 }
565
566 /*
567  * This lets us keep regulatory code which is updated on a regulatory
568  * basis in userspace.
569  */
570 static int call_crda(const char *alpha2)
571 {
572         char country[12];
573         char *env[] = { country, NULL };
574         int ret;
575
576         snprintf(country, sizeof(country), "COUNTRY=%c%c",
577                  alpha2[0], alpha2[1]);
578
579         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
580                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
581                 return -EINVAL;
582         }
583
584         if (!is_world_regdom((char *) alpha2))
585                 pr_debug("Calling CRDA for country: %c%c\n",
586                         alpha2[0], alpha2[1]);
587         else
588                 pr_debug("Calling CRDA to update world regulatory domain\n");
589
590         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
591         if (ret)
592                 return ret;
593
594         queue_delayed_work(system_power_efficient_wq,
595                            &crda_timeout, msecs_to_jiffies(3142));
596         return 0;
597 }
598 #else
599 static inline void cancel_crda_timeout(void) {}
600 static inline void cancel_crda_timeout_sync(void) {}
601 static inline void reset_crda_timeouts(void) {}
602 static inline int call_crda(const char *alpha2)
603 {
604         return -ENODATA;
605 }
606 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
607
608 static bool reg_query_database(struct regulatory_request *request)
609 {
610         /* query internal regulatory database (if it exists) */
611         if (reg_query_builtin(request->alpha2) == 0)
612                 return true;
613
614         if (call_crda(request->alpha2) == 0)
615                 return true;
616
617         return false;
618 }
619
620 bool reg_is_valid_request(const char *alpha2)
621 {
622         struct regulatory_request *lr = get_last_request();
623
624         if (!lr || lr->processed)
625                 return false;
626
627         return alpha2_equal(lr->alpha2, alpha2);
628 }
629
630 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
631 {
632         struct regulatory_request *lr = get_last_request();
633
634         /*
635          * Follow the driver's regulatory domain, if present, unless a country
636          * IE has been processed or a user wants to help complaince further
637          */
638         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
639             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
640             wiphy->regd)
641                 return get_wiphy_regdom(wiphy);
642
643         return get_cfg80211_regdom();
644 }
645
646 static unsigned int
647 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
648                                  const struct ieee80211_reg_rule *rule)
649 {
650         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
651         const struct ieee80211_freq_range *freq_range_tmp;
652         const struct ieee80211_reg_rule *tmp;
653         u32 start_freq, end_freq, idx, no;
654
655         for (idx = 0; idx < rd->n_reg_rules; idx++)
656                 if (rule == &rd->reg_rules[idx])
657                         break;
658
659         if (idx == rd->n_reg_rules)
660                 return 0;
661
662         /* get start_freq */
663         no = idx;
664
665         while (no) {
666                 tmp = &rd->reg_rules[--no];
667                 freq_range_tmp = &tmp->freq_range;
668
669                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
670                         break;
671
672                 freq_range = freq_range_tmp;
673         }
674
675         start_freq = freq_range->start_freq_khz;
676
677         /* get end_freq */
678         freq_range = &rule->freq_range;
679         no = idx;
680
681         while (no < rd->n_reg_rules - 1) {
682                 tmp = &rd->reg_rules[++no];
683                 freq_range_tmp = &tmp->freq_range;
684
685                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
686                         break;
687
688                 freq_range = freq_range_tmp;
689         }
690
691         end_freq = freq_range->end_freq_khz;
692
693         return end_freq - start_freq;
694 }
695
696 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
697                                    const struct ieee80211_reg_rule *rule)
698 {
699         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
700
701         if (rule->flags & NL80211_RRF_NO_160MHZ)
702                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
703         if (rule->flags & NL80211_RRF_NO_80MHZ)
704                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
705
706         /*
707          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
708          * are not allowed.
709          */
710         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
711             rule->flags & NL80211_RRF_NO_HT40PLUS)
712                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
713
714         return bw;
715 }
716
717 /* Sanity check on a regulatory rule */
718 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
719 {
720         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
721         u32 freq_diff;
722
723         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
724                 return false;
725
726         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
727                 return false;
728
729         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
730
731         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
732             freq_range->max_bandwidth_khz > freq_diff)
733                 return false;
734
735         return true;
736 }
737
738 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
739 {
740         const struct ieee80211_reg_rule *reg_rule = NULL;
741         unsigned int i;
742
743         if (!rd->n_reg_rules)
744                 return false;
745
746         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
747                 return false;
748
749         for (i = 0; i < rd->n_reg_rules; i++) {
750                 reg_rule = &rd->reg_rules[i];
751                 if (!is_valid_reg_rule(reg_rule))
752                         return false;
753         }
754
755         return true;
756 }
757
758 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
759                             u32 center_freq_khz, u32 bw_khz)
760 {
761         u32 start_freq_khz, end_freq_khz;
762
763         start_freq_khz = center_freq_khz - (bw_khz/2);
764         end_freq_khz = center_freq_khz + (bw_khz/2);
765
766         if (start_freq_khz >= freq_range->start_freq_khz &&
767             end_freq_khz <= freq_range->end_freq_khz)
768                 return true;
769
770         return false;
771 }
772
773 /**
774  * freq_in_rule_band - tells us if a frequency is in a frequency band
775  * @freq_range: frequency rule we want to query
776  * @freq_khz: frequency we are inquiring about
777  *
778  * This lets us know if a specific frequency rule is or is not relevant to
779  * a specific frequency's band. Bands are device specific and artificial
780  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
781  * however it is safe for now to assume that a frequency rule should not be
782  * part of a frequency's band if the start freq or end freq are off by more
783  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
784  * 60 GHz band.
785  * This resolution can be lowered and should be considered as we add
786  * regulatory rule support for other "bands".
787  **/
788 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
789                               u32 freq_khz)
790 {
791 #define ONE_GHZ_IN_KHZ  1000000
792         /*
793          * From 802.11ad: directional multi-gigabit (DMG):
794          * Pertaining to operation in a frequency band containing a channel
795          * with the Channel starting frequency above 45 GHz.
796          */
797         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
798                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
799         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
800                 return true;
801         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
802                 return true;
803         return false;
804 #undef ONE_GHZ_IN_KHZ
805 }
806
807 /*
808  * Later on we can perhaps use the more restrictive DFS
809  * region but we don't have information for that yet so
810  * for now simply disallow conflicts.
811  */
812 static enum nl80211_dfs_regions
813 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
814                          const enum nl80211_dfs_regions dfs_region2)
815 {
816         if (dfs_region1 != dfs_region2)
817                 return NL80211_DFS_UNSET;
818         return dfs_region1;
819 }
820
821 /*
822  * Helper for regdom_intersect(), this does the real
823  * mathematical intersection fun
824  */
825 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
826                                const struct ieee80211_regdomain *rd2,
827                                const struct ieee80211_reg_rule *rule1,
828                                const struct ieee80211_reg_rule *rule2,
829                                struct ieee80211_reg_rule *intersected_rule)
830 {
831         const struct ieee80211_freq_range *freq_range1, *freq_range2;
832         struct ieee80211_freq_range *freq_range;
833         const struct ieee80211_power_rule *power_rule1, *power_rule2;
834         struct ieee80211_power_rule *power_rule;
835         u32 freq_diff, max_bandwidth1, max_bandwidth2;
836
837         freq_range1 = &rule1->freq_range;
838         freq_range2 = &rule2->freq_range;
839         freq_range = &intersected_rule->freq_range;
840
841         power_rule1 = &rule1->power_rule;
842         power_rule2 = &rule2->power_rule;
843         power_rule = &intersected_rule->power_rule;
844
845         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
846                                          freq_range2->start_freq_khz);
847         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
848                                        freq_range2->end_freq_khz);
849
850         max_bandwidth1 = freq_range1->max_bandwidth_khz;
851         max_bandwidth2 = freq_range2->max_bandwidth_khz;
852
853         if (rule1->flags & NL80211_RRF_AUTO_BW)
854                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
855         if (rule2->flags & NL80211_RRF_AUTO_BW)
856                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
857
858         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
859
860         intersected_rule->flags = rule1->flags | rule2->flags;
861
862         /*
863          * In case NL80211_RRF_AUTO_BW requested for both rules
864          * set AUTO_BW in intersected rule also. Next we will
865          * calculate BW correctly in handle_channel function.
866          * In other case remove AUTO_BW flag while we calculate
867          * maximum bandwidth correctly and auto calculation is
868          * not required.
869          */
870         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
871             (rule2->flags & NL80211_RRF_AUTO_BW))
872                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
873         else
874                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
875
876         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
877         if (freq_range->max_bandwidth_khz > freq_diff)
878                 freq_range->max_bandwidth_khz = freq_diff;
879
880         power_rule->max_eirp = min(power_rule1->max_eirp,
881                 power_rule2->max_eirp);
882         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
883                 power_rule2->max_antenna_gain);
884
885         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
886                                            rule2->dfs_cac_ms);
887
888         if (!is_valid_reg_rule(intersected_rule))
889                 return -EINVAL;
890
891         return 0;
892 }
893
894 /* check whether old rule contains new rule */
895 static bool rule_contains(struct ieee80211_reg_rule *r1,
896                           struct ieee80211_reg_rule *r2)
897 {
898         /* for simplicity, currently consider only same flags */
899         if (r1->flags != r2->flags)
900                 return false;
901
902         /* verify r1 is more restrictive */
903         if ((r1->power_rule.max_antenna_gain >
904              r2->power_rule.max_antenna_gain) ||
905             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
906                 return false;
907
908         /* make sure r2's range is contained within r1 */
909         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
910             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
911                 return false;
912
913         /* and finally verify that r1.max_bw >= r2.max_bw */
914         if (r1->freq_range.max_bandwidth_khz <
915             r2->freq_range.max_bandwidth_khz)
916                 return false;
917
918         return true;
919 }
920
921 /* add or extend current rules. do nothing if rule is already contained */
922 static void add_rule(struct ieee80211_reg_rule *rule,
923                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
924 {
925         struct ieee80211_reg_rule *tmp_rule;
926         int i;
927
928         for (i = 0; i < *n_rules; i++) {
929                 tmp_rule = &reg_rules[i];
930                 /* rule is already contained - do nothing */
931                 if (rule_contains(tmp_rule, rule))
932                         return;
933
934                 /* extend rule if possible */
935                 if (rule_contains(rule, tmp_rule)) {
936                         memcpy(tmp_rule, rule, sizeof(*rule));
937                         return;
938                 }
939         }
940
941         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
942         (*n_rules)++;
943 }
944
945 /**
946  * regdom_intersect - do the intersection between two regulatory domains
947  * @rd1: first regulatory domain
948  * @rd2: second regulatory domain
949  *
950  * Use this function to get the intersection between two regulatory domains.
