These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / net / rds / ib_rdma.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
37 #include <linux/delay.h>
38
39 #include "rds.h"
40 #include "ib.h"
41
42 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
43 #define CLEAN_LIST_BUSY_BIT 0
44
45 /*
46  * This is stored as mr->r_trans_private.
47  */
48 struct rds_ib_mr {
49         struct rds_ib_device    *device;
50         struct rds_ib_mr_pool   *pool;
51         struct ib_fmr           *fmr;
52
53         struct llist_node       llnode;
54
55         /* unmap_list is for freeing */
56         struct list_head        unmap_list;
57         unsigned int            remap_count;
58
59         struct scatterlist      *sg;
60         unsigned int            sg_len;
61         u64                     *dma;
62         int                     sg_dma_len;
63 };
64
65 /*
66  * Our own little FMR pool
67  */
68 struct rds_ib_mr_pool {
69         unsigned int            pool_type;
70         struct mutex            flush_lock;             /* serialize fmr invalidate */
71         struct delayed_work     flush_worker;           /* flush worker */
72
73         atomic_t                item_count;             /* total # of MRs */
74         atomic_t                dirty_count;            /* # dirty of MRs */
75
76         struct llist_head       drop_list;              /* MRs that have reached their max_maps limit */
77         struct llist_head       free_list;              /* unused MRs */
78         struct llist_head       clean_list;             /* global unused & unamapped MRs */
79         wait_queue_head_t       flush_wait;
80
81         atomic_t                free_pinned;            /* memory pinned by free MRs */
82         unsigned long           max_items;
83         unsigned long           max_items_soft;
84         unsigned long           max_free_pinned;
85         struct ib_fmr_attr      fmr_attr;
86 };
87
88 static struct workqueue_struct *rds_ib_fmr_wq;
89
90 int rds_ib_fmr_init(void)
91 {
92         rds_ib_fmr_wq = create_workqueue("rds_fmr_flushd");
93         if (!rds_ib_fmr_wq)
94                 return -ENOMEM;
95         return 0;
96 }
97
98 /* By the time this is called all the IB devices should have been torn down and
99  * had their pools freed.  As each pool is freed its work struct is waited on,
100  * so the pool flushing work queue should be idle by the time we get here.
101  */
102 void rds_ib_fmr_exit(void)
103 {
104         destroy_workqueue(rds_ib_fmr_wq);
105 }
106
107 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
108 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
109 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
110
111 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
112 {
113         struct rds_ib_device *rds_ibdev;
114         struct rds_ib_ipaddr *i_ipaddr;
115
116         rcu_read_lock();
117         list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
118                 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
119                         if (i_ipaddr->ipaddr == ipaddr) {
120                                 atomic_inc(&rds_ibdev->refcount);
121                                 rcu_read_unlock();
122                                 return rds_ibdev;
123                         }
124                 }
125         }
126         rcu_read_unlock();
127
128         return NULL;
129 }
130
131 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
132 {
133         struct rds_ib_ipaddr *i_ipaddr;
134
135         i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
136         if (!i_ipaddr)
137                 return -ENOMEM;
138
139         i_ipaddr->ipaddr = ipaddr;
140
141         spin_lock_irq(&rds_ibdev->spinlock);
142         list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
143         spin_unlock_irq(&rds_ibdev->spinlock);
144
145         return 0;
146 }
147
148 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
149 {
150         struct rds_ib_ipaddr *i_ipaddr;
151         struct rds_ib_ipaddr *to_free = NULL;
152
153
154         spin_lock_irq(&rds_ibdev->spinlock);
155         list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
156                 if (i_ipaddr->ipaddr == ipaddr) {
157                         list_del_rcu(&i_ipaddr->list);
158                         to_free = i_ipaddr;
159                         break;
160                 }
161         }
162         spin_unlock_irq(&rds_ibdev->spinlock);
163
164         if (to_free)
165                 kfree_rcu(to_free, rcu);
166 }
167
168 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
169 {
170         struct rds_ib_device *rds_ibdev_old;
171
172         rds_ibdev_old = rds_ib_get_device(ipaddr);
173         if (!rds_ibdev_old)
174                 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
175
176         if (rds_ibdev_old != rds_ibdev) {
177                 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
178                 rds_ib_dev_put(rds_ibdev_old);
179                 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
