Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / net / openvswitch / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50
51 #include "flow_netlink.h"
52 #include "vport-vxlan.h"
53
54 struct ovs_len_tbl {
55         int len;
56         const struct ovs_len_tbl *next;
57 };
58
59 #define OVS_ATTR_NESTED -1
60
61 static void update_range(struct sw_flow_match *match,
62                          size_t offset, size_t size, bool is_mask)
63 {
64         struct sw_flow_key_range *range;
65         size_t start = rounddown(offset, sizeof(long));
66         size_t end = roundup(offset + size, sizeof(long));
67
68         if (!is_mask)
69                 range = &match->range;
70         else
71                 range = &match->mask->range;
72
73         if (range->start == range->end) {
74                 range->start = start;
75                 range->end = end;
76                 return;
77         }
78
79         if (range->start > start)
80                 range->start = start;
81
82         if (range->end < end)
83                 range->end = end;
84 }
85
86 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
87         do { \
88                 update_range(match, offsetof(struct sw_flow_key, field),    \
89                              sizeof((match)->key->field), is_mask);         \
90                 if (is_mask)                                                \
91                         (match)->mask->key.field = value;                   \
92                 else                                                        \
93                         (match)->key->field = value;                        \
94         } while (0)
95
96 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
97         do {                                                                \
98                 update_range(match, offset, len, is_mask);                  \
99                 if (is_mask)                                                \
100                         memcpy((u8 *)&(match)->mask->key + offset, value_p, \
101                                len);                                       \
102                 else                                                        \
103                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
104         } while (0)
105
106 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
107         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
108                                   value_p, len, is_mask)
109
110 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
111         do {                                                                \
112                 update_range(match, offsetof(struct sw_flow_key, field),    \
113                              sizeof((match)->key->field), is_mask);         \
114                 if (is_mask)                                                \
115                         memset((u8 *)&(match)->mask->key.field, value,      \
116                                sizeof((match)->mask->key.field));           \
117                 else                                                        \
118                         memset((u8 *)&(match)->key->field, value,           \
119                                sizeof((match)->key->field));                \
120         } while (0)
121
122 static bool match_validate(const struct sw_flow_match *match,
123                            u64 key_attrs, u64 mask_attrs, bool log)
124 {
125         u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
126         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
127
128         /* The following mask attributes allowed only if they
129          * pass the validation tests. */
130         mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
131                         | (1 << OVS_KEY_ATTR_IPV6)
132                         | (1 << OVS_KEY_ATTR_TCP)
133                         | (1 << OVS_KEY_ATTR_TCP_FLAGS)
134                         | (1 << OVS_KEY_ATTR_UDP)
135                         | (1 << OVS_KEY_ATTR_SCTP)
136                         | (1 << OVS_KEY_ATTR_ICMP)
137                         | (1 << OVS_KEY_ATTR_ICMPV6)
138                         | (1 << OVS_KEY_ATTR_ARP)
139                         | (1 << OVS_KEY_ATTR_ND)
140                         | (1 << OVS_KEY_ATTR_MPLS));
141
142         /* Always allowed mask fields. */
143         mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
144                        | (1 << OVS_KEY_ATTR_IN_PORT)
145                        | (1 << OVS_KEY_ATTR_ETHERTYPE));
146
147         /* Check key attributes. */
148         if (match->key->eth.type == htons(ETH_P_ARP)
149                         || match->key->eth.type == htons(ETH_P_RARP)) {
150                 key_expected |= 1 << OVS_KEY_ATTR_ARP;
151                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
152                         mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
153         }
154
155         if (eth_p_mpls(match->key->eth.type)) {
156                 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
157                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
158                         mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
159         }
160
161         if (match->key->eth.type == htons(ETH_P_IP)) {
162                 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
163                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
164                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
165
166                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
167                         if (match->key->ip.proto == IPPROTO_UDP) {
168                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
169                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
170                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
171                         }
172
173                         if (match->key->ip.proto == IPPROTO_SCTP) {
174                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
175                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
176                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
177                         }
178
179                         if (match->key->ip.proto == IPPROTO_TCP) {
180                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
181                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
182                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
183                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
184                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
185                                 }
186                         }
187
188                         if (match->key->ip.proto == IPPROTO_ICMP) {
189                                 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
190                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
191                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
192                         }
193                 }
194         }
195
196         if (match->key->eth.type == htons(ETH_P_IPV6)) {
197                 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
198                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
199                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
200
201                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
202                         if (match->key->ip.proto == IPPROTO_UDP) {
203                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
204                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
205                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
206                         }
207
208                         if (match->key->ip.proto == IPPROTO_SCTP) {
209                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
210                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
211                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
212                         }
213
214                         if (match->key->ip.proto == IPPROTO_TCP) {
215                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
216                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
217                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
218                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
219                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220                                 }
221                         }
222
223                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
224                                 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
225                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
226                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
227
228                                 if (match->key->tp.src ==
229                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
230                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
231                                         key_expected |= 1 << OVS_KEY_ATTR_ND;
232                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
233                                                 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
234                                 }
235                         }
236                 }
237         }
238
239         if ((key_attrs & key_expected) != key_expected) {
240                 /* Key attributes check failed. */
241                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
242                           (unsigned long long)key_attrs,
243                           (unsigned long long)key_expected);
244                 return false;
245         }
246
247         if ((mask_attrs & mask_allowed) != mask_attrs) {
248                 /* Mask attributes check failed. */
249                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
250                           (unsigned long long)mask_attrs,
251                           (unsigned long long)mask_allowed);
252                 return false;
253         }
254
255         return true;
256 }
257
258 size_t ovs_tun_key_attr_size(void)
259 {
260         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
261          * updating this function.