951  * Once completed we will mark the alpha2 for the rd as intersected, "98",
952  * as no one single alpha2 can represent this regulatory domain.
953  *
954  * Returns a pointer to the regulatory domain structure which will hold the
955  * resulting intersection of rules between rd1 and rd2. We will
956  * kzalloc() this structure for you.
957  */
958 static struct ieee80211_regdomain *
959 regdom_intersect(const struct ieee80211_regdomain *rd1,
960                  const struct ieee80211_regdomain *rd2)
961 {
962         int r, size_of_regd;
963         unsigned int x, y;
964         unsigned int num_rules = 0;
965         const struct ieee80211_reg_rule *rule1, *rule2;
966         struct ieee80211_reg_rule intersected_rule;
967         struct ieee80211_regdomain *rd;
968
969         if (!rd1 || !rd2)
970                 return NULL;
971
972         /*
973          * First we get a count of the rules we'll need, then we actually
974          * build them. This is to so we can malloc() and free() a
975          * regdomain once. The reason we use reg_rules_intersect() here
976          * is it will return -EINVAL if the rule computed makes no sense.
977          * All rules that do check out OK are valid.
978          */
979
980         for (x = 0; x < rd1->n_reg_rules; x++) {
981                 rule1 = &rd1->reg_rules[x];
982                 for (y = 0; y < rd2->n_reg_rules; y++) {
983                         rule2 = &rd2->reg_rules[y];
984                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
985                                                  &intersected_rule))
986                                 num_rules++;
987                 }
988         }
989
990         if (!num_rules)
991                 return NULL;
992
993         size_of_regd = sizeof(struct ieee80211_regdomain) +
994                        num_rules * sizeof(struct ieee80211_reg_rule);
995
996         rd = kzalloc(size_of_regd, GFP_KERNEL);
997         if (!rd)
998                 return NULL;
999
1000         for (x = 0; x < rd1->n_reg_rules; x++) {
1001                 rule1 = &rd1->reg_rules[x];
1002                 for (y = 0; y < rd2->n_reg_rules; y++) {
1003                         rule2 = &rd2->reg_rules[y];
1004                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1005                                                 &intersected_rule);
1006                         /*
1007                          * No need to memset here the intersected rule here as
1008                          * we're not using the stack anymore
1009                          */
1010                         if (r)
1011                                 continue;
1012
1013                         add_rule(&intersected_rule, rd->reg_rules,
1014                                  &rd->n_reg_rules);
1015                 }
1016         }
1017
1018         rd->alpha2[0] = '9';
1019         rd->alpha2[1] = '8';
1020         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1021                                                   rd2->dfs_region);
1022
1023         return rd;
1024 }
1025
1026 /*
1027  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1028  * want to just have the channel structure use these
1029  */
1030 static u32 map_regdom_flags(u32 rd_flags)
1031 {
1032         u32 channel_flags = 0;
1033         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1034                 channel_flags |= IEEE80211_CHAN_NO_IR;
1035         if (rd_flags & NL80211_RRF_DFS)
1036                 channel_flags |= IEEE80211_CHAN_RADAR;
1037         if (rd_flags & NL80211_RRF_NO_OFDM)
1038                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1039         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1040                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1041         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1042                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1043         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1044                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1045         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1046                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1047         if (rd_flags & NL80211_RRF_NO_80MHZ)
1048                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1049         if (rd_flags & NL80211_RRF_NO_160MHZ)
1050                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1051         return channel_flags;
1052 }
1053
1054 static const struct ieee80211_reg_rule *
1055 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1056                    const struct ieee80211_regdomain *regd, u32 bw)
1057 {
1058         int i;
1059         bool band_rule_found = false;
1060         bool bw_fits = false;
1061
1062         if (!regd)
1063                 return ERR_PTR(-EINVAL);
1064
1065         for (i = 0; i < regd->n_reg_rules; i++) {
1066                 const struct ieee80211_reg_rule *rr;
1067                 const struct ieee80211_freq_range *fr = NULL;
1068
1069                 rr = &regd->reg_rules[i];
1070                 fr = &rr->freq_range;
1071
1072                 /*
1073                  * We only need to know if one frequency rule was
1074                  * was in center_freq's band, that's enough, so lets
1075                  * not overwrite it once found
1076                  */
1077                 if (!band_rule_found)
1078                         band_rule_found = freq_in_rule_band(fr, center_freq);
1079
1080                 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1081
1082                 if (band_rule_found && bw_fits)
1083                         return rr;
1084         }
1085
1086         if (!band_rule_found)
1087                 return ERR_PTR(-ERANGE);
1088
1089         return ERR_PTR(-EINVAL);
1090 }
1091
1092 static const struct ieee80211_reg_rule *
1093 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1094 {
1095         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1096         const struct ieee80211_reg_rule *reg_rule = NULL;
1097         u32 bw;
1098
1099         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1100                 reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1101                 if (!IS_ERR(reg_rule))
1102                         return reg_rule;
1103         }
1104
1105         return reg_rule;
1106 }
1107
1108 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1109                                                u32 center_freq)
1110 {
1111         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1112 }
1113 EXPORT_SYMBOL(freq_reg_info);
1114
1115 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1116 {
1117         switch (initiator) {
1118         case NL80211_REGDOM_SET_BY_CORE:
1119                 return "core";
1120         case NL80211_REGDOM_SET_BY_USER:
1121                 return "user";
1122         case NL80211_REGDOM_SET_BY_DRIVER:
1123                 return "driver";
1124         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1125                 return "country IE";
1126         default:
1127                 WARN_ON(1);
1128                 return "bug";
1129         }
1130 }
1131 EXPORT_SYMBOL(reg_initiator_name);
1132
1133 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1134                                     struct ieee80211_channel *chan,
1135                                     const struct ieee80211_reg_rule *reg_rule)
1136 {
1137 #ifdef CONFIG_CFG80211_REG_DEBUG
1138         const struct ieee80211_power_rule *power_rule;
1139         const struct ieee80211_freq_range *freq_range;
1140         char max_antenna_gain[32], bw[32];
1141
1142         power_rule = &reg_rule->power_rule;
1143         freq_range = &reg_rule->freq_range;
1144
1145         if (!power_rule->max_antenna_gain)
1146                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1147         else
1148                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi",
1149                          power_rule->max_antenna_gain);
1150
1151         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1152                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1153                          freq_range->max_bandwidth_khz,
1154                          reg_get_max_bandwidth(regd, reg_rule));
1155         else
1156                 snprintf(bw, sizeof(bw), "%d KHz",
1157                          freq_range->max_bandwidth_khz);
1158
1159         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1160                       chan->center_freq);
1161
1162         REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n",
1163                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1164                       bw, max_antenna_gain,
1165                       power_rule->max_eirp);
1166 #endif
1167 }
1168
1169 /*
1170  * Note that right now we assume the desired channel bandwidth
1171  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1172  * per channel, the primary and the extension channel).
1173  */
1174 static void handle_channel(struct wiphy *wiphy,
1175                            enum nl80211_reg_initiator initiator,
1176                            struct ieee80211_channel *chan)
1177 {
1178         u32 flags, bw_flags = 0;
1179         const struct ieee80211_reg_rule *reg_rule = NULL;
1180         const struct ieee80211_power_rule *power_rule = NULL;
1181         const struct ieee80211_freq_range *freq_range = NULL;
1182         struct wiphy *request_wiphy = NULL;
1183         struct regulatory_request *lr = get_last_request();
1184         const struct ieee80211_regdomain *regd;
1185         u32 max_bandwidth_khz;
1186
1187         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1188
1189         flags = chan->orig_flags;
1190
1191         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1192         if (IS_ERR(reg_rule)) {
1193                 /*
1194                  * We will disable all channels that do not match our
1195                  * received regulatory rule unless the hint is coming
1196                  * from a Country IE and the Country IE had no information
1197                  * about a band. The IEEE 802.11 spec allows for an AP
1198                  * to send only a subset of the regulatory rules allowed,
1199                  * so an AP in the US that only supports 2.4 GHz may only send
1200                  * a country IE with information for the 2.4 GHz band
1201                  * while 5 GHz is still supported.