180         }
181         rds_ib_dev_put(rds_ibdev_old);
182
183         return 0;
184 }
185
186 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
187 {
188         struct rds_ib_connection *ic = conn->c_transport_data;
189
190         /* conn was previously on the nodev_conns_list */
191         spin_lock_irq(&ib_nodev_conns_lock);
192         BUG_ON(list_empty(&ib_nodev_conns));
193         BUG_ON(list_empty(&ic->ib_node));
194         list_del(&ic->ib_node);
195
196         spin_lock(&rds_ibdev->spinlock);
197         list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
198         spin_unlock(&rds_ibdev->spinlock);
199         spin_unlock_irq(&ib_nodev_conns_lock);
200
201         ic->rds_ibdev = rds_ibdev;
202         atomic_inc(&rds_ibdev->refcount);
203 }
204
205 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
206 {
207         struct rds_ib_connection *ic = conn->c_transport_data;
208
209         /* place conn on nodev_conns_list */
210         spin_lock(&ib_nodev_conns_lock);
211
212         spin_lock_irq(&rds_ibdev->spinlock);
213         BUG_ON(list_empty(&ic->ib_node));
214         list_del(&ic->ib_node);
215         spin_unlock_irq(&rds_ibdev->spinlock);
216
217         list_add_tail(&ic->ib_node, &ib_nodev_conns);
218
219         spin_unlock(&ib_nodev_conns_lock);
220
221         ic->rds_ibdev = NULL;
222         rds_ib_dev_put(rds_ibdev);
223 }
224
225 void rds_ib_destroy_nodev_conns(void)
226 {
227         struct rds_ib_connection *ic, *_ic;
228         LIST_HEAD(tmp_list);
229
230         /* avoid calling conn_destroy with irqs off */
231         spin_lock_irq(&ib_nodev_conns_lock);
232         list_splice(&ib_nodev_conns, &tmp_list);
233         spin_unlock_irq(&ib_nodev_conns_lock);
234
235         list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
236                 rds_conn_destroy(ic->conn);
237 }
238
239 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev,
240                                              int pool_type)
241 {
242         struct rds_ib_mr_pool *pool;
243
244         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
245         if (!pool)
246                 return ERR_PTR(-ENOMEM);
247
248         pool->pool_type = pool_type;
249         init_llist_head(&pool->free_list);
250         init_llist_head(&pool->drop_list);
251         init_llist_head(&pool->clean_list);
252         mutex_init(&pool->flush_lock);
253         init_waitqueue_head(&pool->flush_wait);
254         INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
255
256         if (pool_type == RDS_IB_MR_1M_POOL) {
257                 /* +1 allows for unaligned MRs */
258                 pool->fmr_attr.max_pages = RDS_FMR_1M_MSG_SIZE + 1;
259                 pool->max_items = RDS_FMR_1M_POOL_SIZE;
260         } else {
261                 /* pool_type == RDS_IB_MR_8K_POOL */
262                 pool->fmr_attr.max_pages = RDS_FMR_8K_MSG_SIZE + 1;
263                 pool->max_items = RDS_FMR_8K_POOL_SIZE;
264         }
265
266         pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4;
267         pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
268         pool->fmr_attr.page_shift = PAGE_SHIFT;
269         pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
270
271         return pool;
272 }
273
274 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
275 {
276         struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
277
278         iinfo->rdma_mr_max = pool_1m->max_items;
279         iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages;
280 }
281
282 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
283 {
284         cancel_delayed_work_sync(&pool->flush_worker);
285         rds_ib_flush_mr_pool(pool, 1, NULL);
286         WARN_ON(atomic_read(&pool->item_count));
287         WARN_ON(atomic_read(&pool->free_pinned));
288         kfree(pool);
289 }
290
291 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
292 {
293         struct rds_ib_mr *ibmr = NULL;
294         struct llist_node *ret;
295         unsigned long *flag;
296
297         preempt_disable();
298         flag = this_cpu_ptr(&clean_list_grace);
299         set_bit(CLEAN_LIST_BUSY_BIT, flag);
300         ret = llist_del_first(&pool->clean_list);
301         if (ret)
302                 ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
303
304         clear_bit(CLEAN_LIST_BUSY_BIT, flag);
305         preempt_enable();
306         return ibmr;
307 }
308
309 static inline void wait_clean_list_grace(void)
310 {
311         int cpu;
312         unsigned long *flag;
313
314         for_each_online_cpu(cpu) {
315                 flag = &per_cpu(clean_list_grace, cpu);
316                 while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
317                         cpu_chill();
318         }
319 }
320
321 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev,
322                                           int npages)
323 {
324         struct rds_ib_mr_pool *pool;
325         struct rds_ib_mr *ibmr = NULL;
