Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for locally generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
56
57 /*
58  * Per flow structure, dynamically allocated
59  */
60 struct fq_flow {
61         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
62         union {
63                 struct sk_buff *tail;   /* last skb in the list */
64                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
65         };
66         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
67         struct sock     *sk;
68         int             qlen;           /* number of packets in flow queue */
69         int             credit;
70         u32             socket_hash;    /* sk_hash */
71         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
72
73         struct rb_node  rate_node;      /* anchor in q->delayed tree */
74         u64             time_next_packet;
75 };
76
77 struct fq_flow_head {
78         struct fq_flow *first;
79         struct fq_flow *last;
80 };
81
82 struct fq_sched_data {
83         struct fq_flow_head new_flows;
84
85         struct fq_flow_head old_flows;
86
87         struct rb_root  delayed;        /* for rate limited flows */
88         u64             time_next_delayed_flow;
89
90         struct fq_flow  internal;       /* for non classified or high prio packets */
91         u32             quantum;
92         u32             initial_quantum;
93         u32             flow_refill_delay;
94         u32             flow_max_rate;  /* optional max rate per flow */
95         u32             flow_plimit;    /* max packets per flow */
96         u32             orphan_mask;    /* mask for orphaned skb */
97         struct rb_root  *fq_root;
98         u8              rate_enable;
99         u8              fq_trees_log;
100
101         u32             flows;
102         u32             inactive_flows;
103         u32             throttled_flows;
104
105         u64             stat_gc_flows;
106         u64             stat_internal_packets;
107         u64             stat_tcp_retrans;
108         u64             stat_throttled;
109         u64             stat_flows_plimit;
110         u64             stat_pkts_too_long;
111         u64             stat_allocation_errors;
112         struct qdisc_watchdog watchdog;
113 };
114
115 /* special value to mark a detached flow (not on old/new list) */
116 static struct fq_flow detached, throttled;
117
118 static void fq_flow_set_detached(struct fq_flow *f)
119 {
120         f->next = &detached;
121         f->age = jiffies;
122 }
123
124 static bool fq_flow_is_detached(const struct fq_flow *f)
125 {
126         return f->next == &detached;
127 }
128
129 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
130 {
131         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
132
133         while (*p) {
134                 struct fq_flow *aux;
135
136                 parent = *p;
137                 aux = container_of(parent, struct fq_flow, rate_node);
138                 if (f->time_next_packet >= aux->time_next_packet)
139                         p = &parent->rb_right;
140                 else
141                         p = &parent->rb_left;
142         }
143         rb_link_node(&f->rate_node, parent, p);
144         rb_insert_color(&f->rate_node, &q->delayed);
145         q->throttled_flows++;
146         q->stat_throttled++;
147
148         f->next = &throttled;
149         if (q->time_next_delayed_flow > f->time_next_packet)
150                 q->time_next_delayed_flow = f->time_next_packet;
151 }
152
153
154 static struct kmem_cache *fq_flow_cachep __read_mostly;
155
156 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
157 {
158         if (head->first)
159                 head->last->next = flow;
160         else
161                 head->first = flow;
162         head->last = flow;
163         flow->next = NULL;
164 }
165
166 /* limit number of collected flows per round */
167 #define FQ_GC_MAX 8
168 #define FQ_GC_AGE (3*HZ)
169
170 static bool fq_gc_candidate(const struct fq_flow *f)
171 {
172         return fq_flow_is_detached(f) &&
173                time_after(jiffies, f->age + FQ_GC_AGE);
174 }
175
176 static void fq_gc(struct fq_sched_data *q,
177                   struct rb_root *root,
178                   struct sock *sk)
179 {
180         struct fq_flow *f, *tofree[FQ_GC_MAX];
181         struct rb_node **p, *parent;
182         int fcnt = 0;
183
184         p = &root->rb_node;
185         parent = NULL;
186         while (*p) {
187                 parent = *p;
188
189                 f = container_of(parent, struct fq_flow, fq_node);
190                 if (f->sk == sk)
191                         break;
192
193                 if (fq_gc_candidate(f)) {
194                         tofree[fcnt++] = f;
195                         if (fcnt == FQ_GC_MAX)
196                                 break;
197                 }
198
199                 if (f->sk > sk)
200                         p = &parent->rb_right;
201                 else
202                         p = &parent->rb_left;
203         }
204
205         q->flows -= fcnt;
206         q->inactive_flows -= fcnt;
207         q->stat_gc_flows += fcnt;
208         while (fcnt) {
209                 struct fq_flow *f = tofree[--fcnt];
210
211                 rb_erase(&f->fq_node, root);
212                 kmem_cache_free(fq_flow_cachep, f);
213         }
214 }
215
216 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217 {
218         struct rb_node **p, *parent;
219         struct sock *sk = skb->sk;
220         struct rb_root *root;
221         struct fq_flow *f;
222
223         /* warning: no starvation prevention... */
224         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
225                 return &q->internal;
226
227         /* SYNACK messages are attached to a listener socket.