1202                  */
1203                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1204                     PTR_ERR(reg_rule) == -ERANGE)
1205                         return;
1206
1207                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1208                     request_wiphy && request_wiphy == wiphy &&
1209                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1210                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1211                                       chan->center_freq);
1212                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1213                         chan->flags = chan->orig_flags;
1214                 } else {
1215                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1216                                       chan->center_freq);
1217                         chan->flags |= IEEE80211_CHAN_DISABLED;
1218                 }
1219                 return;
1220         }
1221
1222         regd = reg_get_regdomain(wiphy);
1223         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1224
1225         power_rule = &reg_rule->power_rule;
1226         freq_range = &reg_rule->freq_range;
1227
1228         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1229         /* Check if auto calculation requested */
1230         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1231                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1232
1233         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1234         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1235                              MHZ_TO_KHZ(10)))
1236                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1237         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1238                              MHZ_TO_KHZ(20)))
1239                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1240
1241         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1242                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1243         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1244                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1245         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1246                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1247         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1248                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1249         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1250                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1251
1252         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1253             request_wiphy && request_wiphy == wiphy &&
1254             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1255                 /*
1256                  * This guarantees the driver's requested regulatory domain
1257                  * will always be used as a base for further regulatory
1258                  * settings
1259                  */
1260                 chan->flags = chan->orig_flags =
1261                         map_regdom_flags(reg_rule->flags) | bw_flags;
1262                 chan->max_antenna_gain = chan->orig_mag =
1263                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1264                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1265                         (int) MBM_TO_DBM(power_rule->max_eirp);
1266
1267                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1268                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1269                         if (reg_rule->dfs_cac_ms)
1270                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1271                 }
1272
1273                 return;
1274         }
1275
1276         chan->dfs_state = NL80211_DFS_USABLE;
1277         chan->dfs_state_entered = jiffies;
1278
1279         chan->beacon_found = false;
1280         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1281         chan->max_antenna_gain =
1282                 min_t(int, chan->orig_mag,
1283                       MBI_TO_DBI(power_rule->max_antenna_gain));
1284         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1285
1286         if (chan->flags & IEEE80211_CHAN_RADAR) {
1287                 if (reg_rule->dfs_cac_ms)
1288                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1289                 else
1290                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1291         }
1292
1293         if (chan->orig_mpwr) {
1294                 /*
1295                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1296                  * will always follow the passed country IE power settings.
1297                  */
1298                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1299                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1300                         chan->max_power = chan->max_reg_power;
1301                 else
1302                         chan->max_power = min(chan->orig_mpwr,
1303                                               chan->max_reg_power);
1304         } else
1305                 chan->max_power = chan->max_reg_power;
1306 }
1307
1308 static void handle_band(struct wiphy *wiphy,
1309                         enum nl80211_reg_initiator initiator,
1310                         struct ieee80211_supported_band *sband)
1311 {
1312         unsigned int i;
1313
1314         if (!sband)
1315                 return;
1316
1317         for (i = 0; i < sband->n_channels; i++)
1318                 handle_channel(wiphy, initiator, &sband->channels[i]);
1319 }
1320
1321 static bool reg_request_cell_base(struct regulatory_request *request)
1322 {
1323         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1324                 return false;
1325         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1326 }
1327
1328 bool reg_last_request_cell_base(void)
1329 {
1330         return reg_request_cell_base(get_last_request());
1331 }
1332
1333 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1334 /* Core specific check */
1335 static enum reg_request_treatment
1336 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1337 {
1338         struct regulatory_request *lr = get_last_request();
1339
1340         if (!reg_num_devs_support_basehint)
1341                 return REG_REQ_IGNORE;
1342
1343         if (reg_request_cell_base(lr) &&
1344             !regdom_changes(pending_request->alpha2))
1345                 return REG_REQ_ALREADY_SET;
1346
1347         return REG_REQ_OK;
1348 }
1349
1350 /* Device specific check */
1351 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1352 {
1353         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1354 }
1355 #else
1356 static enum reg_request_treatment
1357 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1358 {
1359         return REG_REQ_IGNORE;
1360 }
1361
1362 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1363 {
1364         return true;
1365 }
1366 #endif
1367
1368 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1369 {
1370         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1371             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1372                 return true;
1373         return false;
1374 }
1375
1376 static bool ignore_reg_update(struct wiphy *wiphy,
1377                               enum nl80211_reg_initiator initiator)
1378 {
1379         struct regulatory_request *lr = get_last_request();
1380
1381         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1382                 return true;
1383
1384         if (!lr) {
1385                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1386                               "since last_request is not set\n",
1387                               reg_initiator_name(initiator));
1388                 return true;
1389         }
1390
1391         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1392             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1393                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1394                               "since the driver uses its own custom "
1395                               "regulatory domain\n",
1396                               reg_initiator_name(initiator));
1397                 return true;
1398         }
1399
1400         /*
1401          * wiphy->regd will be set once the device has its own
1402          * desired regulatory domain set
1403          */
1404         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1405             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1406             !is_world_regdom(lr->alpha2)) {
1407                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1408                               "since the driver requires its own regulatory "
1409                               "domain to be set first\n",
1410                               reg_initiator_name(initiator));
1411                 return true;
1412         }
1413
1414         if (reg_request_cell_base(lr))
1415                 return reg_dev_ignore_cell_hint(wiphy);
1416
1417         return false;
1418 }
1419
1420 static bool reg_is_world_roaming(struct wiphy *wiphy)
1421 {
1422         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1423         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1424         struct regulatory_request *lr = get_last_request();
1425
1426         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1427                 return true;
1428
1429         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1430             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1431                 return true;
1432
1433         return false;
1434 }
1435
1436 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1437                               struct reg_beacon *reg_beacon)
1438 {
1439         struct ieee80211_supported_band *sband;
1440         struct ieee80211_channel *chan;
1441         bool channel_changed = false;
1442         struct ieee80211_channel chan_before;
1443
1444         sband = wiphy->bands[reg_beacon->chan.band];
1445         chan = &sband->channels[chan_idx];
1446
1447         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1448                 return;
1449
1450         if (chan->beacon_found)
1451                 return;
1452
1453         chan->beacon_found = true;
1454
1455         if (!reg_is_world_roaming(wiphy))
1456                 return;
1457
1458         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1459                 return;
1460
1461         chan_before.center_freq = chan->center_freq;
1462         chan_before.flags = chan->flags;
1463
1464         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1465                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1466                 channel_changed = true;
1467         }
1468
1469         if (channel_changed)
1470                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1471 }
1472
1473 /*
1474  * Called when a scan on a wiphy finds a beacon on
1475  * new channel
1476  */
1477 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1478                                     struct reg_beacon *reg_beacon)
1479 {
1480         unsigned int i;
1481         struct ieee80211_supported_band *sband;
1482
1483         if (!wiphy->bands[reg_beacon->chan.band])
1484                 return;
1485
1486         sband = wiphy->bands[reg_beacon->chan.band];
1487
1488         for (i = 0; i < sband->n_channels; i++)
1489                 handle_reg_beacon(wiphy, i, reg_beacon);
1490 }
1491
1492 /*
1493  * Called upon reg changes or a new wiphy is added
1494  */
1495 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1496 {
1497         unsigned int i;
1498         struct ieee80211_supported_band *sband;
1499         struct reg_beacon *reg_beacon;
1500
1501         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1502                 if (!wiphy->bands[reg_beacon->chan.band])
1503                         continue;
1504                 sband = wiphy->bands[reg_beacon->chan.band];
1505                 for (i = 0; i < sband->n_channels; i++)
1506                         handle_reg_beacon(wiphy, i, reg_beacon);
1507         }
1508 }
1509
1510 /* Reap the advantages of previously found beacons */
1511 static void reg_process_beacons(struct wiphy *wiphy)
1512 {
1513         /*
1514          * Means we are just firing up cfg80211, so no beacons would
1515          * have been processed yet.
1516          */
1517         if (!last_request)
1518                 return;
1519         wiphy_update_beacon_reg(wiphy);
1520 }
1521
1522 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1523 {
1524         if (!chan)
1525                 return false;
1526         if (chan->flags & IEEE80211_CHAN_DISABLED)
1527                 return false;
1528         /* This would happen when regulatory rules disallow HT40 completely */
1529         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1530                 return false;
1531         return true;
1532 }
1533
1534 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1535                                          struct ieee80211_channel *channel)
1536 {
1537         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1538         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1539         unsigned int i;
1540
1541         if (!is_ht40_allowed(channel)) {
1542                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1543                 return;
1544         }
1545
1546         /*
1547          * We need to ensure the extension channels exist to
1548          * be able to use HT40- or HT40+, this finds them (or not)
1549          */
1550         for (i = 0; i < sband->n_channels; i++) {
1551                 struct ieee80211_channel *c = &sband->channels[i];
1552
1553                 if (c->center_freq == (channel->center_freq - 20))
1554                         channel_before = c;
1555                 if (c->center_freq == (channel->center_freq + 20))
1556                         channel_after = c;
1557         }
1558
1559         /*
1560          * Please note that this assumes target bandwidth is 20 MHz,
1561          * if that ever changes we also need to change the below logic
1562          * to include that as well.