262          */
263         return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
264                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
265                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
266                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
267                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
268                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
269                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
270                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
271                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
272                 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
273                  * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
274                  */
275                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
276                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
277 }
278
279 size_t ovs_key_attr_size(void)
280 {
281         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
282          * updating this function.
283          */
284         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 22);
285
286         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
287                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
288                   + ovs_tun_key_attr_size()
289                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
290                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
291                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
292                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
293                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
294                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
295                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
296                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
297                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
298                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
299                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
300                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
301 }
302
303 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
304         [OVS_TUNNEL_KEY_ATTR_ID]            = { .len = sizeof(u64) },
305         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC]      = { .len = sizeof(u32) },
306         [OVS_TUNNEL_KEY_ATTR_IPV4_DST]      = { .len = sizeof(u32) },
307         [OVS_TUNNEL_KEY_ATTR_TOS]           = { .len = 1 },
308         [OVS_TUNNEL_KEY_ATTR_TTL]           = { .len = 1 },
309         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
310         [OVS_TUNNEL_KEY_ATTR_CSUM]          = { .len = 0 },
311         [OVS_TUNNEL_KEY_ATTR_TP_SRC]        = { .len = sizeof(u16) },
312         [OVS_TUNNEL_KEY_ATTR_TP_DST]        = { .len = sizeof(u16) },
313         [OVS_TUNNEL_KEY_ATTR_OAM]           = { .len = 0 },
314         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_NESTED },
315         [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED },
316 };
317
318 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
319 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
320         [OVS_KEY_ATTR_ENCAP]     = { .len = OVS_ATTR_NESTED },
321         [OVS_KEY_ATTR_PRIORITY]  = { .len = sizeof(u32) },
322         [OVS_KEY_ATTR_IN_PORT]   = { .len = sizeof(u32) },
323         [OVS_KEY_ATTR_SKB_MARK]  = { .len = sizeof(u32) },
324         [OVS_KEY_ATTR_ETHERNET]  = { .len = sizeof(struct ovs_key_ethernet) },
325         [OVS_KEY_ATTR_VLAN]      = { .len = sizeof(__be16) },
326         [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
327         [OVS_KEY_ATTR_IPV4]      = { .len = sizeof(struct ovs_key_ipv4) },
328         [OVS_KEY_ATTR_IPV6]      = { .len = sizeof(struct ovs_key_ipv6) },
329         [OVS_KEY_ATTR_TCP]       = { .len = sizeof(struct ovs_key_tcp) },
330         [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
331         [OVS_KEY_ATTR_UDP]       = { .len = sizeof(struct ovs_key_udp) },
332         [OVS_KEY_ATTR_SCTP]      = { .len = sizeof(struct ovs_key_sctp) },
333         [OVS_KEY_ATTR_ICMP]      = { .len = sizeof(struct ovs_key_icmp) },
334         [OVS_KEY_ATTR_ICMPV6]    = { .len = sizeof(struct ovs_key_icmpv6) },
335         [OVS_KEY_ATTR_ARP]       = { .len = sizeof(struct ovs_key_arp) },
336         [OVS_KEY_ATTR_ND]        = { .len = sizeof(struct ovs_key_nd) },
337         [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
338         [OVS_KEY_ATTR_DP_HASH]   = { .len = sizeof(u32) },
339         [OVS_KEY_ATTR_TUNNEL]    = { .len = OVS_ATTR_NESTED,
340                                      .next = ovs_tunnel_key_lens, },
341         [OVS_KEY_ATTR_MPLS]      = { .len = sizeof(struct ovs_key_mpls) },
342 };
343
344 static bool is_all_zero(const u8 *fp, size_t size)
345 {
346         int i;
347
348         if (!fp)
349                 return false;
350
351         for (i = 0; i < size; i++)
352                 if (fp[i])
353                         return false;
354
355         return true;
356 }
357
358 static int __parse_flow_nlattrs(const struct nlattr *attr,
359                                 const struct nlattr *a[],
360                                 u64 *attrsp, bool log, bool nz)
361 {
362         const struct nlattr *nla;
363         u64 attrs;
364         int rem;
365
366         attrs = *attrsp;
367         nla_for_each_nested(nla, attr, rem) {
368                 u16 type = nla_type(nla);
369                 int expected_len;
370
371                 if (type > OVS_KEY_ATTR_MAX) {
372                         OVS_NLERR(log, "Key type %d is out of range max %d",
373                                   type, OVS_KEY_ATTR_MAX);
374                         return -EINVAL;
375                 }
376
377                 if (attrs & (1 << type)) {
378                         OVS_NLERR(log, "Duplicate key (type %d).", type);
379                         return -EINVAL;
380                 }
381
382                 expected_len = ovs_key_lens[type].len;
383                 if (nla_len(nla) != expected_len && expected_len != OVS_ATTR_NESTED) {
384                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
385                                   type, nla_len(nla), expected_len);
386                         return -EINVAL;
387                 }
388
389                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
390                         attrs |= 1 << type;
391                         a[type] = nla;
392                 }
393         }
394         if (rem) {
395                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
396                 return -EINVAL;
397         }
398
399         *attrsp = attrs;
400         return 0;
401 }
402
403 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
404                                    const struct nlattr *a[], u64 *attrsp,
405                                    bool log)
406 {
407         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
408 }
409
410 static int parse_flow_nlattrs(const struct nlattr *attr,
411                               const struct nlattr *a[], u64 *attrsp,
412                               bool log)
413 {
414         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
415 }
416
417 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
418                                      struct sw_flow_match *match, bool is_mask,
419                                      bool log)
420 {
421         unsigned long opt_key_offset;
422
423         if (nla_len(a) > sizeof(match->key->tun_opts)) {
424                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
425                           nla_len(a), sizeof(match->key->tun_opts));
426                 return -EINVAL;
427         }
428
429         if (nla_len(a) % 4 != 0) {
430                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
431                           nla_len(a));
432                 return -EINVAL;
433         }
434
435         /* We need to record the length of the options passed
436          * down, otherwise packets with the same format but
437          * additional options will be silently matched.