228          * 1) They are not part of a 'flow' yet
229          * 2) We do not want to rate limit them (eg SYNFLOOD attack),
230          *    especially if the listener set SO_MAX_PACING_RATE
231          * 3) We pretend they are orphaned
232          */
233         if (!sk || sk->sk_state == TCP_LISTEN) {
234                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
235
236                 /* By forcing low order bit to 1, we make sure to not
237                  * collide with a local flow (socket pointers are word aligned)
238                  */
239                 sk = (struct sock *)((hash << 1) | 1UL);
240                 skb_orphan(skb);
241         }
242
243         root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
244
245         if (q->flows >= (2U << q->fq_trees_log) &&
246             q->inactive_flows > q->flows/2)
247                 fq_gc(q, root, sk);
248
249         p = &root->rb_node;
250         parent = NULL;
251         while (*p) {
252                 parent = *p;
253
254                 f = container_of(parent, struct fq_flow, fq_node);
255                 if (f->sk == sk) {
256                         /* socket might have been reallocated, so check
257                          * if its sk_hash is the same.
258                          * It not, we need to refill credit with
259                          * initial quantum
260                          */
261                         if (unlikely(skb->sk &&
262                                      f->socket_hash != sk->sk_hash)) {
263                                 f->credit = q->initial_quantum;
264                                 f->socket_hash = sk->sk_hash;
265                                 f->time_next_packet = 0ULL;
266                         }
267                         return f;
268                 }
269                 if (f->sk > sk)
270                         p = &parent->rb_right;
271                 else
272                         p = &parent->rb_left;
273         }
274
275         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
276         if (unlikely(!f)) {
277                 q->stat_allocation_errors++;
278                 return &q->internal;
279         }
280         fq_flow_set_detached(f);
281         f->sk = sk;
282         if (skb->sk)
283                 f->socket_hash = sk->sk_hash;
284         f->credit = q->initial_quantum;
285
286         rb_link_node(&f->fq_node, parent, p);
287         rb_insert_color(&f->fq_node, root);
288
289         q->flows++;
290         q->inactive_flows++;
291         return f;
292 }
293
294
295 /* remove one skb from head of flow queue */
296 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
297 {
298         struct sk_buff *skb = flow->head;
299
300         if (skb) {
301                 flow->head = skb->next;
302                 skb->next = NULL;
303                 flow->qlen--;
304                 qdisc_qstats_backlog_dec(sch, skb);
305                 sch->q.qlen--;
306         }
307         return skb;
308 }
309
310 /* We might add in the future detection of retransmits
311  * For the time being, just return false
312  */
313 static bool skb_is_retransmit(struct sk_buff *skb)
314 {
315         return false;
316 }
317
318 /* add skb to flow queue
319  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
320  * We special case tcp retransmits to be transmitted before other packets.
321  * We rely on fact that TCP retransmits are unlikely, so we do not waste
322  * a separate queue or a pointer.