326         int err = 0, iter = 0;
327
328         if (npages <= RDS_FMR_8K_MSG_SIZE)
329                 pool = rds_ibdev->mr_8k_pool;
330         else
331                 pool = rds_ibdev->mr_1m_pool;
332
333         if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
334                 queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
335
336         /* Switch pools if one of the pool is reaching upper limit */
337         if (atomic_read(&pool->dirty_count) >=  pool->max_items * 9 / 10) {
338                 if (pool->pool_type == RDS_IB_MR_8K_POOL)
339                         pool = rds_ibdev->mr_1m_pool;
340                 else
341                         pool = rds_ibdev->mr_8k_pool;
342         }
343
344         while (1) {
345                 ibmr = rds_ib_reuse_fmr(pool);
346                 if (ibmr)
347                         return ibmr;
348
349                 /* No clean MRs - now we have the choice of either
350                  * allocating a fresh MR up to the limit imposed by the
351                  * driver, or flush any dirty unused MRs.
352                  * We try to avoid stalling in the send path if possible,
353                  * so we allocate as long as we're allowed to.
354                  *
355                  * We're fussy with enforcing the FMR limit, though. If the driver
356                  * tells us we can't use more than N fmrs, we shouldn't start
357                  * arguing with it */
358                 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
359                         break;
360
361                 atomic_dec(&pool->item_count);
362
363                 if (++iter > 2) {
364                         if (pool->pool_type == RDS_IB_MR_8K_POOL)
365                                 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted);
366                         else
367                                 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted);
368                         return ERR_PTR(-EAGAIN);
369                 }
370
371                 /* We do have some empty MRs. Flush them out. */
372                 if (pool->pool_type == RDS_IB_MR_8K_POOL)
373                         rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait);
374                 else
375                         rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait);
376                 rds_ib_flush_mr_pool(pool, 0, &ibmr);
377                 if (ibmr)
378                         return ibmr;
379         }
380
381         ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
382         if (!ibmr) {
383                 err = -ENOMEM;
384                 goto out_no_cigar;
385         }
386
387         ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
388                         (IB_ACCESS_LOCAL_WRITE |
389                          IB_ACCESS_REMOTE_READ |
390                          IB_ACCESS_REMOTE_WRITE|
391                          IB_ACCESS_REMOTE_ATOMIC),
392                         &pool->fmr_attr);
393         if (IS_ERR(ibmr->fmr)) {
394                 err = PTR_ERR(ibmr->fmr);
395                 ibmr->fmr = NULL;
396                 printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
397                 goto out_no_cigar;
398         }
399
400         ibmr->pool = pool;
401         if (pool->pool_type == RDS_IB_MR_8K_POOL)
402                 rds_ib_stats_inc(s_ib_rdma_mr_8k_alloc);
403         else
404                 rds_ib_stats_inc(s_ib_rdma_mr_1m_alloc);
405
406         return ibmr;
407
408 out_no_cigar:
409         if (ibmr) {
410                 if (ibmr->fmr)
411                         ib_dealloc_fmr(ibmr->fmr);
412                 kfree(ibmr);
413         }
414         atomic_dec(&pool->item_count);
415         return ERR_PTR(err);
416 }
417
418 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
419                struct scatterlist *sg, unsigned int nents)
420 {
421         struct ib_device *dev = rds_ibdev->dev;
422         struct scatterlist *scat = sg;
423         u64 io_addr = 0;
424         u64 *dma_pages;
425         u32 len;
426         int page_cnt, sg_dma_len;
427         int i, j;
428         int ret;
429
430         sg_dma_len = ib_dma_map_sg(dev, sg, nents,
431                                  DMA_BIDIRECTIONAL);
432         if (unlikely(!sg_dma_len)) {
433                 printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
434                 return -EBUSY;
435         }
436
437         len = 0;
438         page_cnt = 0;
439
440         for (i = 0; i < sg_dma_len; ++i) {
441                 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
442                 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
443
444                 if (dma_addr & ~PAGE_MASK) {
445                         if (i > 0)
446                                 return -EINVAL;
447                         else
448                                 ++page_cnt;
449                 }
450                 if ((dma_addr + dma_len) & ~PAGE_MASK) {
