These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for locally generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
56
57 /*
58  * Per flow structure, dynamically allocated
59  */
60 struct fq_flow {
61         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
62         union {
63                 struct sk_buff *tail;   /* last skb in the list */
64                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
65         };
66         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
67         struct sock     *sk;
68         int             qlen;           /* number of packets in flow queue */
69         int             credit;
70         u32             socket_hash;    /* sk_hash */
71         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
72
73         struct rb_node  rate_node;      /* anchor in q->delayed tree */
74         u64             time_next_packet;
75 };
76
77 struct fq_flow_head {
78         struct fq_flow *first;
79         struct fq_flow *last;
80 };
81
82 struct fq_sched_data {
83         struct fq_flow_head new_flows;
84
85         struct fq_flow_head old_flows;
86
87         struct rb_root  delayed;        /* for rate limited flows */
88         u64             time_next_delayed_flow;
89
90         struct fq_flow  internal;       /* for non classified or high prio packets */
91         u32             quantum;
92         u32             initial_quantum;
93         u32             flow_refill_delay;
94         u32             flow_max_rate;  /* optional max rate per flow */
95         u32             flow_plimit;    /* max packets per flow */
96         u32             orphan_mask;    /* mask for orphaned skb */
97         struct rb_root  *fq_root;
98         u8              rate_enable;
99         u8              fq_trees_log;
100
101         u32             flows;
102         u32             inactive_flows;
103         u32             throttled_flows;
104
105         u64             stat_gc_flows;
106         u64             stat_internal_packets;
107         u64             stat_tcp_retrans;
108         u64             stat_throttled;
109         u64             stat_flows_plimit;
110         u64             stat_pkts_too_long;
111         u64             stat_allocation_errors;
112         struct qdisc_watchdog watchdog;
113 };
114
115 /* special value to mark a detached flow (not on old/new list) */
116 static struct fq_flow detached, throttled;
117
118 static void fq_flow_set_detached(struct fq_flow *f)
119 {
120         f->next = &detached;
121         f->age = jiffies;
122 }
123
124 static bool fq_flow_is_detached(const struct fq_flow *f)
125 {
126         return f->next == &detached;
127 }
128
129 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
130 {
131         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
132
133         while (*p) {
134                 struct fq_flow *aux;
135
136                 parent = *p;
137                 aux = container_of(parent, struct fq_flow, rate_node);
138                 if (f->time_next_packet >= aux->time_next_packet)
139                         p = &parent->rb_right;
140                 else
141                         p = &parent->rb_left;
142         }
143         rb_link_node(&f->rate_node, parent, p);
144         rb_insert_color(&f->rate_node, &q->delayed);
145         q->throttled_flows++;
146         q->stat_throttled++;
147
148         f->next = &throttled;
149         if (q->time_next_delayed_flow > f->time_next_packet)
150                 q->time_next_delayed_flow = f->time_next_packet;
151 }
152
153
154 static struct kmem_cache *fq_flow_cachep __read_mostly;
155
156 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
157 {
158         if (head->first)
159                 head->last->next = flow;
160         else
161                 head->first = flow;
162         head->last = flow;
163         flow->next = NULL;
164 }
165
166 /* limit number of collected flows per round */
167 #define FQ_GC_MAX 8
168 #define FQ_GC_AGE (3*HZ)
169
170 static bool fq_gc_candidate(const struct fq_flow *f)
171 {
172         return fq_flow_is_detached(f) &&
173                time_after(jiffies, f->age + FQ_GC_AGE);
174 }
175
176 static void fq_gc(struct fq_sched_data *q,
177                   struct rb_root *root,
178                   struct sock *sk)
179 {
180         struct fq_flow *f, *tofree[FQ_GC_MAX];
181         struct rb_node **p, *parent;
182         int fcnt = 0;
183
184         p = &root->rb_node;
185         parent = NULL;
186         while (*p) {
187                 parent = *p;
188
189                 f = container_of(parent, struct fq_flow, fq_node);
190                 if (f->sk == sk)
191                         break;
192
193                 if (fq_gc_candidate(f)) {