323  * head->  [retrans pkt 1]
324  *         [retrans pkt 2]
325  *         [ normal pkt 1]
326  *         [ normal pkt 2]
327  *         [ normal pkt 3]
328  * tail->  [ normal pkt 4]
329  */
330 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
331 {
332         struct sk_buff *prev, *head = flow->head;
333
334         skb->next = NULL;
335         if (!head) {
336                 flow->head = skb;
337                 flow->tail = skb;
338                 return;
339         }
340         if (likely(!skb_is_retransmit(skb))) {
341                 flow->tail->next = skb;
342                 flow->tail = skb;
343                 return;
344         }
345
346         /* This skb is a tcp retransmit,
347          * find the last retrans packet in the queue
348          */
349         prev = NULL;
350         while (skb_is_retransmit(head)) {
351                 prev = head;
352                 head = head->next;
353                 if (!head)
354                         break;
355         }
356         if (!prev) { /* no rtx packet in queue, become the new head */
357                 skb->next = flow->head;
358                 flow->head = skb;
359         } else {
360                 if (prev == flow->tail)
361                         flow->tail = skb;
362                 else
363                         skb->next = prev->next;
364                 prev->next = skb;
365         }
366 }
367
368 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
369 {
370         struct fq_sched_data *q = qdisc_priv(sch);
371         struct fq_flow *f;
372
373         if (unlikely(sch->q.qlen >= sch->limit))
374                 return qdisc_drop(skb, sch);
375
376         f = fq_classify(skb, q);
377         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
378                 q->stat_flows_plimit++;
379                 return qdisc_drop(skb, sch);
380         }
381
382         f->qlen++;
383         if (skb_is_retransmit(skb))
384                 q->stat_tcp_retrans++;
385         qdisc_qstats_backlog_inc(sch, skb);
386         if (fq_flow_is_detached(f)) {
387                 fq_flow_add_tail(&q->new_flows, f);
388                 if (time_after(jiffies, f->age + q->flow_refill_delay))
389                         f->credit = max_t(u32, f->credit, q->quantum);
390                 q->inactive_flows--;
391         }
392
393         /* Note: this overwrites f->age */
394         flow_queue_add(f, skb);
395
396         if (unlikely(f == &q->internal)) {
397                 q->stat_internal_packets++;
398         }
399         sch->q.qlen++;
400
401         return NET_XMIT_SUCCESS;
402 }
403
404 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
405 {
406         struct rb_node *p;
407
408         if (q->time_next_delayed_flow > now)
409                 return;
410
411         q->time_next_delayed_flow = ~0ULL;
412         while ((p = rb_first(&q->delayed)) != NULL) {
413                 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
414
415                 if (f->time_next_packet > now) {
416                         q->time_next_delayed_flow = f->time_next_packet;
417                         break;
418                 }
419                 rb_erase(p, &q->delayed);
420                 q->throttled_flows--;
421                 fq_flow_add_tail(&q->old_flows, f);
422         }
423 }
424
425 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
426 {
427         struct fq_sched_data *q = qdisc_priv(sch);
428         u64 now = ktime_get_ns();
429         struct fq_flow_head *head;
430         struct sk_buff *skb;
431         struct fq_flow *f;
432         u32 rate;
433
434         skb = fq_dequeue_head(sch, &q->internal);
435         if (skb)
436                 goto out;
437         fq_check_throttled(q, now);
438 begin:
439         head = &q->new_flows;
440         if (!head->first) {
441                 head = &q->old_flows;
442                 if (!head->first) {
443                         if (q->time_next_delayed_flow != ~0ULL)
444                                 qdisc_watchdog_schedule_ns(&q->watchdog,
445                                                            q->time_next_delayed_flow,
446                                                            false);
447                         return NULL;
448                 }
449         }
450         f = head->first;
451
452         if (f->credit <= 0) {
453                 f->credit += q->quantum;
454                 head->first = f->next;
455                 fq_flow_add_tail(&q->old_flows, f);
456                 goto begin;
457         }
458
459         skb = f->head;
460         if (unlikely(skb && now < f->time_next_packet &&
461                      !skb_is_tcp_pure_ack(skb))) {
462                 head->first = f->next;
463                 fq_flow_set_throttled(q, f);
464                 goto begin;
465         }
466
467         skb = fq_dequeue_head(sch, f);
468         if (!skb) {