1563          */
1564         if (!is_ht40_allowed(channel_before))
1565                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566         else
1567                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1568
1569         if (!is_ht40_allowed(channel_after))
1570                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1571         else
1572                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1573 }
1574
1575 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1576                                       struct ieee80211_supported_band *sband)
1577 {
1578         unsigned int i;
1579
1580         if (!sband)
1581                 return;
1582
1583         for (i = 0; i < sband->n_channels; i++)
1584                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1585 }
1586
1587 static void reg_process_ht_flags(struct wiphy *wiphy)
1588 {
1589         enum ieee80211_band band;
1590
1591         if (!wiphy)
1592                 return;
1593
1594         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1595                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1596 }
1597
1598 static void reg_call_notifier(struct wiphy *wiphy,
1599                               struct regulatory_request *request)
1600 {
1601         if (wiphy->reg_notifier)
1602                 wiphy->reg_notifier(wiphy, request);
1603 }
1604
1605 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1606 {
1607         struct cfg80211_chan_def chandef;
1608         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1609         enum nl80211_iftype iftype;
1610
1611         wdev_lock(wdev);
1612         iftype = wdev->iftype;
1613
1614         /* make sure the interface is active */
1615         if (!wdev->netdev || !netif_running(wdev->netdev))
1616                 goto wdev_inactive_unlock;
1617
1618         switch (iftype) {
1619         case NL80211_IFTYPE_AP:
1620         case NL80211_IFTYPE_P2P_GO:
1621                 if (!wdev->beacon_interval)
1622                         goto wdev_inactive_unlock;
1623                 chandef = wdev->chandef;
1624                 break;
1625         case NL80211_IFTYPE_ADHOC:
1626                 if (!wdev->ssid_len)
1627                         goto wdev_inactive_unlock;
1628                 chandef = wdev->chandef;
1629                 break;
1630         case NL80211_IFTYPE_STATION:
1631         case NL80211_IFTYPE_P2P_CLIENT:
1632                 if (!wdev->current_bss ||
1633                     !wdev->current_bss->pub.channel)
1634                         goto wdev_inactive_unlock;
1635
1636                 if (!rdev->ops->get_channel ||
1637                     rdev_get_channel(rdev, wdev, &chandef))
1638                         cfg80211_chandef_create(&chandef,
1639                                                 wdev->current_bss->pub.channel,
1640                                                 NL80211_CHAN_NO_HT);
1641                 break;
1642         case NL80211_IFTYPE_MONITOR:
1643         case NL80211_IFTYPE_AP_VLAN:
1644         case NL80211_IFTYPE_P2P_DEVICE:
1645                 /* no enforcement required */
1646                 break;
1647         default:
1648                 /* others not implemented for now */
1649                 WARN_ON(1);
1650                 break;
1651         }
1652
1653         wdev_unlock(wdev);
1654
1655         switch (iftype) {
1656         case NL80211_IFTYPE_AP:
1657         case NL80211_IFTYPE_P2P_GO:
1658         case NL80211_IFTYPE_ADHOC:
1659                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1660         case NL80211_IFTYPE_STATION:
1661         case NL80211_IFTYPE_P2P_CLIENT:
1662                 return cfg80211_chandef_usable(wiphy, &chandef,
1663                                                IEEE80211_CHAN_DISABLED);
1664         default:
1665                 break;
1666         }
1667
1668         return true;
1669
1670 wdev_inactive_unlock:
1671         wdev_unlock(wdev);
1672         return true;
1673 }
1674
1675 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1676 {
1677         struct wireless_dev *wdev;
1678         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1679
1680         ASSERT_RTNL();
1681
1682         list_for_each_entry(wdev, &rdev->wdev_list, list)
1683                 if (!reg_wdev_chan_valid(wiphy, wdev))
1684                         cfg80211_leave(rdev, wdev);
1685 }
1686
1687 static void reg_check_chans_work(struct work_struct *work)
1688 {
1689         struct cfg80211_registered_device *rdev;
1690
1691         REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1692         rtnl_lock();
1693
1694         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1695                 if (!(rdev->wiphy.regulatory_flags &
1696                       REGULATORY_IGNORE_STALE_KICKOFF))
1697                         reg_leave_invalid_chans(&rdev->wiphy);
1698
1699         rtnl_unlock();
1700 }
1701
1702 static void reg_check_channels(void)
1703 {
1704         /*
1705          * Give usermode a chance to do something nicer (move to another
1706          * channel, orderly disconnection), before forcing a disconnection.
1707          */
1708         mod_delayed_work(system_power_efficient_wq,
1709                          &reg_check_chans,
1710                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1711 }
1712
1713 static void wiphy_update_regulatory(struct wiphy *wiphy,
1714                                     enum nl80211_reg_initiator initiator)
1715 {
1716         enum ieee80211_band band;
1717         struct regulatory_request *lr = get_last_request();
1718
1719         if (ignore_reg_update(wiphy, initiator)) {
1720                 /*
1721                  * Regulatory updates set by CORE are ignored for custom
1722                  * regulatory cards. Let us notify the changes to the driver,
1723                  * as some drivers used this to restore its orig_* reg domain.
1724                  */
1725                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1726                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1727                         reg_call_notifier(wiphy, lr);
1728                 return;
1729         }
1730
1731         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1732
1733         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1734                 handle_band(wiphy, initiator, wiphy->bands[band]);
1735
1736         reg_process_beacons(wiphy);
1737         reg_process_ht_flags(wiphy);
1738         reg_call_notifier(wiphy, lr);
1739 }
1740
1741 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1742 {
1743         struct cfg80211_registered_device *rdev;
1744         struct wiphy *wiphy;
1745
1746         ASSERT_RTNL();
1747
1748         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1749                 wiphy = &rdev->wiphy;
1750                 wiphy_update_regulatory(wiphy, initiator);
1751         }
1752
1753         reg_check_channels();
1754 }
1755
1756 static void handle_channel_custom(struct wiphy *wiphy,
1757                                   struct ieee80211_channel *chan,
1758                                   const struct ieee80211_regdomain *regd)
1759 {
1760         u32 bw_flags = 0;
1761         const struct ieee80211_reg_rule *reg_rule = NULL;
1762         const struct ieee80211_power_rule *power_rule = NULL;
1763         const struct ieee80211_freq_range *freq_range = NULL;
1764         u32 max_bandwidth_khz;
1765         u32 bw;
1766
1767         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1768                 reg_rule = freq_reg_info_regd(wiphy,
1769                                               MHZ_TO_KHZ(chan->center_freq),
1770                                               regd, bw);
1771                 if (!IS_ERR(reg_rule))
1772                         break;
1773         }
1774
1775         if (IS_ERR(reg_rule)) {
1776                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1777                               chan->center_freq);
1778                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1779                         chan->flags |= IEEE80211_CHAN_DISABLED;
1780                 } else {
1781                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1782                         chan->flags = chan->orig_flags;
1783                 }
1784                 return;
1785         }
1786
1787         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1788
1789         power_rule = &reg_rule->power_rule;
1790         freq_range = &reg_rule->freq_range;
1791
1792         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1793         /* Check if auto calculation requested */
1794         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1795                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1796
1797         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1798         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1799                              MHZ_TO_KHZ(10)))
1800                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1801         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1802                              MHZ_TO_KHZ(20)))
1803                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1804
1805         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1806                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1807         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1808                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1809         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1810                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1811         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1812                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1813         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1814                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1815
1816         chan->dfs_state_entered = jiffies;
1817         chan->dfs_state = NL80211_DFS_USABLE;
1818
1819         chan->beacon_found = false;
1820
1821         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1822                 chan->flags = chan->orig_flags | bw_flags |
1823                               map_regdom_flags(reg_rule->flags);
1824         else
1825                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1826
1827         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1828         chan->max_reg_power = chan->max_power =
1829                 (int) MBM_TO_DBM(power_rule->max_eirp);
1830
1831         if (chan->flags & IEEE80211_CHAN_RADAR) {
1832                 if (reg_rule->dfs_cac_ms)
1833                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1834                 else
1835                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1836         }
1837
1838         chan->max_power = chan->max_reg_power;
1839 }
1840
1841 static void handle_band_custom(struct wiphy *wiphy,
1842                                struct ieee80211_supported_band *sband,
1843                                const struct ieee80211_regdomain *regd)
1844 {
1845         unsigned int i;
1846
1847         if (!sband)
1848                 return;
1849
1850         for (i = 0; i < sband->n_channels; i++)
1851                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1852 }
1853
1854 /* Used by drivers prior to wiphy registration */
1855 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1856                                    const struct ieee80211_regdomain *regd)
1857 {
1858         enum ieee80211_band band;
1859         unsigned int bands_set = 0;
1860
1861         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1862              "wiphy should have REGULATORY_CUSTOM_REG\n");
1863         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1864
1865         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1866                 if (!wiphy->bands[band])
1867                         continue;
1868                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1869                 bands_set++;
1870         }
1871
1872         /*
1873          * no point in calling this if it won't have any effect
1874          * on your device's supported bands.
1875          */
1876         WARN_ON(!bands_set);
1877 }
1878 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1879
1880 static void reg_set_request_processed(void)
1881 {
1882         bool need_more_processing = false;
1883         struct regulatory_request *lr = get_last_request();
1884
1885         lr->processed = true;
1886
1887         spin_lock(&reg_requests_lock);
1888         if (!list_empty(&reg_requests_list))
1889                 need_more_processing = true;
1890         spin_unlock(&reg_requests_lock);
1891
1892         cancel_crda_timeout();
1893
1894         if (need_more_processing)
1895                 schedule_work(&reg_work);
1896 }
1897
1898 /**
1899  * reg_process_hint_core - process core regulatory requests
1900  * @pending_request: a pending core regulatory request
1901  *
1902  * The wireless subsystem can use this function to process
1903  * a regulatory request issued by the regulatory core.
1904  */
1905 static enum reg_request_treatment
1906 reg_process_hint_core(struct regulatory_request *core_request)
1907 {
1908         if (reg_query_database(core_request)) {
1909                 core_request->intersect = false;
1910                 core_request->processed = false;
1911                 reg_update_last_request(core_request);
1912                 return REG_REQ_OK;
1913         }
1914
1915         return REG_REQ_IGNORE;
1916 }
1917
1918 static enum reg_request_treatment
1919 __reg_process_hint_user(struct regulatory_request *user_request)
1920 {
1921         struct regulatory_request *lr = get_last_request();
1922
1923         if (reg_request_cell_base(user_request))
1924                 return reg_ignore_cell_hint(user_request);
1925
1926         if (reg_request_cell_base(lr))
1927                 return REG_REQ_IGNORE;
1928
1929         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1930                 return REG_REQ_INTERSECT;
1931         /*
1932          * If the user knows better the user should set the regdom
1933          * to their country before the IE is picked up
1934          */
1935         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1936             lr->intersect)
1937                 return REG_REQ_IGNORE;
1938         /*
1939          * Process user requests only after previous user/driver/core
1940          * requests have been processed
1941          */
1942         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1943              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1944              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1945             regdom_changes(lr->alpha2))
1946                 return REG_REQ_IGNORE;
1947
1948         if (!regdom_changes(user_request->alpha2))
1949                 return REG_REQ_ALREADY_SET;
1950
1951         return REG_REQ_OK;
1952 }
1953
1954 /**
1955  * reg_process_hint_user - process user regulatory requests
1956  * @user_request: a pending user regulatory request
1957  *
1958  * The wireless subsystem can use this function to process
1959  * a regulatory request initiated by userspace.