451                         if (i < sg_dma_len - 1)
452                                 return -EINVAL;
453                         else
454                                 ++page_cnt;
455                 }
456
457                 len += dma_len;
458         }
459
460         page_cnt += len >> PAGE_SHIFT;
461         if (page_cnt > ibmr->pool->fmr_attr.max_pages)
462                 return -EINVAL;
463
464         dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
465                                  rdsibdev_to_node(rds_ibdev));
466         if (!dma_pages)
467                 return -ENOMEM;
468
469         page_cnt = 0;
470         for (i = 0; i < sg_dma_len; ++i) {
471                 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
472                 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
473
474                 for (j = 0; j < dma_len; j += PAGE_SIZE)
475                         dma_pages[page_cnt++] =
476                                 (dma_addr & PAGE_MASK) + j;
477         }
478
479         ret = ib_map_phys_fmr(ibmr->fmr,
480                                    dma_pages, page_cnt, io_addr);
481         if (ret)
482                 goto out;
483
484         /* Success - we successfully remapped the MR, so we can
485          * safely tear down the old mapping. */
486         rds_ib_teardown_mr(ibmr);
487
488         ibmr->sg = scat;
489         ibmr->sg_len = nents;
490         ibmr->sg_dma_len = sg_dma_len;
491         ibmr->remap_count++;
492
493         if (ibmr->pool->pool_type == RDS_IB_MR_8K_POOL)
494                 rds_ib_stats_inc(s_ib_rdma_mr_8k_used);
495         else
496                 rds_ib_stats_inc(s_ib_rdma_mr_1m_used);
497         ret = 0;
498
499 out:
500         kfree(dma_pages);
501
502         return ret;
503 }
504
505 void rds_ib_sync_mr(void *trans_private, int direction)
506 {
507         struct rds_ib_mr *ibmr = trans_private;
508         struct rds_ib_device *rds_ibdev = ibmr->device;
509
510         switch (direction) {
511         case DMA_FROM_DEVICE:
512                 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
513                         ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
514                 break;
515         case DMA_TO_DEVICE:
516                 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
517                         ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
518                 break;
519         }
520 }
521
522 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
523 {
524         struct rds_ib_device *rds_ibdev = ibmr->device;
525
526         if (ibmr->sg_dma_len) {
527                 ib_dma_unmap_sg(rds_ibdev->dev,
528                                 ibmr->sg, ibmr->sg_len,
529                                 DMA_BIDIRECTIONAL);
530                 ibmr->sg_dma_len = 0;
531         }
532
533         /* Release the s/g list */
534         if (ibmr->sg_len) {
535                 unsigned int i;
536
537                 for (i = 0; i < ibmr->sg_len; ++i) {
538                         struct page *page = sg_page(&ibmr->sg[i]);
539
540                         /* FIXME we need a way to tell a r/w MR
541                          * from a r/o MR */
542                         WARN_ON(!page->mapping && irqs_disabled());
543                         set_page_dirty(page);
544                         put_page(page);
545                 }
546                 kfree(ibmr->sg);
547
548                 ibmr->sg = NULL;
549                 ibmr->sg_len = 0;
550         }
551 }
552
553 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
554 {
555         unsigned int pinned = ibmr->sg_len;
556
557         __rds_ib_teardown_mr(ibmr);
558         if (pinned) {
559                 struct rds_ib_mr_pool *pool = ibmr->pool;
560
561                 atomic_sub(pinned, &pool->free_pinned);
562         }
563 }
564
565 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
566 {
567         unsigned int item_count;
568
569         item_count = atomic_read(&pool->item_count);
570         if (free_all)
571                 return item_count;
572
573         return 0;
574 }
575
576 /*
577  * given an llist of mrs, put them all into the list_head for more processing
578  */
579 static unsigned int llist_append_to_list(struct llist_head *llist,
580                                          struct list_head *list)
581 {
582         struct rds_ib_mr *ibmr;
583         struct llist_node *node;
584         struct llist_node *next;
585         unsigned int count = 0;
586
587         node = llist_del_all(llist);
588         while (node) {
589                 next = node->next;
590                 ibmr = llist_entry(node, struct rds_ib_mr, llnode);
591                 list_add_tail(&ibmr->unmap_list, list);
592                 node = next;
593                 count++;
594         }
595         return count;
596 }
597
598 /*
599  * this takes a list head of mrs and turns it into linked llist nodes
600  * of clusters.  Each cluster has linked llist nodes of
601  * MR_CLUSTER_SIZE mrs that are ready for reuse.