438          */
439         if (!is_mask) {
440                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
441                                 false);
442         } else {
443                 /* This is somewhat unusual because it looks at
444                  * both the key and mask while parsing the
445                  * attributes (and by extension assumes the key
446                  * is parsed first). Normally, we would verify
447                  * that each is the correct length and that the
448                  * attributes line up in the validate function.
449                  * However, that is difficult because this is
450                  * variable length and we won't have the
451                  * information later.
452                  */
453                 if (match->key->tun_opts_len != nla_len(a)) {
454                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
455                                   match->key->tun_opts_len, nla_len(a));
456                         return -EINVAL;
457                 }
458
459                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
460         }
461
462         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
463         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
464                                   nla_len(a), is_mask);
465         return 0;
466 }
467
468 static const struct nla_policy vxlan_opt_policy[OVS_VXLAN_EXT_MAX + 1] = {
469         [OVS_VXLAN_EXT_GBP]     = { .type = NLA_U32 },
470 };
471
472 static int vxlan_tun_opt_from_nlattr(const struct nlattr *a,
473                                      struct sw_flow_match *match, bool is_mask,
474                                      bool log)
475 {
476         struct nlattr *tb[OVS_VXLAN_EXT_MAX+1];
477         unsigned long opt_key_offset;
478         struct ovs_vxlan_opts opts;
479         int err;
480
481         BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
482
483         err = nla_parse_nested(tb, OVS_VXLAN_EXT_MAX, a, vxlan_opt_policy);
484         if (err < 0)
485                 return err;
486
487         memset(&opts, 0, sizeof(opts));
488
489         if (tb[OVS_VXLAN_EXT_GBP])
490                 opts.gbp = nla_get_u32(tb[OVS_VXLAN_EXT_GBP]);
491
492         if (!is_mask)
493                 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
494         else
495                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
496
497         opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
498         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
499                                   is_mask);
500         return 0;
501 }
502
503 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
504                                 struct sw_flow_match *match, bool is_mask,
505                                 bool log)
506 {
507         struct nlattr *a;
508         int rem;
509         bool ttl = false;
510         __be16 tun_flags = 0;
511         int opts_type = 0;
512
513         nla_for_each_nested(a, attr, rem) {
514                 int type = nla_type(a);
515                 int err;
516
517                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
518                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
519                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
520                         return -EINVAL;
521                 }
522
523                 if (ovs_tunnel_key_lens[type].len != nla_len(a) &&
524                     ovs_tunnel_key_lens[type].len != OVS_ATTR_NESTED) {
525                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
526                                   type, nla_len(a), ovs_tunnel_key_lens[type].len);
527                         return -EINVAL;
528                 }
529
530                 switch (type) {
531                 case OVS_TUNNEL_KEY_ATTR_ID:
532                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
533                                         nla_get_be64(a), is_mask);
534                         tun_flags |= TUNNEL_KEY;
535                         break;
536                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
537                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
538                                         nla_get_in_addr(a), is_mask);
539                         break;
540                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
541                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
542                                         nla_get_in_addr(a), is_mask);
543                         break;
544                 case OVS_TUNNEL_KEY_ATTR_TOS:
545                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
546                                         nla_get_u8(a), is_mask);
547                         break;
548                 case OVS_TUNNEL_KEY_ATTR_TTL:
549                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
550                                         nla_get_u8(a), is_mask);
551                         ttl = true;
552                         break;
553                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
554                         tun_flags |= TUNNEL_DONT_FRAGMENT;
555                         break;
556                 case OVS_TUNNEL_KEY_ATTR_CSUM:
557                         tun_flags |= TUNNEL_CSUM;
558                         break;
559                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
560                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
561                                         nla_get_be16(a), is_mask);
562                         break;
563                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
564                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
565                                         nla_get_be16(a), is_mask);
566                         break;
567                 case OVS_TUNNEL_KEY_ATTR_OAM:
568                         tun_flags |= TUNNEL_OAM;
569                         break;
570                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
571                         if (opts_type) {
572                                 OVS_NLERR(log, "Multiple metadata blocks provided");
573                                 return -EINVAL;
574                         }
575
576                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
577                         if (err)
578                                 return err;
579
580                         tun_flags |= TUNNEL_GENEVE_OPT;
581                         opts_type = type;
582                         break;
583                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
584                         if (opts_type) {
585                                 OVS_NLERR(log, "Multiple metadata blocks provided");
586                                 return -EINVAL;
587                         }
588
589                         err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
590                         if (err)
591                                 return err;
592
593                         tun_flags |= TUNNEL_VXLAN_OPT;
594                         opts_type = type;
595                         break;
596                 default:
597                         OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
598                                   type);
599                         return -EINVAL;
600                 }
601         }
602
603         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
604
605         if (rem > 0) {
606                 OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
607                           rem);
608                 return -EINVAL;
609         }
610
611         if (!is_mask) {
612                 if (!match->key->tun_key.ipv4_dst) {
613                         OVS_NLERR(log, "IPv4 tunnel dst address is zero");
614                         return -EINVAL;
615                 }
616
617                 if (!ttl) {
618                         OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
619                         return -EINVAL;
620                 }
621         }
622
623         return opts_type;
624 }
625
626 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
627                                const void *tun_opts, int swkey_tun_opts_len)
628 {
629         const struct ovs_vxlan_opts *opts = tun_opts;
630         struct nlattr *nla;
631
632         nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
633         if (!nla)
634                 return -EMSGSIZE;
635
636         if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
637                 return -EMSGSIZE;
638
639         nla_nest_end(skb, nla);
640         return 0;
641 }
642
643 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
644                                 const struct ovs_key_ipv4_tunnel *output,
645                                 const void *tun_opts, int swkey_tun_opts_len)