1960  */
1961 static enum reg_request_treatment
1962 reg_process_hint_user(struct regulatory_request *user_request)
1963 {
1964         enum reg_request_treatment treatment;
1965
1966         treatment = __reg_process_hint_user(user_request);
1967         if (treatment == REG_REQ_IGNORE ||
1968             treatment == REG_REQ_ALREADY_SET)
1969                 return REG_REQ_IGNORE;
1970
1971         user_request->intersect = treatment == REG_REQ_INTERSECT;
1972         user_request->processed = false;
1973
1974         if (reg_query_database(user_request)) {
1975                 reg_update_last_request(user_request);
1976                 user_alpha2[0] = user_request->alpha2[0];
1977                 user_alpha2[1] = user_request->alpha2[1];
1978                 return REG_REQ_OK;
1979         }
1980
1981         return REG_REQ_IGNORE;
1982 }
1983
1984 static enum reg_request_treatment
1985 __reg_process_hint_driver(struct regulatory_request *driver_request)
1986 {
1987         struct regulatory_request *lr = get_last_request();
1988
1989         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1990                 if (regdom_changes(driver_request->alpha2))
1991                         return REG_REQ_OK;
1992                 return REG_REQ_ALREADY_SET;
1993         }
1994
1995         /*
1996          * This would happen if you unplug and plug your card
1997          * back in or if you add a new device for which the previously
1998          * loaded card also agrees on the regulatory domain.
1999          */
2000         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2001             !regdom_changes(driver_request->alpha2))
2002                 return REG_REQ_ALREADY_SET;
2003
2004         return REG_REQ_INTERSECT;
2005 }
2006
2007 /**
2008  * reg_process_hint_driver - process driver regulatory requests
2009  * @driver_request: a pending driver regulatory request
2010  *
2011  * The wireless subsystem can use this function to process
2012  * a regulatory request issued by an 802.11 driver.
2013  *
2014  * Returns one of the different reg request treatment values.
2015  */
2016 static enum reg_request_treatment
2017 reg_process_hint_driver(struct wiphy *wiphy,
2018                         struct regulatory_request *driver_request)
2019 {
2020         const struct ieee80211_regdomain *regd, *tmp;
2021         enum reg_request_treatment treatment;
2022
2023         treatment = __reg_process_hint_driver(driver_request);
2024
2025         switch (treatment) {
2026         case REG_REQ_OK:
2027                 break;
2028         case REG_REQ_IGNORE:
2029                 return REG_REQ_IGNORE;
2030         case REG_REQ_INTERSECT:
2031         case REG_REQ_ALREADY_SET:
2032                 regd = reg_copy_regd(get_cfg80211_regdom());
2033                 if (IS_ERR(regd))
2034                         return REG_REQ_IGNORE;
2035
2036                 tmp = get_wiphy_regdom(wiphy);
2037                 rcu_assign_pointer(wiphy->regd, regd);
2038                 rcu_free_regdom(tmp);
2039         }
2040
2041
2042         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2043         driver_request->processed = false;
2044
2045         /*
2046          * Since CRDA will not be called in this case as we already
2047          * have applied the requested regulatory domain before we just
2048          * inform userspace we have processed the request
2049          */
2050         if (treatment == REG_REQ_ALREADY_SET) {
2051                 nl80211_send_reg_change_event(driver_request);
2052                 reg_update_last_request(driver_request);
2053                 reg_set_request_processed();
2054                 return REG_REQ_ALREADY_SET;
2055         }
2056
2057         if (reg_query_database(driver_request)) {
2058                 reg_update_last_request(driver_request);
2059                 return REG_REQ_OK;
2060         }
2061
2062         return REG_REQ_IGNORE;
2063 }
2064
2065 static enum reg_request_treatment
2066 __reg_process_hint_country_ie(struct wiphy *wiphy,
2067                               struct regulatory_request *country_ie_request)
2068 {
2069         struct wiphy *last_wiphy = NULL;
2070         struct regulatory_request *lr = get_last_request();
2071
2072         if (reg_request_cell_base(lr)) {
2073                 /* Trust a Cell base station over the AP's country IE */
2074                 if (regdom_changes(country_ie_request->alpha2))
2075                         return REG_REQ_IGNORE;
2076                 return REG_REQ_ALREADY_SET;
2077         } else {
2078                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2079                         return REG_REQ_IGNORE;
2080         }
2081
2082         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2083                 return -EINVAL;
2084
2085         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2086                 return REG_REQ_OK;
2087
2088         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2089
2090         if (last_wiphy != wiphy) {
2091                 /*
2092                  * Two cards with two APs claiming different
2093                  * Country IE alpha2s. We could
2094                  * intersect them, but that seems unlikely
2095                  * to be correct. Reject second one for now.
2096                  */
2097                 if (regdom_changes(country_ie_request->alpha2))
2098                         return REG_REQ_IGNORE;
2099                 return REG_REQ_ALREADY_SET;
2100         }
2101
2102         if (regdom_changes(country_ie_request->alpha2))
2103                 return REG_REQ_OK;
2104         return REG_REQ_ALREADY_SET;
2105 }
2106
2107 /**
2108  * reg_process_hint_country_ie - process regulatory requests from country IEs
2109  * @country_ie_request: a regulatory request from a country IE
2110  *
2111  * The wireless subsystem can use this function to process
2112  * a regulatory request issued by a country Information Element.
2113  *
2114  * Returns one of the different reg request treatment values.
2115  */
2116 static enum reg_request_treatment
2117 reg_process_hint_country_ie(struct wiphy *wiphy,
2118                             struct regulatory_request *country_ie_request)
2119 {
2120         enum reg_request_treatment treatment;
2121
2122         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2123
2124         switch (treatment) {
2125         case REG_REQ_OK:
2126                 break;
2127         case REG_REQ_IGNORE:
2128                 return REG_REQ_IGNORE;
2129         case REG_REQ_ALREADY_SET:
2130                 reg_free_request(country_ie_request);
2131                 return REG_REQ_ALREADY_SET;
2132         case REG_REQ_INTERSECT:
2133                 /*
2134                  * This doesn't happen yet, not sure we
2135                  * ever want to support it for this case.
2136                  */
2137                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2138                 return REG_REQ_IGNORE;
2139         }
2140
2141         country_ie_request->intersect = false;
2142         country_ie_request->processed = false;
2143
2144         if (reg_query_database(country_ie_request)) {
2145                 reg_update_last_request(country_ie_request);
2146                 return REG_REQ_OK;
2147         }
2148
2149         return REG_REQ_IGNORE;
2150 }
2151
2152 /* This processes *all* regulatory hints */
2153 static void reg_process_hint(struct regulatory_request *reg_request)
2154 {
2155         struct wiphy *wiphy = NULL;
2156         enum reg_request_treatment treatment;
2157
2158         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2159                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2160
2161         switch (reg_request->initiator) {
2162         case NL80211_REGDOM_SET_BY_CORE:
2163                 treatment = reg_process_hint_core(reg_request);
2164                 break;
2165         case NL80211_REGDOM_SET_BY_USER:
2166                 treatment = reg_process_hint_user(reg_request);
2167                 break;
2168         case NL80211_REGDOM_SET_BY_DRIVER:
2169                 if (!wiphy)
2170                         goto out_free;
2171                 treatment = reg_process_hint_driver(wiphy, reg_request);
2172                 break;
2173         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2174                 if (!wiphy)
2175                         goto out_free;
2176                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2177                 break;
2178         default:
2179                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2180                 goto out_free;
2181         }
2182
2183         if (treatment == REG_REQ_IGNORE)
2184                 goto out_free;
2185
2186         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2187              "unexpected treatment value %d\n", treatment);
2188
2189         /* This is required so that the orig_* parameters are saved.
2190          * NOTE: treatment must be set for any case that reaches here!
2191          */
2192         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2193             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2194                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2195                 reg_check_channels();
2196         }
2197
2198         return;
2199
2200 out_free:
2201         reg_free_request(reg_request);
2202 }
2203
2204 static bool reg_only_self_managed_wiphys(void)
2205 {
2206         struct cfg80211_registered_device *rdev;
2207         struct wiphy *wiphy;
2208         bool self_managed_found = false;
2209
2210         ASSERT_RTNL();
2211
2212         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2213                 wiphy = &rdev->wiphy;
2214                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2215                         self_managed_found = true;
2216                 else
2217                         return false;
2218         }
2219
2220         /* make sure at least one self-managed wiphy exists */
2221         return self_managed_found;
2222 }
2223
2224 /*
2225  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2226  * Regulatory hints come on a first come first serve basis and we
2227  * must process each one atomically.