602  */
603 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
604                                 struct list_head *list,
605                                 struct llist_node **nodes_head,
606                                 struct llist_node **nodes_tail)
607 {
608         struct rds_ib_mr *ibmr;
609         struct llist_node *cur = NULL;
610         struct llist_node **next = nodes_head;
611
612         list_for_each_entry(ibmr, list, unmap_list) {
613                 cur = &ibmr->llnode;
614                 *next = cur;
615                 next = &cur->next;
616         }
617         *next = NULL;
618         *nodes_tail = cur;
619 }
620
621 /*
622  * Flush our pool of MRs.
623  * At a minimum, all currently unused MRs are unmapped.
624  * If the number of MRs allocated exceeds the limit, we also try
625  * to free as many MRs as needed to get back to this limit.
626  */
627 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
628                                 int free_all, struct rds_ib_mr **ibmr_ret)
629 {
630         struct rds_ib_mr *ibmr, *next;
631         struct llist_node *clean_nodes;
632         struct llist_node *clean_tail;
633         LIST_HEAD(unmap_list);
634         LIST_HEAD(fmr_list);
635         unsigned long unpinned = 0;
636         unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
637         int ret = 0;
638
639         if (pool->pool_type == RDS_IB_MR_8K_POOL)
640                 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush);
641         else
642                 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush);
643
644         if (ibmr_ret) {
645                 DEFINE_WAIT(wait);
646                 while (!mutex_trylock(&pool->flush_lock)) {
647                         ibmr = rds_ib_reuse_fmr(pool);
648                         if (ibmr) {
649                                 *ibmr_ret = ibmr;
650                                 finish_wait(&pool->flush_wait, &wait);
651                                 goto out_nolock;
652                         }
653
654                         prepare_to_wait(&pool->flush_wait, &wait,
655                                         TASK_UNINTERRUPTIBLE);
656                         if (llist_empty(&pool->clean_list))
657                                 schedule();
658
659                         ibmr = rds_ib_reuse_fmr(pool);
660                         if (ibmr) {
661                                 *ibmr_ret = ibmr;
662                                 finish_wait(&pool->flush_wait, &wait);
663                                 goto out_nolock;
664                         }
665                 }
666                 finish_wait(&pool->flush_wait, &wait);
667         } else
668                 mutex_lock(&pool->flush_lock);
669
670         if (ibmr_ret) {
671                 ibmr = rds_ib_reuse_fmr(pool);
672                 if (ibmr) {
673                         *ibmr_ret = ibmr;
674                         goto out;
675                 }
676         }
677
678         /* Get the list of all MRs to be dropped. Ordering matters -
679          * we want to put drop_list ahead of free_list.
680          */
681         dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
682         dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
683         if (free_all)
684                 llist_append_to_list(&pool->clean_list, &unmap_list);
685
686         free_goal = rds_ib_flush_goal(pool, free_all);
687
688         if (list_empty(&unmap_list))
689                 goto out;
690
691         /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
692         list_for_each_entry(ibmr, &unmap_list, unmap_list)
693                 list_add(&ibmr->fmr->list, &fmr_list);
694
695         ret = ib_unmap_fmr(&fmr_list);
696         if (ret)
697                 printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
698
699         /* Now we can destroy the DMA mapping and unpin any pages */
700         list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
701                 unpinned += ibmr->sg_len;
702                 __rds_ib_teardown_mr(ibmr);
703                 if (nfreed < free_goal ||
704                     ibmr->remap_count >= pool->fmr_attr.max_maps) {
705                         if (ibmr->pool->pool_type == RDS_IB_MR_8K_POOL)
706                                 rds_ib_stats_inc(s_ib_rdma_mr_8k_free);
707                         else
708                                 rds_ib_stats_inc(s_ib_rdma_mr_1m_free);
709                         list_del(&ibmr->unmap_list);
710                         ib_dealloc_fmr(ibmr->fmr);
711                         kfree(ibmr);
712                         nfreed++;
713                 }
714         }
715
716         if (!list_empty(&unmap_list)) {
717                 /* we have to make sure that none of the things we're about
718                  * to put on the clean list would race with other cpus trying
719                  * to pull items off.  The llist would explode if we managed to
720                  * remove something from the clean list and then add it back again
721                  * while another CPU was spinning on that same item in llist_del_first.