469                 head->first = f->next;
470                 /* force a pass through old_flows to prevent starvation */
471                 if ((head == &q->new_flows) && q->old_flows.first) {
472                         fq_flow_add_tail(&q->old_flows, f);
473                 } else {
474                         fq_flow_set_detached(f);
475                         q->inactive_flows++;
476                 }
477                 goto begin;
478         }
479         prefetch(&skb->end);
480         f->credit -= qdisc_pkt_len(skb);
481
482         if (f->credit > 0 || !q->rate_enable)
483                 goto out;
484
485         /* Do not pace locally generated ack packets */
486         if (skb_is_tcp_pure_ack(skb))
487                 goto out;
488
489         rate = q->flow_max_rate;
490         if (skb->sk)
491                 rate = min(skb->sk->sk_pacing_rate, rate);
492
493         if (rate != ~0U) {
494                 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
495                 u64 len = (u64)plen * NSEC_PER_SEC;
496
497                 if (likely(rate))
498                         do_div(len, rate);
499                 /* Since socket rate can change later,
500                  * clamp the delay to 1 second.
501                  * Really, providers of too big packets should be fixed !
502                  */
503                 if (unlikely(len > NSEC_PER_SEC)) {
504                         len = NSEC_PER_SEC;
505                         q->stat_pkts_too_long++;
506                 }
507
508                 f->time_next_packet = now + len;
509         }
510 out:
511         qdisc_bstats_update(sch, skb);
512         return skb;
513 }
514
515 static void fq_reset(struct Qdisc *sch)
516 {
517         struct fq_sched_data *q = qdisc_priv(sch);
518         struct rb_root *root;
519         struct sk_buff *skb;
520         struct rb_node *p;
521         struct fq_flow *f;
522         unsigned int idx;
523
524         while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
525                 kfree_skb(skb);
526
527         if (!q->fq_root)
528                 return;
529
530         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
531                 root = &q->fq_root[idx];
532                 while ((p = rb_first(root)) != NULL) {
533                         f = container_of(p, struct fq_flow, fq_node);
534                         rb_erase(p, root);
535
536                         while ((skb = fq_dequeue_head(sch, f)) != NULL)
537                                 kfree_skb(skb);
538
539                         kmem_cache_free(fq_flow_cachep, f);
540                 }
541         }
542         q->new_flows.first      = NULL;
543         q->old_flows.first      = NULL;
544         q->delayed              = RB_ROOT;
545         q->flows                = 0;
546         q->inactive_flows       = 0;
547         q->throttled_flows      = 0;
548 }
549
550 static void fq_rehash(struct fq_sched_data *q,
551                       struct rb_root *old_array, u32 old_log,
552                       struct rb_root *new_array, u32 new_log)
553 {
554         struct rb_node *op, **np, *parent;
555         struct rb_root *oroot, *nroot;
556         struct fq_flow *of, *nf;
557         int fcnt = 0;
558         u32 idx;
559
560         for (idx = 0; idx < (1U << old_log); idx++) {
561                 oroot = &old_array[idx];
562                 while ((op = rb_first(oroot)) != NULL) {
563                         rb_erase(op, oroot);
564                         of = container_of(op, struct fq_flow, fq_node);
565                         if (fq_gc_candidate(of)) {
566                                 fcnt++;
567                                 kmem_cache_free(fq_flow_cachep, of);
568                                 continue;
569                         }
570                         nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
571
572                         np = &nroot->rb_node;
573                         parent = NULL;
574                         while (*np) {
575                                 parent = *np;
576
577                                 nf = container_of(parent, struct fq_flow, fq_node);
578                                 BUG_ON(nf->sk == of->sk);
579
580                                 if (nf->sk > of->sk)
581                                         np = &parent->rb_right;
582                                 else
583                                         np = &parent->rb_left;
584                         }
585
586                         rb_link_node(&of->fq_node, parent, np);
587                         rb_insert_color(&of->fq_node, nroot);
588                 }
589         }
590         q->flows -= fcnt;
591         q->inactive_flows -= fcnt;
592         q->stat_gc_flows += fcnt;
593 }
594
595 static void *fq_alloc_node(size_t sz, int node)
596 {
597         void *ptr;
598