194                         tofree[fcnt++] = f;
195                         if (fcnt == FQ_GC_MAX)
196                                 break;
197                 }
198
199                 if (f->sk > sk)
200                         p = &parent->rb_right;
201                 else
202                         p = &parent->rb_left;
203         }
204
205         q->flows -= fcnt;
206         q->inactive_flows -= fcnt;
207         q->stat_gc_flows += fcnt;
208         while (fcnt) {
209                 struct fq_flow *f = tofree[--fcnt];
210
211                 rb_erase(&f->fq_node, root);
212                 kmem_cache_free(fq_flow_cachep, f);
213         }
214 }
215
216 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217 {
218         struct rb_node **p, *parent;
219         struct sock *sk = skb->sk;
220         struct rb_root *root;
221         struct fq_flow *f;
222
223         /* warning: no starvation prevention... */
224         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
225                 return &q->internal;
226
227         /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
228          * or a listener (SYNCOOKIE mode)
229          * 1) request sockets are not full blown,
230          *    they do not contain sk_pacing_rate
231          * 2) They are not part of a 'flow' yet
232          * 3) We do not want to rate limit them (eg SYNFLOOD attack),
233          *    especially if the listener set SO_MAX_PACING_RATE
234          * 4) We pretend they are orphaned
235          */
236         if (!sk || sk_listener(sk)) {
237                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
238
239                 /* By forcing low order bit to 1, we make sure to not
240                  * collide with a local flow (socket pointers are word aligned)
241                  */
242                 sk = (struct sock *)((hash << 1) | 1UL);
243                 skb_orphan(skb);
244         }
245
246         root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
247
248         if (q->flows >= (2U << q->fq_trees_log) &&
249             q->inactive_flows > q->flows/2)
250                 fq_gc(q, root, sk);
251
252         p = &root->rb_node;
253         parent = NULL;
254         while (*p) {
255                 parent = *p;
256
257                 f = container_of(parent, struct fq_flow, fq_node);
258                 if (f->sk == sk) {
259                         /* socket might have been reallocated, so check
260                          * if its sk_hash is the same.
261                          * It not, we need to refill credit with
262                          * initial quantum
263                          */
264                         if (unlikely(skb->sk &&
265                                      f->socket_hash != sk->sk_hash)) {
266                                 f->credit = q->initial_quantum;
267                                 f->socket_hash = sk->sk_hash;
268                                 f->time_next_packet = 0ULL;
269                         }
270                         return f;
271                 }
272                 if (f->sk > sk)
273                         p = &parent->rb_right;
274                 else
275                         p = &parent->rb_left;
276         }
277
278         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
279         if (unlikely(!f)) {
280                 q->stat_allocation_errors++;
281                 return &q->internal;
282         }
283         fq_flow_set_detached(f);
284         f->sk = sk;
285         if (skb->sk)
286                 f->socket_hash = sk->sk_hash;
287         f->credit = q->initial_quantum;
288
289         rb_link_node(&f->fq_node, parent, p);
290         rb_insert_color(&f->fq_node, root);
291
292         q->flows++;
293         q->inactive_flows++;
294         return f;
295 }
296
297
298 /* remove one skb from head of flow queue */
299 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
300 {
301         struct sk_buff *skb = flow->head;
302
303         if (skb) {
304                 flow->head = skb->next;
305                 skb->next = NULL;
306                 flow->qlen--;
307                 qdisc_qstats_backlog_dec(sch, skb);
308                 sch->q.qlen--;
309         }
310         return skb;
311 }
312
313 /* We might add in the future detection of retransmits
314  * For the time being, just return false
315  */
316 static bool skb_is_retransmit(struct sk_buff *skb)
317 {
318         return false;
319 }
320
321 /* add skb to flow queue
322  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
323  * We special case tcp retransmits to be transmitted before other packets.
324  * We rely on fact that TCP retransmits are unlikely, so we do not waste
325  * a separate queue or a pointer.