646 {
647         if (output->tun_flags & TUNNEL_KEY &&
648             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
649                 return -EMSGSIZE;
650         if (output->ipv4_src &&
651             nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
652                             output->ipv4_src))
653                 return -EMSGSIZE;
654         if (output->ipv4_dst &&
655             nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
656                             output->ipv4_dst))
657                 return -EMSGSIZE;
658         if (output->ipv4_tos &&
659             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
660                 return -EMSGSIZE;
661         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
662                 return -EMSGSIZE;
663         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
664             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
665                 return -EMSGSIZE;
666         if ((output->tun_flags & TUNNEL_CSUM) &&
667             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
668                 return -EMSGSIZE;
669         if (output->tp_src &&
670             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
671                 return -EMSGSIZE;
672         if (output->tp_dst &&
673             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
674                 return -EMSGSIZE;
675         if ((output->tun_flags & TUNNEL_OAM) &&
676             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
677                 return -EMSGSIZE;
678         if (tun_opts) {
679                 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
680                     nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
681                             swkey_tun_opts_len, tun_opts))
682                         return -EMSGSIZE;
683                 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
684                          vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
685                         return -EMSGSIZE;
686         }
687
688         return 0;
689 }
690
691 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
692                               const struct ovs_key_ipv4_tunnel *output,
693                               const void *tun_opts, int swkey_tun_opts_len)
694 {
695         struct nlattr *nla;
696         int err;
697
698         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
699         if (!nla)
700                 return -EMSGSIZE;
701
702         err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
703         if (err)
704                 return err;
705
706         nla_nest_end(skb, nla);
707         return 0;
708 }
709
710 int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
711                                   const struct ovs_tunnel_info *egress_tun_info)
712 {
713         return __ipv4_tun_to_nlattr(skb, &egress_tun_info->tunnel,
714                                     egress_tun_info->options,
715                                     egress_tun_info->options_len);
716 }
717
718 static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
719                                  const struct nlattr **a, bool is_mask,
720                                  bool log)
721 {
722         if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
723                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
724
725                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
726                 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
727         }
728
729         if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
730                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
731
732                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
733                 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
734         }
735
736         if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
737                 SW_FLOW_KEY_PUT(match, phy.priority,
738                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
739                 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
740         }
741
742         if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
743                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
744
745                 if (is_mask) {
746                         in_port = 0xffffffff; /* Always exact match in_port. */
747                 } else if (in_port >= DP_MAX_PORTS) {
748                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
749                                   in_port, DP_MAX_PORTS);
750                         return -EINVAL;
751                 }
752
753                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
754                 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
755         } else if (!is_mask) {
756                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
757         }
758
759         if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
760                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
761
762                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
763                 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
764         }
765         if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
766                 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
767                                          is_mask, log) < 0)
768                         return -EINVAL;
769                 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
770         }
771         return 0;
772 }
773
774 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
775                                 const struct nlattr **a, bool is_mask,
776                                 bool log)
777 {
778         int err;
779
780         err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
781         if (err)
782                 return err;
783
784         if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
785                 const struct ovs_key_ethernet *eth_key;
786
787                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
788                 SW_FLOW_KEY_MEMCPY(match, eth.src,
789                                 eth_key->eth_src, ETH_ALEN, is_mask);
790                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
791                                 eth_key->eth_dst, ETH_ALEN, is_mask);
792                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
793         }
794
795         if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
796                 __be16 tci;
797
798                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
799                 if (!(tci & htons(VLAN_TAG_PRESENT))) {
800                         if (is_mask)
801                                 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
802                         else
803                                 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
804
805                         return -EINVAL;
806                 }
807
808                 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
809                 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
810         }
811
812         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
813                 __be16 eth_type;
814
815                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
816                 if (is_mask) {
817                         /* Always exact match EtherType. */
818                         eth_type = htons(0xffff);
819                 } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
820                         OVS_NLERR(log, "EtherType %x is less than min %x",
821                                   ntohs(eth_type), ETH_P_802_3_MIN);
822                         return -EINVAL;
823                 }
824
825                 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
826                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
827         } else if (!is_mask) {
828                 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
829         }
830
831         if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
832                 const struct ovs_key_ipv4 *ipv4_key;
833
834                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
835                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
836                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
837                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
838                         return -EINVAL;
839                 }
840                 SW_FLOW_KEY_PUT(match, ip.proto,
841                                 ipv4_key->ipv4_proto, is_mask);
842                 SW_FLOW_KEY_PUT(match, ip.tos,
843                                 ipv4_key->ipv4_tos, is_mask);