2228  */
2229 static void reg_process_pending_hints(void)
2230 {
2231         struct regulatory_request *reg_request, *lr;
2232
2233         lr = get_last_request();
2234
2235         /* When last_request->processed becomes true this will be rescheduled */
2236         if (lr && !lr->processed) {
2237                 reg_process_hint(lr);
2238                 return;
2239         }
2240
2241         spin_lock(&reg_requests_lock);
2242
2243         if (list_empty(&reg_requests_list)) {
2244                 spin_unlock(&reg_requests_lock);
2245                 return;
2246         }
2247
2248         reg_request = list_first_entry(&reg_requests_list,
2249                                        struct regulatory_request,
2250                                        list);
2251         list_del_init(&reg_request->list);
2252
2253         spin_unlock(&reg_requests_lock);
2254
2255         if (reg_only_self_managed_wiphys()) {
2256                 reg_free_request(reg_request);
2257                 return;
2258         }
2259
2260         reg_process_hint(reg_request);
2261
2262         lr = get_last_request();
2263
2264         spin_lock(&reg_requests_lock);
2265         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2266                 schedule_work(&reg_work);
2267         spin_unlock(&reg_requests_lock);
2268 }
2269
2270 /* Processes beacon hints -- this has nothing to do with country IEs */
2271 static void reg_process_pending_beacon_hints(void)
2272 {
2273         struct cfg80211_registered_device *rdev;
2274         struct reg_beacon *pending_beacon, *tmp;
2275
2276         /* This goes through the _pending_ beacon list */
2277         spin_lock_bh(&reg_pending_beacons_lock);
2278
2279         list_for_each_entry_safe(pending_beacon, tmp,
2280                                  &reg_pending_beacons, list) {
2281                 list_del_init(&pending_beacon->list);
2282
2283                 /* Applies the beacon hint to current wiphys */
2284                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2285                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2286
2287                 /* Remembers the beacon hint for new wiphys or reg changes */
2288                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2289         }
2290
2291         spin_unlock_bh(&reg_pending_beacons_lock);
2292 }
2293
2294 static void reg_process_self_managed_hints(void)
2295 {
2296         struct cfg80211_registered_device *rdev;
2297         struct wiphy *wiphy;
2298         const struct ieee80211_regdomain *tmp;
2299         const struct ieee80211_regdomain *regd;
2300         enum ieee80211_band band;
2301         struct regulatory_request request = {};
2302
2303         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2304                 wiphy = &rdev->wiphy;
2305
2306                 spin_lock(&reg_requests_lock);
2307                 regd = rdev->requested_regd;
2308                 rdev->requested_regd = NULL;
2309                 spin_unlock(&reg_requests_lock);
2310
2311                 if (regd == NULL)
2312                         continue;
2313
2314                 tmp = get_wiphy_regdom(wiphy);
2315                 rcu_assign_pointer(wiphy->regd, regd);
2316                 rcu_free_regdom(tmp);
2317
2318                 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2319                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2320
2321                 reg_process_ht_flags(wiphy);
2322
2323                 request.wiphy_idx = get_wiphy_idx(wiphy);
2324                 request.alpha2[0] = regd->alpha2[0];
2325                 request.alpha2[1] = regd->alpha2[1];
2326                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2327
2328                 nl80211_send_wiphy_reg_change_event(&request);
2329         }
2330
2331         reg_check_channels();
2332 }
2333
2334 static void reg_todo(struct work_struct *work)
2335 {
2336         rtnl_lock();
2337         reg_process_pending_hints();
2338         reg_process_pending_beacon_hints();
2339         reg_process_self_managed_hints();
2340         rtnl_unlock();
2341 }
2342
2343 static void queue_regulatory_request(struct regulatory_request *request)
2344 {
2345         request->alpha2[0] = toupper(request->alpha2[0]);
2346         request->alpha2[1] = toupper(request->alpha2[1]);
2347
2348         spin_lock(&reg_requests_lock);
2349         list_add_tail(&request->list, &reg_requests_list);
2350         spin_unlock(&reg_requests_lock);
2351
2352         schedule_work(&reg_work);
2353 }
2354
2355 /*
2356  * Core regulatory hint -- happens during cfg80211_init()
2357  * and when we restore regulatory settings.
2358  */
2359 static int regulatory_hint_core(const char *alpha2)
2360 {
2361         struct regulatory_request *request;
2362
2363         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2364         if (!request)
2365                 return -ENOMEM;
2366
2367         request->alpha2[0] = alpha2[0];
2368         request->alpha2[1] = alpha2[1];
2369         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2370
2371         queue_regulatory_request(request);
2372
2373         return 0;
2374 }
2375
2376 /* User hints */
2377 int regulatory_hint_user(const char *alpha2,
2378                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2379 {
2380         struct regulatory_request *request;
2381
2382         if (WARN_ON(!alpha2))
2383                 return -EINVAL;
2384
2385         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2386         if (!request)
2387                 return -ENOMEM;
2388
2389         request->wiphy_idx = WIPHY_IDX_INVALID;
2390         request->alpha2[0] = alpha2[0];
2391         request->alpha2[1] = alpha2[1];
2392         request->initiator = NL80211_REGDOM_SET_BY_USER;
2393         request->user_reg_hint_type = user_reg_hint_type;
2394
2395         /* Allow calling CRDA again */
2396         reset_crda_timeouts();
2397
2398         queue_regulatory_request(request);
2399
2400         return 0;
2401 }
2402
2403 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2404 {
2405         spin_lock(&reg_indoor_lock);
2406
2407         /* It is possible that more than one user space process is trying to
2408          * configure the indoor setting. To handle such cases, clear the indoor
2409          * setting in case that some process does not think that the device
2410          * is operating in an indoor environment. In addition, if a user space
2411          * process indicates that it is controlling the indoor setting, save its
2412          * portid, i.e., make it the owner.
2413          */
2414         reg_is_indoor = is_indoor;
2415         if (reg_is_indoor) {
2416                 if (!reg_is_indoor_portid)
2417                         reg_is_indoor_portid = portid;
2418         } else {
2419                 reg_is_indoor_portid = 0;
2420         }
2421
2422         spin_unlock(&reg_indoor_lock);
2423
2424         if (!is_indoor)
2425                 reg_check_channels();
2426
2427         return 0;
2428 }
2429
2430 void regulatory_netlink_notify(u32 portid)
2431 {
2432         spin_lock(&reg_indoor_lock);
2433
2434         if (reg_is_indoor_portid != portid) {
2435                 spin_unlock(&reg_indoor_lock);
2436                 return;
2437         }
2438
2439         reg_is_indoor = false;
2440         reg_is_indoor_portid = 0;
2441
2442         spin_unlock(&reg_indoor_lock);
2443
2444         reg_check_channels();
2445 }
2446
2447 /* Driver hints */
2448 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2449 {
2450         struct regulatory_request *request;
2451
2452         if (WARN_ON(!alpha2 || !wiphy))
2453                 return -EINVAL;
2454
2455         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2456
2457         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2458         if (!request)
2459                 return -ENOMEM;
2460
2461         request->wiphy_idx = get_wiphy_idx(wiphy);
2462
2463         request->alpha2[0] = alpha2[0];
2464         request->alpha2[1] = alpha2[1];
2465         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2466
2467         /* Allow calling CRDA again */
2468         reset_crda_timeouts();
2469
2470         queue_regulatory_request(request);
2471
2472         return 0;
2473 }
2474 EXPORT_SYMBOL(regulatory_hint);
2475
2476 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2477                                 const u8 *country_ie, u8 country_ie_len)
2478 {
2479         char alpha2[2];
2480         enum environment_cap env = ENVIRON_ANY;
2481         struct regulatory_request *request = NULL, *lr;
2482
2483         /* IE len must be evenly divisible by 2 */
2484         if (country_ie_len & 0x01)
2485                 return;
2486
2487         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2488                 return;
2489
2490         request = kzalloc(sizeof(*request), GFP_KERNEL);
2491         if (!request)
2492                 return;
2493
2494         alpha2[0] = country_ie[0];
2495         alpha2[1] = country_ie[1];
2496
2497         if (country_ie[2] == 'I')
2498                 env = ENVIRON_INDOOR;
2499         else if (country_ie[2] == 'O')
2500                 env = ENVIRON_OUTDOOR;
2501
2502         rcu_read_lock();
2503         lr = get_last_request();
2504
2505         if (unlikely(!lr))
2506                 goto out;
2507
2508         /*
2509          * We will run this only upon a successful connection on cfg80211.
2510          * We leave conflict resolution to the workqueue, where can hold
2511          * the RTNL.
2512          */
2513         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2514             lr->wiphy_idx != WIPHY_IDX_INVALID)
2515                 goto out;
2516
2517         request->wiphy_idx = get_wiphy_idx(wiphy);
2518         request->alpha2[0] = alpha2[0];
2519         request->alpha2[1] = alpha2[1];
2520         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2521         request->country_ie_env = env;
2522
2523         /* Allow calling CRDA again */
2524         reset_crda_timeouts();
2525
2526         queue_regulatory_request(request);
2527         request = NULL;
2528 out:
2529         kfree(request);
2530         rcu_read_unlock();
2531 }
2532
2533 static void restore_alpha2(char *alpha2, bool reset_user)
2534 {
2535         /* indicates there is no alpha2 to consider for restoration */
2536         alpha2[0] = '9';
2537         alpha2[1] = '7';
2538
2539         /* The user setting has precedence over the module parameter */
2540         if (is_user_regdom_saved()) {
2541                 /* Unless we're asked to ignore it and reset it */
2542                 if (reset_user) {
2543                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2544                         user_alpha2[0] = '9';
2545                         user_alpha2[1] = '7';
2546
2547                         /*
2548                          * If we're ignoring user settings, we still need to
2549                          * check the module parameter to ensure we put things
2550                          * back as they were for a full restore.
2551                          */
2552                         if (!is_world_regdom(ieee80211_regdom)) {
2553                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2554                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2555                                 alpha2[0] = ieee80211_regdom[0];
2556                                 alpha2[1] = ieee80211_regdom[1];
2557                         }
2558                 } else {
2559                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2560                                       user_alpha2[0], user_alpha2[1]);
2561                         alpha2[0] = user_alpha2[0];
2562                         alpha2[1] = user_alpha2[1];
2563                 }
2564         } else if (!is_world_regdom(ieee80211_regdom)) {
2565                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2566                               ieee80211_regdom[0], ieee80211_regdom[1]);
2567                 alpha2[0] = ieee80211_regdom[0];
2568                 alpha2[1] = ieee80211_regdom[1];
2569         } else
2570                 REG_DBG_PRINT("Restoring regulatory settings\n");
2571 }
2572
2573 static void restore_custom_reg_settings(struct wiphy *wiphy)
2574 {
2575         struct ieee80211_supported_band *sband;
2576         enum ieee80211_band band;
2577         struct ieee80211_channel *chan;
2578         int i;
2579
2580         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2581                 sband = wiphy->bands[band];
2582                 if (!sband)
2583                         continue;
2584                 for (i = 0; i < sband->n_channels; i++) {
2585                         chan = &sband->channels[i];
2586                         chan->flags = chan->orig_flags;
2587                         chan->max_antenna_gain = chan->orig_mag;
2588                         chan->max_power = chan->orig_mpwr;
2589                         chan->beacon_found = false;
2590                 }
2591         }
2592 }
2593
2594 /*
2595  * Restoring regulatory settings involves ingoring any
2596  * possibly stale country IE information and user regulatory
2597  * settings if so desired, this includes any beacon hints
2598  * learned as we could have traveled outside to another country
2599  * after disconnection. To restore regulatory settings we do
2600  * exactly what we did at bootup:
2601  *
2602  *   - send a core regulatory hint
2603  *   - send a user regulatory hint if applicable
2604  *
2605  * Device drivers that send a regulatory hint for a specific country
2606  * keep their own regulatory domain on wiphy->regd so that does does
2607  * not need to be remembered.