326  * head->  [retrans pkt 1]
327  *         [retrans pkt 2]
328  *         [ normal pkt 1]
329  *         [ normal pkt 2]
330  *         [ normal pkt 3]
331  * tail->  [ normal pkt 4]
332  */
333 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
334 {
335         struct sk_buff *prev, *head = flow->head;
336
337         skb->next = NULL;
338         if (!head) {
339                 flow->head = skb;
340                 flow->tail = skb;
341                 return;
342         }
343         if (likely(!skb_is_retransmit(skb))) {
344                 flow->tail->next = skb;
345                 flow->tail = skb;
346                 return;
347         }
348
349         /* This skb is a tcp retransmit,
350          * find the last retrans packet in the queue
351          */
352         prev = NULL;
353         while (skb_is_retransmit(head)) {
354                 prev = head;
355                 head = head->next;
356                 if (!head)
357                         break;
358         }
359         if (!prev) { /* no rtx packet in queue, become the new head */
360                 skb->next = flow->head;
361                 flow->head = skb;
362         } else {
363                 if (prev == flow->tail)
364                         flow->tail = skb;
365                 else
366                         skb->next = prev->next;
367                 prev->next = skb;
368         }
369 }
370
371 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
372 {
373         struct fq_sched_data *q = qdisc_priv(sch);
374         struct fq_flow *f;
375
376         if (unlikely(sch->q.qlen >= sch->limit))
377                 return qdisc_drop(skb, sch);
378
379         f = fq_classify(skb, q);
380         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
381                 q->stat_flows_plimit++;
382                 return qdisc_drop(skb, sch);
383         }
384
385         f->qlen++;
386         if (skb_is_retransmit(skb))
387                 q->stat_tcp_retrans++;
388         qdisc_qstats_backlog_inc(sch, skb);
389         if (fq_flow_is_detached(f)) {
390                 fq_flow_add_tail(&q->new_flows, f);
391                 if (time_after(jiffies, f->age + q->flow_refill_delay))
392                         f->credit = max_t(u32, f->credit, q->quantum);
393                 q->inactive_flows--;
394         }
395
396         /* Note: this overwrites f->age */
397         flow_queue_add(f, skb);
398
399         if (unlikely(f == &q->internal)) {
400                 q->stat_internal_packets++;
401         }
402         sch->q.qlen++;
403
404         return NET_XMIT_SUCCESS;
405 }
406
407 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
408 {
409         struct rb_node *p;
410
411         if (q->time_next_delayed_flow > now)
412                 return;
413
414         q->time_next_delayed_flow = ~0ULL;
415         while ((p = rb_first(&q->delayed)) != NULL) {
416                 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
417
418                 if (f->time_next_packet > now) {
419                         q->time_next_delayed_flow = f->time_next_packet;
420                         break;
421                 }
422                 rb_erase(p, &q->delayed);
423                 q->throttled_flows--;
424                 fq_flow_add_tail(&q->old_flows, f);
425         }
426 }
427
428 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
429 {
430         struct fq_sched_data *q = qdisc_priv(sch);
431         u64 now = ktime_get_ns();
432         struct fq_flow_head *head;
433         struct sk_buff *skb;
434         struct fq_flow *f;
435         u32 rate;
436
437         skb = fq_dequeue_head(sch, &q->internal);
438         if (skb)
439                 goto out;
440         fq_check_throttled(q, now);
441 begin:
442         head = &q->new_flows;
443         if (!head->first) {
444                 head = &q->old_flows;
445                 if (!head->first) {
446                         if (q->time_next_delayed_flow != ~0ULL)
447                                 qdisc_watchdog_schedule_ns(&q->watchdog,
448                                                            q->time_next_delayed_flow,
449                                                            false);
450                         return NULL;
451                 }
452         }
453         f = head->first;
454
455         if (f->credit <= 0) {
456                 f->credit += q->quantum;
457                 head->first = f->next;
458                 fq_flow_add_tail(&q->old_flows, f);
459                 goto begin;
460         }
461
462         skb = f->head;
463         if (unlikely(skb && now < f->time_next_packet &&
464                      !skb_is_tcp_pure_ack(skb))) {
465                 head->first = f->next;
466                 fq_flow_set_throttled(q, f);
467                 goto begin;
468         }
469
470         skb = fq_dequeue_head(sch, f);
471         if (!skb) {