844                 SW_FLOW_KEY_PUT(match, ip.ttl,
845                                 ipv4_key->ipv4_ttl, is_mask);
846                 SW_FLOW_KEY_PUT(match, ip.frag,
847                                 ipv4_key->ipv4_frag, is_mask);
848                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
849                                 ipv4_key->ipv4_src, is_mask);
850                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
851                                 ipv4_key->ipv4_dst, is_mask);
852                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
853         }
854
855         if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
856                 const struct ovs_key_ipv6 *ipv6_key;
857
858                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
859                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
860                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
861                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
862                         return -EINVAL;
863                 }
864
865                 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
866                         OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
867                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
868                         return -EINVAL;
869                 }
870
871                 SW_FLOW_KEY_PUT(match, ipv6.label,
872                                 ipv6_key->ipv6_label, is_mask);
873                 SW_FLOW_KEY_PUT(match, ip.proto,
874                                 ipv6_key->ipv6_proto, is_mask);
875                 SW_FLOW_KEY_PUT(match, ip.tos,
876                                 ipv6_key->ipv6_tclass, is_mask);
877                 SW_FLOW_KEY_PUT(match, ip.ttl,
878                                 ipv6_key->ipv6_hlimit, is_mask);
879                 SW_FLOW_KEY_PUT(match, ip.frag,
880                                 ipv6_key->ipv6_frag, is_mask);
881                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
882                                 ipv6_key->ipv6_src,
883                                 sizeof(match->key->ipv6.addr.src),
884                                 is_mask);
885                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
886                                 ipv6_key->ipv6_dst,
887                                 sizeof(match->key->ipv6.addr.dst),
888                                 is_mask);
889
890                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
891         }
892
893         if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
894                 const struct ovs_key_arp *arp_key;
895
896                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
897                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
898                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
899                                   arp_key->arp_op);
900                         return -EINVAL;
901                 }
902
903                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
904                                 arp_key->arp_sip, is_mask);
905                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
906                         arp_key->arp_tip, is_mask);
907                 SW_FLOW_KEY_PUT(match, ip.proto,
908                                 ntohs(arp_key->arp_op), is_mask);
909                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
910                                 arp_key->arp_sha, ETH_ALEN, is_mask);
911                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
912                                 arp_key->arp_tha, ETH_ALEN, is_mask);
913
914                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
915         }
916
917         if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
918                 const struct ovs_key_mpls *mpls_key;
919
920                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
921                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
922                                 mpls_key->mpls_lse, is_mask);
923
924                 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
925          }
926
927         if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
928                 const struct ovs_key_tcp *tcp_key;
929
930                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
931                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
932                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
933                 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
934         }
935
936         if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
937                 SW_FLOW_KEY_PUT(match, tp.flags,
938                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
939                                 is_mask);
940                 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
941         }
942
943         if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
944                 const struct ovs_key_udp *udp_key;
945
946                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
947                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
948                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
949                 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
950         }
951
952         if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
953                 const struct ovs_key_sctp *sctp_key;
954
955                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
956                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
957                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
958                 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
959         }
960
961         if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
962                 const struct ovs_key_icmp *icmp_key;
963
964                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
965                 SW_FLOW_KEY_PUT(match, tp.src,
966                                 htons(icmp_key->icmp_type), is_mask);
967                 SW_FLOW_KEY_PUT(match, tp.dst,
968                                 htons(icmp_key->icmp_code), is_mask);
969                 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
970         }
971
972         if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
973                 const struct ovs_key_icmpv6 *icmpv6_key;
974
975                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
976                 SW_FLOW_KEY_PUT(match, tp.src,
977                                 htons(icmpv6_key->icmpv6_type), is_mask);
978                 SW_FLOW_KEY_PUT(match, tp.dst,
979                                 htons(icmpv6_key->icmpv6_code), is_mask);
980                 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
981         }
982
983         if (attrs & (1 << OVS_KEY_ATTR_ND)) {
984                 const struct ovs_key_nd *nd_key;
985
986                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
987                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
988                         nd_key->nd_target,
989                         sizeof(match->key->ipv6.nd.target),
990                         is_mask);
991                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
992                         nd_key->nd_sll, ETH_ALEN, is_mask);
993                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
994                                 nd_key->nd_tll, ETH_ALEN, is_mask);
995                 attrs &= ~(1 << OVS_KEY_ATTR_ND);
996         }
997
998         if (attrs != 0) {
999                 OVS_NLERR(log, "Unknown key attributes %llx",
1000                           (unsigned long long)attrs);
1001                 return -EINVAL;
1002         }
1003
1004         return 0;
1005 }
1006
1007 static void nlattr_set(struct nlattr *attr, u8 val,
1008                        const struct ovs_len_tbl *tbl)
1009 {
1010         struct nlattr *nla;
1011         int rem;
1012
1013         /* The nlattr stream should already have been validated */
1014         nla_for_each_nested(nla, attr, rem) {
1015                 if (tbl && tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1016                         nlattr_set(nla, val, tbl[nla_type(nla)].next);
1017                 else
1018                         memset(nla_data(nla), val, nla_len(nla));
1019         }
1020 }
1021
1022 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1023 {
1024         nlattr_set(attr, val, ovs_key_lens);
1025 }
1026
1027 /**
1028  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1029  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1030  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1031  * does not include any don't care bit.