599         ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
600         if (!ptr)
601                 ptr = vmalloc_node(sz, node);
602         return ptr;
603 }
604
605 static void fq_free(void *addr)
606 {
607         kvfree(addr);
608 }
609
610 static int fq_resize(struct Qdisc *sch, u32 log)
611 {
612         struct fq_sched_data *q = qdisc_priv(sch);
613         struct rb_root *array;
614         void *old_fq_root;
615         u32 idx;
616
617         if (q->fq_root && log == q->fq_trees_log)
618                 return 0;
619
620         /* If XPS was setup, we can allocate memory on right NUMA node */
621         array = fq_alloc_node(sizeof(struct rb_root) << log,
622                               netdev_queue_numa_node_read(sch->dev_queue));
623         if (!array)
624                 return -ENOMEM;
625
626         for (idx = 0; idx < (1U << log); idx++)
627                 array[idx] = RB_ROOT;
628
629         sch_tree_lock(sch);
630
631         old_fq_root = q->fq_root;
632         if (old_fq_root)
633                 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
634
635         q->fq_root = array;
636         q->fq_trees_log = log;
637
638         sch_tree_unlock(sch);
639
640         fq_free(old_fq_root);
641
642         return 0;
643 }
644
645 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
646         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
647         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
648         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
649         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
650         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
651         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
652         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
653         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
654         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
655 };
656
657 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
658 {
659         struct fq_sched_data *q = qdisc_priv(sch);
660         struct nlattr *tb[TCA_FQ_MAX + 1];
661         int err, drop_count = 0;
662         u32 fq_log;
663
664         if (!opt)
665                 return -EINVAL;
666
667         err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
668         if (err < 0)
669                 return err;
670
671         sch_tree_lock(sch);
672
673         fq_log = q->fq_trees_log;
674
675         if (tb[TCA_FQ_BUCKETS_LOG]) {
676                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
677
678                 if (nval >= 1 && nval <= ilog2(256*1024))
679                         fq_log = nval;
680                 else
681                         err = -EINVAL;
682         }
683         if (tb[TCA_FQ_PLIMIT])
684                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
685
686         if (tb[TCA_FQ_FLOW_PLIMIT])
687                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
688
689         if (tb[TCA_FQ_QUANTUM]) {
690                 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
691
692                 if (quantum > 0)
693                         q->quantum = quantum;
694                 else
695                         err = -EINVAL;
696         }
697
698         if (tb[TCA_FQ_INITIAL_QUANTUM])
699                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
700
701         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
702                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
703                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
704
705         if (tb[TCA_FQ_FLOW_MAX_RATE])
706                 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
707
708         if (tb[TCA_FQ_RATE_ENABLE]) {
709                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
710
711                 if (enable <= 1)
712                         q->rate_enable = enable;
713                 else
714                         err = -EINVAL;
715         }
716
717         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
718                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
719
720                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
721         }
722
723         if (tb[TCA_FQ_ORPHAN_MASK])
724                 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
725
726         if (!err) {
727                 sch_tree_unlock(sch);
728                 err = fq_resize(sch, fq_log);
729                 sch_tree_lock(sch);
730         }
731         while (sch->q.qlen > sch->limit) {
732                 struct sk_buff *skb = fq_dequeue(sch);
733
734                 if (!skb)
735                         break;
736                 kfree_skb(skb);
737                 drop_count++;
738         }
739         qdisc_tree_decrease_qlen(sch, drop_count);
740
741         sch_tree_unlock(sch);
742         return err;
743 }
744