472                 head->first = f->next;
473                 /* force a pass through old_flows to prevent starvation */
474                 if ((head == &q->new_flows) && q->old_flows.first) {
475                         fq_flow_add_tail(&q->old_flows, f);
476                 } else {
477                         fq_flow_set_detached(f);
478                         q->inactive_flows++;
479                 }
480                 goto begin;
481         }
482         prefetch(&skb->end);
483         f->credit -= qdisc_pkt_len(skb);
484
485         if (f->credit > 0 || !q->rate_enable)
486                 goto out;
487
488         /* Do not pace locally generated ack packets */
489         if (skb_is_tcp_pure_ack(skb))
490                 goto out;
491
492         rate = q->flow_max_rate;
493         if (skb->sk)
494                 rate = min(skb->sk->sk_pacing_rate, rate);
495
496         if (rate != ~0U) {
497                 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
498                 u64 len = (u64)plen * NSEC_PER_SEC;
499
500                 if (likely(rate))
501                         do_div(len, rate);
502                 /* Since socket rate can change later,
503                  * clamp the delay to 1 second.
504                  * Really, providers of too big packets should be fixed !
505                  */
506                 if (unlikely(len > NSEC_PER_SEC)) {
507                         len = NSEC_PER_SEC;
508                         q->stat_pkts_too_long++;
509                 }
510
511                 f->time_next_packet = now + len;
512         }
513 out:
514         qdisc_bstats_update(sch, skb);
515         return skb;
516 }
517
518 static void fq_reset(struct Qdisc *sch)
519 {
520         struct fq_sched_data *q = qdisc_priv(sch);
521         struct rb_root *root;
522         struct sk_buff *skb;
523         struct rb_node *p;
524         struct fq_flow *f;
525         unsigned int idx;
526
527         while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
528                 kfree_skb(skb);
529
530         if (!q->fq_root)
531                 return;
532
533         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
534                 root = &q->fq_root[idx];
535                 while ((p = rb_first(root)) != NULL) {
536                         f = container_of(p, struct fq_flow, fq_node);
537                         rb_erase(p, root);
538
539                         while ((skb = fq_dequeue_head(sch, f)) != NULL)
540                                 kfree_skb(skb);
541
542                         kmem_cache_free(fq_flow_cachep, f);
543                 }
544         }
545         q->new_flows.first      = NULL;
546         q->old_flows.first      = NULL;
547         q->delayed              = RB_ROOT;
548         q->flows                = 0;
549         q->inactive_flows       = 0;
550         q->throttled_flows      = 0;
551 }
552
553 static void fq_rehash(struct fq_sched_data *q,
554                       struct rb_root *old_array, u32 old_log,
555                       struct rb_root *new_array, u32 new_log)
556 {
557         struct rb_node *op, **np, *parent;
558         struct rb_root *oroot, *nroot;
559         struct fq_flow *of, *nf;
560         int fcnt = 0;
561         u32 idx;
562
563         for (idx = 0; idx < (1U << old_log); idx++) {
564                 oroot = &old_array[idx];
565                 while ((op = rb_first(oroot)) != NULL) {
566                         rb_erase(op, oroot);
567                         of = container_of(op, struct fq_flow, fq_node);
568                         if (fq_gc_candidate(of)) {
569                                 fcnt++;
570                                 kmem_cache_free(fq_flow_cachep, of);
571                                 continue;
572                         }
573                         nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
574
575                         np = &nroot->rb_node;
576                         parent = NULL;
577                         while (*np) {
578                                 parent = *np;
579
580                                 nf = container_of(parent, struct fq_flow, fq_node);
581                                 BUG_ON(nf->sk == of->sk);
582
583                                 if (nf->sk > of->sk)
584                                         np = &parent->rb_right;
585                                 else
586                                         np = &parent->rb_left;
587                         }
588
589                         rb_link_node(&of->fq_node, parent, np);
590                         rb_insert_color(&of->fq_node, nroot);
591                 }
592         }
593         q->flows -= fcnt;
594         q->inactive_flows -= fcnt;
595         q->stat_gc_flows += fcnt;
596 }
597
598 static void *fq_alloc_node(size_t sz, int node)
599 {
600         void *ptr;
601