1032  * @match: receives the extracted flow match information.
1033  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1034  * sequence. The fields should of the packet that triggered the creation
1035  * of this flow.
1036  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1037  * attribute specifies the mask field of the wildcarded flow.
1038  * @log: Boolean to allow kernel error logging.  Normally true, but when
1039  * probing for feature compatibility this should be passed in as false to
1040  * suppress unnecessary error logging.
1041  */
1042 int ovs_nla_get_match(struct sw_flow_match *match,
1043                       const struct nlattr *nla_key,
1044                       const struct nlattr *nla_mask,
1045                       bool log)
1046 {
1047         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1048         const struct nlattr *encap;
1049         struct nlattr *newmask = NULL;
1050         u64 key_attrs = 0;
1051         u64 mask_attrs = 0;
1052         bool encap_valid = false;
1053         int err;
1054
1055         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1056         if (err)
1057                 return err;
1058
1059         if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1060             (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1061             (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1062                 __be16 tci;
1063
1064                 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1065                       (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1066                         OVS_NLERR(log, "Invalid Vlan frame.");
1067                         return -EINVAL;
1068                 }
1069
1070                 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1071                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1072                 encap = a[OVS_KEY_ATTR_ENCAP];
1073                 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1074                 encap_valid = true;
1075
1076                 if (tci & htons(VLAN_TAG_PRESENT)) {
1077                         err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1078                         if (err)
1079                                 return err;
1080                 } else if (!tci) {
1081                         /* Corner case for truncated 802.1Q header. */
1082                         if (nla_len(encap)) {
1083                                 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1084                                 return -EINVAL;
1085                         }
1086                 } else {
1087                         OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1088                         return  -EINVAL;
1089                 }
1090         }
1091
1092         err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
1093         if (err)
1094                 return err;
1095
1096         if (match->mask) {
1097                 if (!nla_mask) {
1098                         /* Create an exact match mask. We need to set to 0xff
1099                          * all the 'match->mask' fields that have been touched
1100                          * in 'match->key'. We cannot simply memset
1101                          * 'match->mask', because padding bytes and fields not
1102                          * specified in 'match->key' should be left to 0.
1103                          * Instead, we use a stream of netlink attributes,
1104                          * copied from 'key' and set to 0xff.
1105                          * ovs_key_from_nlattrs() will take care of filling
1106                          * 'match->mask' appropriately.
1107                          */
1108                         newmask = kmemdup(nla_key,
1109                                           nla_total_size(nla_len(nla_key)),
1110                                           GFP_KERNEL);
1111                         if (!newmask)
1112                                 return -ENOMEM;
1113
1114                         mask_set_nlattr(newmask, 0xff);
1115
1116                         /* The userspace does not send tunnel attributes that
1117                          * are 0, but we should not wildcard them nonetheless.