2608  */
2609 static void restore_regulatory_settings(bool reset_user)
2610 {
2611         char alpha2[2];
2612         char world_alpha2[2];
2613         struct reg_beacon *reg_beacon, *btmp;
2614         LIST_HEAD(tmp_reg_req_list);
2615         struct cfg80211_registered_device *rdev;
2616
2617         ASSERT_RTNL();
2618
2619         /*
2620          * Clear the indoor setting in case that it is not controlled by user
2621          * space, as otherwise there is no guarantee that the device is still
2622          * operating in an indoor environment.
2623          */
2624         spin_lock(&reg_indoor_lock);
2625         if (reg_is_indoor && !reg_is_indoor_portid) {
2626                 reg_is_indoor = false;
2627                 reg_check_channels();
2628         }
2629         spin_unlock(&reg_indoor_lock);
2630
2631         reset_regdomains(true, &world_regdom);
2632         restore_alpha2(alpha2, reset_user);
2633
2634         /*
2635          * If there's any pending requests we simply
2636          * stash them to a temporary pending queue and
2637          * add then after we've restored regulatory
2638          * settings.
2639          */
2640         spin_lock(&reg_requests_lock);
2641         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2642         spin_unlock(&reg_requests_lock);
2643
2644         /* Clear beacon hints */
2645         spin_lock_bh(&reg_pending_beacons_lock);
2646         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2647                 list_del(&reg_beacon->list);
2648                 kfree(reg_beacon);
2649         }
2650         spin_unlock_bh(&reg_pending_beacons_lock);
2651
2652         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2653                 list_del(&reg_beacon->list);
2654                 kfree(reg_beacon);
2655         }
2656
2657         /* First restore to the basic regulatory settings */
2658         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2659         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2660
2661         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2662                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2663                         continue;
2664                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2665                         restore_custom_reg_settings(&rdev->wiphy);
2666         }
2667
2668         regulatory_hint_core(world_alpha2);
2669
2670         /*
2671          * This restores the ieee80211_regdom module parameter
2672          * preference or the last user requested regulatory
2673          * settings, user regulatory settings takes precedence.
2674          */
2675         if (is_an_alpha2(alpha2))
2676                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2677
2678         spin_lock(&reg_requests_lock);
2679         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2680         spin_unlock(&reg_requests_lock);
2681
2682         REG_DBG_PRINT("Kicking the queue\n");
2683
2684         schedule_work(&reg_work);
2685 }
2686
2687 void regulatory_hint_disconnect(void)
2688 {
2689         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2690         restore_regulatory_settings(false);
2691 }
2692
2693 static bool freq_is_chan_12_13_14(u16 freq)
2694 {
2695         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2696             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2697             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2698                 return true;
2699         return false;
2700 }
2701
2702 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2703 {
2704         struct reg_beacon *pending_beacon;
2705
2706         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2707                 if (beacon_chan->center_freq ==
2708                     pending_beacon->chan.center_freq)
2709                         return true;
2710         return false;
2711 }
2712
2713 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2714                                  struct ieee80211_channel *beacon_chan,
2715                                  gfp_t gfp)
2716 {
2717         struct reg_beacon *reg_beacon;
2718         bool processing;
2719
2720         if (beacon_chan->beacon_found ||
2721             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2722             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2723              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2724                 return 0;
2725
2726         spin_lock_bh(&reg_pending_beacons_lock);
2727         processing = pending_reg_beacon(beacon_chan);
2728         spin_unlock_bh(&reg_pending_beacons_lock);
2729
2730         if (processing)
2731                 return 0;
2732
2733         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2734         if (!reg_beacon)
2735                 return -ENOMEM;
2736
2737         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2738                       beacon_chan->center_freq,
2739                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2740                       wiphy_name(wiphy));
2741
2742         memcpy(&reg_beacon->chan, beacon_chan,
2743                sizeof(struct ieee80211_channel));
2744
2745         /*
2746          * Since we can be called from BH or and non-BH context
2747          * we must use spin_lock_bh()
2748          */
2749         spin_lock_bh(&reg_pending_beacons_lock);
2750         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2751         spin_unlock_bh(&reg_pending_beacons_lock);
2752
2753         schedule_work(&reg_work);
2754
2755         return 0;
2756 }
2757
2758 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2759 {
2760         unsigned int i;
2761         const struct ieee80211_reg_rule *reg_rule = NULL;
2762         const struct ieee80211_freq_range *freq_range = NULL;
2763         const struct ieee80211_power_rule *power_rule = NULL;
2764         char bw[32], cac_time[32];
2765
2766         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2767
2768         for (i = 0; i < rd->n_reg_rules; i++) {
2769                 reg_rule = &rd->reg_rules[i];
2770                 freq_range = &reg_rule->freq_range;
2771                 power_rule = &reg_rule->power_rule;
2772
2773                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2774                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2775                                  freq_range->max_bandwidth_khz,
2776                                  reg_get_max_bandwidth(rd, reg_rule));
2777                 else
2778                         snprintf(bw, sizeof(bw), "%d KHz",
2779                                  freq_range->max_bandwidth_khz);
2780
2781                 if (reg_rule->flags & NL80211_RRF_DFS)
2782                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2783                                   reg_rule->dfs_cac_ms/1000);
2784                 else
2785                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2786
2787
2788                 /*
2789                  * There may not be documentation for max antenna gain
2790                  * in certain regions
2791                  */
2792                 if (power_rule->max_antenna_gain)
2793                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2794                                 freq_range->start_freq_khz,
2795                                 freq_range->end_freq_khz,
2796                                 bw,
2797                                 power_rule->max_antenna_gain,
2798                                 power_rule->max_eirp,
2799                                 cac_time);
2800                 else
2801                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2802                                 freq_range->start_freq_khz,
2803                                 freq_range->end_freq_khz,
2804                                 bw,
2805                                 power_rule->max_eirp,
2806                                 cac_time);
2807         }
2808 }
2809
2810 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2811 {
2812         switch (dfs_region) {
2813         case NL80211_DFS_UNSET:
2814         case NL80211_DFS_FCC:
2815         case NL80211_DFS_ETSI:
2816         case NL80211_DFS_JP:
2817                 return true;
2818         default:
2819                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2820                               dfs_region);
2821                 return false;
2822         }
2823 }
2824
2825 static void print_regdomain(const struct ieee80211_regdomain *rd)
2826 {
2827         struct regulatory_request *lr = get_last_request();
2828
2829         if (is_intersected_alpha2(rd->alpha2)) {
2830                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2831                         struct cfg80211_registered_device *rdev;
2832                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2833                         if (rdev) {
2834                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2835                                         rdev->country_ie_alpha2[0],
2836                                         rdev->country_ie_alpha2[1]);
2837                         } else
2838                                 pr_info("Current regulatory domain intersected:\n");
2839                 } else
2840                         pr_info("Current regulatory domain intersected:\n");
2841         } else if (is_world_regdom(rd->alpha2)) {
2842                 pr_info("World regulatory domain updated:\n");
2843         } else {
2844                 if (is_unknown_alpha2(rd->alpha2))
2845                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2846                 else {
2847                         if (reg_request_cell_base(lr))
2848                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2849                                         rd->alpha2[0], rd->alpha2[1]);
2850                         else
2851                                 pr_info("Regulatory domain changed to country: %c%c\n",
2852                                         rd->alpha2[0], rd->alpha2[1]);
2853                 }
2854         }
2855
2856         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2857         print_rd_rules(rd);
2858 }
2859
2860 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2861 {
2862         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2863         print_rd_rules(rd);
2864 }
2865
2866 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2867 {
2868         if (!is_world_regdom(rd->alpha2))
2869                 return -EINVAL;
2870         update_world_regdomain(rd);
2871         return 0;
2872 }
2873
2874 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2875                            struct regulatory_request *user_request)
2876 {
2877         const struct ieee80211_regdomain *intersected_rd = NULL;
2878
2879         if (!regdom_changes(rd->alpha2))
2880                 return -EALREADY;
2881
2882         if (!is_valid_rd(rd)) {
2883                 pr_err("Invalid regulatory domain detected:\n");
2884                 print_regdomain_info(rd);
2885                 return -EINVAL;
2886         }
2887
2888         if (!user_request->intersect) {
2889                 reset_regdomains(false, rd);
2890                 return 0;
2891         }
2892
2893         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2894         if (!intersected_rd)
2895                 return -EINVAL;
2896
2897         kfree(rd);
2898         rd = NULL;
2899         reset_regdomains(false, intersected_rd);
2900
2901         return 0;
2902 }
2903
2904 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2905                              struct regulatory_request *driver_request)
2906 {
2907         const struct ieee80211_regdomain *regd;
2908         const struct ieee80211_regdomain *intersected_rd = NULL;
2909         const struct ieee80211_regdomain *tmp;
2910         struct wiphy *request_wiphy;
2911
2912         if (is_world_regdom(rd->alpha2))
2913                 return -EINVAL;
2914
2915         if (!regdom_changes(rd->alpha2))
2916                 return -EALREADY;
2917
2918         if (!is_valid_rd(rd)) {
2919                 pr_err("Invalid regulatory domain detected:\n");
2920                 print_regdomain_info(rd);
2921                 return -EINVAL;
2922         }
2923
2924         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2925         if (!request_wiphy)
2926                 return -ENODEV;
2927
2928         if (!driver_request->intersect) {
2929                 if (request_wiphy->regd)
2930                         return -EALREADY;
2931
2932                 regd = reg_copy_regd(rd);
2933                 if (IS_ERR(regd))
2934                         return PTR_ERR(regd);
2935
2936                 rcu_assign_pointer(request_wiphy->regd, regd);
2937                 reset_regdomains(false, rd);
2938                 return 0;
2939         }
2940
2941         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2942         if (!intersected_rd)
2943                 return -EINVAL;
2944
2945         /*
2946          * We can trash what CRDA provided now.