602         ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
603         if (!ptr)
604                 ptr = vmalloc_node(sz, node);
605         return ptr;
606 }
607
608 static void fq_free(void *addr)
609 {
610         kvfree(addr);
611 }
612
613 static int fq_resize(struct Qdisc *sch, u32 log)
614 {
615         struct fq_sched_data *q = qdisc_priv(sch);
616         struct rb_root *array;
617         void *old_fq_root;
618         u32 idx;
619
620         if (q->fq_root && log == q->fq_trees_log)
621                 return 0;
622
623         /* If XPS was setup, we can allocate memory on right NUMA node */
624         array = fq_alloc_node(sizeof(struct rb_root) << log,
625                               netdev_queue_numa_node_read(sch->dev_queue));
626         if (!array)
627                 return -ENOMEM;
628
629         for (idx = 0; idx < (1U << log); idx++)
630                 array[idx] = RB_ROOT;
631
632         sch_tree_lock(sch);
633
634         old_fq_root = q->fq_root;
635         if (old_fq_root)
636                 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
637
638         q->fq_root = array;
639         q->fq_trees_log = log;
640
641         sch_tree_unlock(sch);
642
643         fq_free(old_fq_root);
644
645         return 0;
646 }
647
648 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
649         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
650         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
651         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
652         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
653         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
654         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
655         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
656         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
657         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
658 };
659
660 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
661 {
662         struct fq_sched_data *q = qdisc_priv(sch);
663         struct nlattr *tb[TCA_FQ_MAX + 1];
664         int err, drop_count = 0;
665         u32 fq_log;
666
667         if (!opt)
668                 return -EINVAL;
669
670         err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
671         if (err < 0)
672                 return err;
673
674         sch_tree_lock(sch);
675
676         fq_log = q->fq_trees_log;
677
678         if (tb[TCA_FQ_BUCKETS_LOG]) {
679                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
680
681                 if (nval >= 1 && nval <= ilog2(256*1024))
682                         fq_log = nval;
683                 else
684                         err = -EINVAL;
685         }
686         if (tb[TCA_FQ_PLIMIT])
687                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
688
689         if (tb[TCA_FQ_FLOW_PLIMIT])
690                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
691
692         if (tb[TCA_FQ_QUANTUM]) {
693                 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
694
695                 if (quantum > 0)
696                         q->quantum = quantum;
697                 else
698                         err = -EINVAL;
699         }
700
701         if (tb[TCA_FQ_INITIAL_QUANTUM])
702                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
703
704         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
705                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
706                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
707
708         if (tb[TCA_FQ_FLOW_MAX_RATE])
709                 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
710
711         if (tb[TCA_FQ_RATE_ENABLE]) {
712                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
713
714                 if (enable <= 1)
715                         q->rate_enable = enable;
716                 else
717                         err = -EINVAL;
718         }
719
720         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
721                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
722
723                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
724         }
725
726         if (tb[TCA_FQ_ORPHAN_MASK])
727                 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
728
729         if (!err) {
730                 sch_tree_unlock(sch);
731                 err = fq_resize(sch, fq_log);
732                 sch_tree_lock(sch);
733         }
734         while (sch->q.qlen > sch->limit) {
735                 struct sk_buff *skb = fq_dequeue(sch);
736
737                 if (!skb)
738                         break;
739                 kfree_skb(skb);
740                 drop_count++;
741         }
742         qdisc_tree_decrease_qlen(sch, drop_count);
743
744         sch_tree_unlock(sch);
745         return err;
746 }
747