722                  *
723                  * This is pretty unlikely, but just in case  wait for an llist grace period
724                  * here before adding anything back into the clean list.
725                  */
726                 wait_clean_list_grace();
727
728                 list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
729                 if (ibmr_ret)
730                         *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
731
732                 /* more than one entry in llist nodes */
733                 if (clean_nodes->next)
734                         llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
735
736         }
737
738         atomic_sub(unpinned, &pool->free_pinned);
739         atomic_sub(dirty_to_clean, &pool->dirty_count);
740         atomic_sub(nfreed, &pool->item_count);
741
742 out:
743         mutex_unlock(&pool->flush_lock);
744         if (waitqueue_active(&pool->flush_wait))
745                 wake_up(&pool->flush_wait);
746 out_nolock:
747         return ret;
748 }
749
750 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
751 {
752         struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
753
754         rds_ib_flush_mr_pool(pool, 0, NULL);
755 }
756
757 void rds_ib_free_mr(void *trans_private, int invalidate)
758 {
759         struct rds_ib_mr *ibmr = trans_private;
760         struct rds_ib_mr_pool *pool = ibmr->pool;
761         struct rds_ib_device *rds_ibdev = ibmr->device;
762
763         rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
764
765         /* Return it to the pool's free list */
766         if (ibmr->remap_count >= pool->fmr_attr.max_maps)
767                 llist_add(&ibmr->llnode, &pool->drop_list);
768         else
769                 llist_add(&ibmr->llnode, &pool->free_list);
770
771         atomic_add(ibmr->sg_len, &pool->free_pinned);
772         atomic_inc(&pool->dirty_count);
773
774         /* If we've pinned too many pages, request a flush */
775         if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
776             atomic_read(&pool->dirty_count) >= pool->max_items / 5)
777                 queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
778
779         if (invalidate) {
780                 if (likely(!in_interrupt())) {
781                         rds_ib_flush_mr_pool(pool, 0, NULL);
782                 } else {
783                         /* We get here if the user created a MR marked
784                          * as use_once and invalidate at the same time.
785                          */
786                         queue_delayed_work(rds_ib_fmr_wq,
787                                            &pool->flush_worker, 10);
788                 }
789         }
790
791         rds_ib_dev_put(rds_ibdev);
792 }
793
794 void rds_ib_flush_mrs(void)
795 {
796         struct rds_ib_device *rds_ibdev;
797
798         down_read(&rds_ib_devices_lock);
799         list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
800                 if (rds_ibdev->mr_8k_pool)
801                         rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL);
802
803                 if (rds_ibdev->mr_1m_pool)
804                         rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL);
805         }
806         up_read(&rds_ib_devices_lock);
807 }
808
809 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
810                     struct rds_sock *rs, u32 *key_ret)
811 {
812         struct rds_ib_device *rds_ibdev;
813         struct rds_ib_mr *ibmr = NULL;
814         int ret;
815
816         rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
817         if (!rds_ibdev) {
818                 ret = -ENODEV;
819                 goto out;
820         }
821
822         if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) {
823                 ret = -ENODEV;
824                 goto out;
825         }
826
827         ibmr = rds_ib_alloc_fmr(rds_ibdev, nents);
828         if (IS_ERR(ibmr)) {
829                 rds_ib_dev_put(rds_ibdev);
830                 return ibmr;
831         }
832
833         ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
834         if (ret == 0)
835                 *key_ret = ibmr->fmr->rkey;
836         else
837                 printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
838
839         ibmr->device = rds_ibdev;
840         rds_ibdev = NULL;
841
842  out:
843         if (ret) {
844                 if (ibmr)
845                         rds_ib_free_mr(ibmr, 0);
846                 ibmr = ERR_PTR(ret);
847         }
848         if (rds_ibdev)
849                 rds_ib_dev_put(rds_ibdev);
850         return ibmr;
851 }
852