1118                          */
1119                         if (match->key->tun_key.ipv4_dst)
1120                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1121                                                          0xff, true);
1122
1123                         nla_mask = newmask;
1124                 }
1125
1126                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1127                 if (err)
1128                         goto free_newmask;
1129
1130                 /* Always match on tci. */
1131                 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1132
1133                 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1134                         __be16 eth_type = 0;
1135                         __be16 tci = 0;
1136
1137                         if (!encap_valid) {
1138                                 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1139                                 err = -EINVAL;
1140                                 goto free_newmask;
1141                         }
1142
1143                         mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1144                         if (a[OVS_KEY_ATTR_ETHERTYPE])
1145                                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1146
1147                         if (eth_type == htons(0xffff)) {
1148                                 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1149                                 encap = a[OVS_KEY_ATTR_ENCAP];
1150                                 err = parse_flow_mask_nlattrs(encap, a,
1151                                                               &mask_attrs, log);
1152                                 if (err)
1153                                         goto free_newmask;
1154                         } else {
1155                                 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1156                                           ntohs(eth_type));
1157                                 err = -EINVAL;
1158                                 goto free_newmask;
1159                         }
1160
1161                         if (a[OVS_KEY_ATTR_VLAN])
1162                                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1163
1164                         if (!(tci & htons(VLAN_TAG_PRESENT))) {
1165                                 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1166                                           ntohs(tci));
1167                                 err = -EINVAL;
1168                                 goto free_newmask;
1169                         }
1170                 }
1171
1172                 err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
1173                 if (err)
1174                         goto free_newmask;
1175         }
1176
1177         if (!match_validate(match, key_attrs, mask_attrs, log))
1178                 err = -EINVAL;
1179
1180 free_newmask:
1181         kfree(newmask);
1182         return err;
1183 }
1184
1185 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1186 {
1187         size_t len;
1188
1189         if (!attr)
1190                 return 0;
1191
1192         len = nla_len(attr);
1193         if (len < 1 || len > MAX_UFID_LENGTH) {
1194                 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1195                           nla_len(attr), MAX_UFID_LENGTH);
1196                 return 0;
1197         }
1198
1199         return len;
1200 }
1201
1202 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1203  * or false otherwise.
1204  */
1205 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1206                       bool log)
1207 {
1208         sfid->ufid_len = get_ufid_len(attr, log);
1209         if (sfid->ufid_len)
1210                 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1211
1212         return sfid->ufid_len;
1213 }
1214
1215 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1216                            const struct sw_flow_key *key, bool log)
1217 {
1218         struct sw_flow_key *new_key;
1219
1220         if (ovs_nla_get_ufid(sfid, ufid, log))
1221                 return 0;
1222
1223         /* If UFID was not provided, use unmasked key. */
1224         new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1225         if (!new_key)
1226                 return -ENOMEM;
1227         memcpy(new_key, key, sizeof(*key));
1228         sfid->unmasked_key = new_key;
1229
1230         return 0;
1231 }
1232
1233 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1234 {
1235         return attr ? nla_get_u32(attr) : 0;
1236 }
1237
1238 /**
1239  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1240  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1241  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1242  * sequence.
1243  * @log: Boolean to allow kernel error logging.  Normally true, but when
1244  * probing for feature compatibility this should be passed in as false to
1245  * suppress unnecessary error logging.
1246  *
1247  * This parses a series of Netlink attributes that form a flow key, which must
1248  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1249  * get the metadata, that is, the parts of the flow key that cannot be
1250  * extracted from the packet itself.
1251  */
1252
1253 int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1254                               struct sw_flow_key *key,
1255                               bool log)
1256 {
1257         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1258         struct sw_flow_match match;
1259         u64 attrs = 0;
1260         int err;
1261
1262         err = parse_flow_nlattrs(attr, a, &attrs, log);
1263         if (err)
1264                 return -EINVAL;
1265
1266         memset(&match, 0, sizeof(match));
1267         match.key = key;
1268
1269         key->phy.in_port = DP_MAX_PORTS;
1270
1271         return metadata_from_nlattrs(&match, &attrs, a, false, log);
1272 }
1273
1274 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1275                              const struct sw_flow_key *output, bool is_mask,
1276                              struct sk_buff *skb)
1277 {
1278         struct ovs_key_ethernet *eth_key;
1279         struct nlattr *nla, *encap;
1280
1281         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1282                 goto nla_put_failure;
1283
1284         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1285                 goto nla_put_failure;
1286
1287         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1288                 goto nla_put_failure;
1289
1290         if ((swkey->tun_key.ipv4_dst || is_mask)) {
1291                 const void *opts = NULL;
1292
1293                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1294                         opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1295
1296                 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1297                                        swkey->tun_opts_len))
1298                         goto nla_put_failure;
1299         }
1300
1301         if (swkey->phy.in_port == DP_MAX_PORTS) {
1302                 if (is_mask && (output->phy.in_port == 0xffff))
1303                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1304                                 goto nla_put_failure;
1305         } else {
1306                 u16 upper_u16;
1307                 upper_u16 = !is_mask ? 0 : 0xffff;
1308
1309                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1310                                 (upper_u16 << 16) | output->phy.in_port))
1311                         goto nla_put_failure;
1312         }
1313
1314         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1315                 goto nla_put_failure;
1316
1317         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1318         if (!nla)
1319                 goto nla_put_failure;
1320
1321         eth_key = nla_data(nla);
1322         ether_addr_copy(eth_key->eth_src, output->eth.src);
1323         ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1324
1325         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1326                 __be16 eth_type;
1327                 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1328                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1329                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1330                         goto nla_put_failure;
1331                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1332                 if (!swkey->eth.tci)
1333                         goto unencap;
1334         } else
1335                 encap = NULL;
1336
1337         if (swkey->eth.type == htons(ETH_P_802_2)) {
1338                 /*
1339                  * Ethertype 802.2 is represented in the netlink with omitted
1340                  * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1341                  * 0xffff in the mask attribute.  Ethertype can also
1342                  * be wildcarded.