748 static void fq_destroy(struct Qdisc *sch)
749 {
750         struct fq_sched_data *q = qdisc_priv(sch);
751
752         fq_reset(sch);
753         fq_free(q->fq_root);
754         qdisc_watchdog_cancel(&q->watchdog);
755 }
756
757 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
758 {
759         struct fq_sched_data *q = qdisc_priv(sch);
760         int err;
761
762         sch->limit              = 10000;
763         q->flow_plimit          = 100;
764         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
765         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
766         q->flow_refill_delay    = msecs_to_jiffies(40);
767         q->flow_max_rate        = ~0U;
768         q->rate_enable          = 1;
769         q->new_flows.first      = NULL;
770         q->old_flows.first      = NULL;
771         q->delayed              = RB_ROOT;
772         q->fq_root              = NULL;
773         q->fq_trees_log         = ilog2(1024);
774         q->orphan_mask          = 1024 - 1;
775         qdisc_watchdog_init(&q->watchdog, sch);
776
777         if (opt)
778                 err = fq_change(sch, opt);
779         else
780                 err = fq_resize(sch, q->fq_trees_log);
781
782         return err;
783 }
784
785 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
786 {
787         struct fq_sched_data *q = qdisc_priv(sch);
788         struct nlattr *opts;
789
790         opts = nla_nest_start(skb, TCA_OPTIONS);
791         if (opts == NULL)
792                 goto nla_put_failure;
793
794         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
795
796         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
797             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
798             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
799             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
800             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
801             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
802             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
803                         jiffies_to_usecs(q->flow_refill_delay)) ||
804             nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
805             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
806                 goto nla_put_failure;
807
808         return nla_nest_end(skb, opts);
809
810 nla_put_failure:
811         return -1;
812 }
813
814 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
815 {
816         struct fq_sched_data *q = qdisc_priv(sch);
817         u64 now = ktime_get_ns();
818         struct tc_fq_qd_stats st = {
819                 .gc_flows               = q->stat_gc_flows,
820                 .highprio_packets       = q->stat_internal_packets,
821                 .tcp_retrans            = q->stat_tcp_retrans,
822                 .throttled              = q->stat_throttled,
823                 .flows_plimit           = q->stat_flows_plimit,
824                 .pkts_too_long          = q->stat_pkts_too_long,
825                 .allocation_errors      = q->stat_allocation_errors,
826                 .flows                  = q->flows,
827                 .inactive_flows         = q->inactive_flows,
828                 .throttled_flows        = q->throttled_flows,
829                 .time_next_delayed_flow = q->time_next_delayed_flow - now,
830         };
831
832         return gnet_stats_copy_app(d, &st, sizeof(st));
833 }
834
835 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
836         .id             =       "fq",
837         .priv_size      =       sizeof(struct fq_sched_data),
838
839         .enqueue        =       fq_enqueue,
840         .dequeue        =       fq_dequeue,
841         .peek           =       qdisc_peek_dequeued,
842         .init           =       fq_init,
843         .reset          =       fq_reset,
844         .destroy        =       fq_destroy,
845         .change         =       fq_change,
846         .dump           =       fq_dump,
847         .dump_stats     =       fq_dump_stats,
848         .owner          =       THIS_MODULE,
849 };
850
851 static int __init fq_module_init(void)
852 {
853         int ret;
854
855         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
856                                            sizeof(struct fq_flow),
857                                            0, 0, NULL);
858         if (!fq_flow_cachep)
859                 return -ENOMEM;
860
861         ret = register_qdisc(&fq_qdisc_ops);
862         if (ret)
863                 kmem_cache_destroy(fq_flow_cachep);
864         return ret;
865 }
866
867 static void __exit fq_module_exit(void)
868 {
869         unregister_qdisc(&fq_qdisc_ops);
870         kmem_cache_destroy(fq_flow_cachep);
871 }
872
873 module_init(fq_module_init)
874 module_exit(fq_module_exit)
875 MODULE_AUTHOR("Eric Dumazet");
876 MODULE_LICENSE("GPL");