745 static void fq_destroy(struct Qdisc *sch)
746 {
747         struct fq_sched_data *q = qdisc_priv(sch);
748
749         fq_reset(sch);
750         fq_free(q->fq_root);
751         qdisc_watchdog_cancel(&q->watchdog);
752 }
753
754 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
755 {
756         struct fq_sched_data *q = qdisc_priv(sch);
757         int err;
758
759         sch->limit              = 10000;
760         q->flow_plimit          = 100;
761         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
762         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
763         q->flow_refill_delay    = msecs_to_jiffies(40);
764         q->flow_max_rate        = ~0U;
765         q->rate_enable          = 1;
766         q->new_flows.first      = NULL;
767         q->old_flows.first      = NULL;
768         q->delayed              = RB_ROOT;
769         q->fq_root              = NULL;
770         q->fq_trees_log         = ilog2(1024);
771         q->orphan_mask          = 1024 - 1;
772         qdisc_watchdog_init(&q->watchdog, sch);
773
774         if (opt)
775                 err = fq_change(sch, opt);
776         else
777                 err = fq_resize(sch, q->fq_trees_log);
778
779         return err;
780 }
781
782 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
783 {
784         struct fq_sched_data *q = qdisc_priv(sch);
785         struct nlattr *opts;
786
787         opts = nla_nest_start(skb, TCA_OPTIONS);
788         if (opts == NULL)
789                 goto nla_put_failure;
790
791         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
792
793         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
794             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
795             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
796             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
797             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
798             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
799             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
800                         jiffies_to_usecs(q->flow_refill_delay)) ||
801             nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
802             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
803                 goto nla_put_failure;
804
805         return nla_nest_end(skb, opts);
806
807 nla_put_failure:
808         return -1;
809 }
810
811 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
812 {
813         struct fq_sched_data *q = qdisc_priv(sch);
814         u64 now = ktime_get_ns();
815         struct tc_fq_qd_stats st = {
816                 .gc_flows               = q->stat_gc_flows,
817                 .highprio_packets       = q->stat_internal_packets,
818                 .tcp_retrans            = q->stat_tcp_retrans,
819                 .throttled              = q->stat_throttled,
820                 .flows_plimit           = q->stat_flows_plimit,
821                 .pkts_too_long          = q->stat_pkts_too_long,
822                 .allocation_errors      = q->stat_allocation_errors,
823                 .flows                  = q->flows,
824                 .inactive_flows         = q->inactive_flows,
825                 .throttled_flows        = q->throttled_flows,
826                 .time_next_delayed_flow = q->time_next_delayed_flow - now,
827         };
828
829         return gnet_stats_copy_app(d, &st, sizeof(st));
830 }
831
832 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
833         .id             =       "fq",
834         .priv_size      =       sizeof(struct fq_sched_data),
835
836         .enqueue        =       fq_enqueue,
837         .dequeue        =       fq_dequeue,
838         .peek           =       qdisc_peek_dequeued,
839         .init           =       fq_init,
840         .reset          =       fq_reset,
841         .destroy        =       fq_destroy,
842         .change         =       fq_change,
843         .dump           =       fq_dump,
844         .dump_stats     =       fq_dump_stats,
845         .owner          =       THIS_MODULE,
846 };
847
848 static int __init fq_module_init(void)
849 {
850         int ret;
851
852         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
853                                            sizeof(struct fq_flow),
854                                            0, 0, NULL);
855         if (!fq_flow_cachep)
856                 return -ENOMEM;
857
858         ret = register_qdisc(&fq_qdisc_ops);
859         if (ret)
860                 kmem_cache_destroy(fq_flow_cachep);
861         return ret;
862 }
863
864 static void __exit fq_module_exit(void)
865 {
866         unregister_qdisc(&fq_qdisc_ops);
867         kmem_cache_destroy(fq_flow_cachep);
868 }
869
870 module_init(fq_module_init)
871 module_exit(fq_module_exit)
872 MODULE_AUTHOR("Eric Dumazet");
873 MODULE_LICENSE("GPL");