2947          * However if a driver requested this specific regulatory
2948          * domain we keep it for its private use
2949          */
2950         tmp = get_wiphy_regdom(request_wiphy);
2951         rcu_assign_pointer(request_wiphy->regd, rd);
2952         rcu_free_regdom(tmp);
2953
2954         rd = NULL;
2955
2956         reset_regdomains(false, intersected_rd);
2957
2958         return 0;
2959 }
2960
2961 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2962                                  struct regulatory_request *country_ie_request)
2963 {
2964         struct wiphy *request_wiphy;
2965
2966         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2967             !is_unknown_alpha2(rd->alpha2))
2968                 return -EINVAL;
2969
2970         /*
2971          * Lets only bother proceeding on the same alpha2 if the current
2972          * rd is non static (it means CRDA was present and was used last)
2973          * and the pending request came in from a country IE
2974          */
2975
2976         if (!is_valid_rd(rd)) {
2977                 pr_err("Invalid regulatory domain detected:\n");
2978                 print_regdomain_info(rd);
2979                 return -EINVAL;
2980         }
2981
2982         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2983         if (!request_wiphy)
2984                 return -ENODEV;
2985
2986         if (country_ie_request->intersect)
2987                 return -EINVAL;
2988
2989         reset_regdomains(false, rd);
2990         return 0;
2991 }
2992
2993 /*
2994  * Use this call to set the current regulatory domain. Conflicts with
2995  * multiple drivers can be ironed out later. Caller must've already
2996  * kmalloc'd the rd structure.
2997  */
2998 int set_regdom(const struct ieee80211_regdomain *rd,
2999                enum ieee80211_regd_source regd_src)
3000 {
3001         struct regulatory_request *lr;
3002         bool user_reset = false;
3003         int r;
3004
3005         if (!reg_is_valid_request(rd->alpha2)) {
3006                 kfree(rd);
3007                 return -EINVAL;
3008         }
3009
3010         if (regd_src == REGD_SOURCE_CRDA)
3011                 reset_crda_timeouts();
3012
3013         lr = get_last_request();
3014
3015         /* Note that this doesn't update the wiphys, this is done below */
3016         switch (lr->initiator) {
3017         case NL80211_REGDOM_SET_BY_CORE:
3018                 r = reg_set_rd_core(rd);
3019                 break;
3020         case NL80211_REGDOM_SET_BY_USER:
3021                 r = reg_set_rd_user(rd, lr);
3022                 user_reset = true;
3023                 break;
3024         case NL80211_REGDOM_SET_BY_DRIVER:
3025                 r = reg_set_rd_driver(rd, lr);
3026                 break;
3027         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3028                 r = reg_set_rd_country_ie(rd, lr);
3029                 break;
3030         default:
3031                 WARN(1, "invalid initiator %d\n", lr->initiator);
3032                 kfree(rd);
3033                 return -EINVAL;
3034         }
3035
3036         if (r) {
3037                 switch (r) {
3038                 case -EALREADY:
3039                         reg_set_request_processed();
3040                         break;
3041                 default:
3042                         /* Back to world regulatory in case of errors */
3043                         restore_regulatory_settings(user_reset);
3044                 }
3045
3046                 kfree(rd);
3047                 return r;
3048         }
3049
3050         /* This would make this whole thing pointless */
3051         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3052                 return -EINVAL;
3053
3054         /* update all wiphys now with the new established regulatory domain */
3055         update_all_wiphy_regulatory(lr->initiator);
3056
3057         print_regdomain(get_cfg80211_regdom());
3058
3059         nl80211_send_reg_change_event(lr);
3060
3061         reg_set_request_processed();
3062
3063         return 0;
3064 }
3065
3066 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3067                                        struct ieee80211_regdomain *rd)
3068 {
3069         const struct ieee80211_regdomain *regd;
3070         const struct ieee80211_regdomain *prev_regd;
3071         struct cfg80211_registered_device *rdev;
3072
3073         if (WARN_ON(!wiphy || !rd))
3074                 return -EINVAL;
3075
3076         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3077                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3078                 return -EPERM;
3079
3080         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3081                 print_regdomain_info(rd);
3082                 return -EINVAL;
3083         }
3084
3085         regd = reg_copy_regd(rd);
3086         if (IS_ERR(regd))
3087                 return PTR_ERR(regd);
3088
3089         rdev = wiphy_to_rdev(wiphy);
3090
3091         spin_lock(&reg_requests_lock);
3092         prev_regd = rdev->requested_regd;
3093         rdev->requested_regd = regd;
3094         spin_unlock(&reg_requests_lock);
3095
3096         kfree(prev_regd);
3097         return 0;
3098 }
3099
3100 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3101                               struct ieee80211_regdomain *rd)
3102 {
3103         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3104
3105         if (ret)
3106                 return ret;
3107
3108         schedule_work(&reg_work);
3109         return 0;
3110 }
3111 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3112
3113 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3114                                         struct ieee80211_regdomain *rd)
3115 {
3116         int ret;
3117
3118         ASSERT_RTNL();
3119
3120         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3121         if (ret)
3122                 return ret;
3123
3124         /* process the request immediately */
3125         reg_process_self_managed_hints();
3126         return 0;
3127 }
3128 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3129
3130 void wiphy_regulatory_register(struct wiphy *wiphy)
3131 {
3132         struct regulatory_request *lr;
3133
3134         /* self-managed devices ignore external hints */
3135         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3136                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3137                                            REGULATORY_COUNTRY_IE_IGNORE;
3138
3139         if (!reg_dev_ignore_cell_hint(wiphy))
3140                 reg_num_devs_support_basehint++;
3141
3142         lr = get_last_request();
3143         wiphy_update_regulatory(wiphy, lr->initiator);
3144 }
3145
3146 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3147 {
3148         struct wiphy *request_wiphy = NULL;
3149         struct regulatory_request *lr;
3150
3151         lr = get_last_request();
3152
3153         if (!reg_dev_ignore_cell_hint(wiphy))
3154                 reg_num_devs_support_basehint--;
3155
3156         rcu_free_regdom(get_wiphy_regdom(wiphy));
3157         RCU_INIT_POINTER(wiphy->regd, NULL);
3158
3159         if (lr)
3160                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3161
3162         if (!request_wiphy || request_wiphy != wiphy)
3163                 return;
3164
3165         lr->wiphy_idx = WIPHY_IDX_INVALID;
3166         lr->country_ie_env = ENVIRON_ANY;
3167 }
3168
3169 /*
3170  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3171  * UNII band definitions
3172  */
3173 int cfg80211_get_unii(int freq)
3174 {
3175         /* UNII-1 */
3176         if (freq >= 5150 && freq <= 5250)
3177                 return 0;
3178
3179         /* UNII-2A */
3180         if (freq > 5250 && freq <= 5350)
3181                 return 1;
3182
3183         /* UNII-2B */
3184         if (freq > 5350 && freq <= 5470)
3185                 return 2;
3186
3187         /* UNII-2C */
3188         if (freq > 5470 && freq <= 5725)
3189                 return 3;
3190
3191         /* UNII-3 */
3192         if (freq > 5725 && freq <= 5825)
3193                 return 4;
3194
3195         return -EINVAL;
3196 }
3197
3198 bool regulatory_indoor_allowed(void)
3199 {
3200         return reg_is_indoor;
3201 }
3202
3203 int __init regulatory_init(void)
3204 {
3205         int err = 0;
3206
3207         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3208         if (IS_ERR(reg_pdev))
3209                 return PTR_ERR(reg_pdev);
3210
3211         spin_lock_init(&reg_requests_lock);
3212         spin_lock_init(&reg_pending_beacons_lock);
3213         spin_lock_init(&reg_indoor_lock);
3214
3215         reg_regdb_size_check();
3216
3217         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3218
3219         user_alpha2[0] = '9';
3220         user_alpha2[1] = '7';
3221
3222         /* We always try to get an update for the static regdomain */
3223         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3224         if (err) {
3225                 if (err == -ENOMEM) {
3226                         platform_device_unregister(reg_pdev);
3227                         return err;
3228                 }
3229                 /*
3230                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3231                  * memory which is handled and propagated appropriately above
3232                  * but it can also fail during a netlink_broadcast() or during
3233                  * early boot for call_usermodehelper(). For now treat these
3234                  * errors as non-fatal.
3235                  */
3236                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3237         }
3238
3239         /*
3240          * Finally, if the user set the module parameter treat it
3241          * as a user hint.
3242          */
3243         if (!is_world_regdom(ieee80211_regdom))
3244                 regulatory_hint_user(ieee80211_regdom,
3245                                      NL80211_USER_REG_HINT_USER);
3246
3247         return 0;
3248 }
3249
3250 void regulatory_exit(void)
3251 {
3252         struct regulatory_request *reg_request, *tmp;
3253         struct reg_beacon *reg_beacon, *btmp;
3254
3255         cancel_work_sync(&reg_work);
3256         cancel_crda_timeout_sync();
3257         cancel_delayed_work_sync(&reg_check_chans);
3258
3259         /* Lock to suppress warnings */
3260         rtnl_lock();
3261         reset_regdomains(true, NULL);
3262         rtnl_unlock();
3263
3264         dev_set_uevent_suppress(&reg_pdev->dev, true);
3265
3266         platform_device_unregister(reg_pdev);
3267
3268         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3269                 list_del(&reg_beacon->list);
3270                 kfree(reg_beacon);
3271         }
3272
3273         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3274                 list_del(&reg_beacon->list);
3275                 kfree(reg_beacon);
3276         }
3277
3278         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3279                 list_del(&reg_request->list);
3280                 kfree(reg_request);
3281         }
3282 }