1343                  */
1344                 if (is_mask && output->eth.type)
1345                         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1346                                                 output->eth.type))
1347                                 goto nla_put_failure;
1348                 goto unencap;
1349         }
1350
1351         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1352                 goto nla_put_failure;
1353
1354         if (swkey->eth.type == htons(ETH_P_IP)) {
1355                 struct ovs_key_ipv4 *ipv4_key;
1356
1357                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1358                 if (!nla)
1359                         goto nla_put_failure;
1360                 ipv4_key = nla_data(nla);
1361                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1362                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1363                 ipv4_key->ipv4_proto = output->ip.proto;
1364                 ipv4_key->ipv4_tos = output->ip.tos;
1365                 ipv4_key->ipv4_ttl = output->ip.ttl;
1366                 ipv4_key->ipv4_frag = output->ip.frag;
1367         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1368                 struct ovs_key_ipv6 *ipv6_key;
1369
1370                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1371                 if (!nla)
1372                         goto nla_put_failure;
1373                 ipv6_key = nla_data(nla);
1374                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1375                                 sizeof(ipv6_key->ipv6_src));
1376                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1377                                 sizeof(ipv6_key->ipv6_dst));
1378                 ipv6_key->ipv6_label = output->ipv6.label;
1379                 ipv6_key->ipv6_proto = output->ip.proto;
1380                 ipv6_key->ipv6_tclass = output->ip.tos;
1381                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1382                 ipv6_key->ipv6_frag = output->ip.frag;
1383         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1384                    swkey->eth.type == htons(ETH_P_RARP)) {
1385                 struct ovs_key_arp *arp_key;
1386
1387                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1388                 if (!nla)
1389                         goto nla_put_failure;
1390                 arp_key = nla_data(nla);
1391                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1392                 arp_key->arp_sip = output->ipv4.addr.src;
1393                 arp_key->arp_tip = output->ipv4.addr.dst;
1394                 arp_key->arp_op = htons(output->ip.proto);
1395                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1396                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1397         } else if (eth_p_mpls(swkey->eth.type)) {
1398                 struct ovs_key_mpls *mpls_key;
1399
1400                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1401                 if (!nla)
1402                         goto nla_put_failure;
1403                 mpls_key = nla_data(nla);
1404                 mpls_key->mpls_lse = output->mpls.top_lse;
1405         }
1406
1407         if ((swkey->eth.type == htons(ETH_P_IP) ||
1408              swkey->eth.type == htons(ETH_P_IPV6)) &&
1409              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1410
1411                 if (swkey->ip.proto == IPPROTO_TCP) {
1412                         struct ovs_key_tcp *tcp_key;
1413
1414                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1415                         if (!nla)
1416                                 goto nla_put_failure;
1417                         tcp_key = nla_data(nla);
1418                         tcp_key->tcp_src = output->tp.src;
1419                         tcp_key->tcp_dst = output->tp.dst;
1420                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1421                                          output->tp.flags))
1422                                 goto nla_put_failure;
1423                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1424                         struct ovs_key_udp *udp_key;
1425
1426                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1427                         if (!nla)
1428                                 goto nla_put_failure;
1429                         udp_key = nla_data(nla);
1430                         udp_key->udp_src = output->tp.src;
1431                         udp_key->udp_dst = output->tp.dst;
1432                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1433                         struct ovs_key_sctp *sctp_key;
1434
1435                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1436                         if (!nla)
1437                                 goto nla_put_failure;
1438                         sctp_key = nla_data(nla);
1439                         sctp_key->sctp_src = output->tp.src;
1440                         sctp_key->sctp_dst = output->tp.dst;
1441                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1442                            swkey->ip.proto == IPPROTO_ICMP) {
1443                         struct ovs_key_icmp *icmp_key;
1444
1445                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1446                         if (!nla)
1447                                 goto nla_put_failure;
1448                         icmp_key = nla_data(nla);
1449                         icmp_key->icmp_type = ntohs(output->tp.src);
1450                         icmp_key->icmp_code = ntohs(output->tp.dst);
1451                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1452                            swkey->ip.proto == IPPROTO_ICMPV6) {
1453                         struct ovs_key_icmpv6 *icmpv6_key;
1454
1455                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1456                                                 sizeof(*icmpv6_key));
1457                         if (!nla)
1458                                 goto nla_put_failure;
1459                         icmpv6_key = nla_data(nla);
1460                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1461                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1462
1463                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1464                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1465                                 struct ovs_key_nd *nd_key;
1466
1467                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1468                                 if (!nla)
1469                                         goto nla_put_failure;
1470                                 nd_key = nla_data(nla);
1471                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1472                                                         sizeof(nd_key->nd_target));
1473                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1474                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1475                         }
1476                 }
1477         }
1478
1479 unencap:
1480         if (encap)
1481                 nla_nest_end(skb, encap);
1482
1483         return 0;
1484
1485 nla_put_failure:
1486         return -EMSGSIZE;
1487 }
1488
1489 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1490                     const struct sw_flow_key *output, int attr, bool is_mask,
1491                     struct sk_buff *skb)
1492 {
1493         int err;
1494         struct nlattr *nla;
1495
1496         nla = nla_nest_start(skb, attr);
1497         if (!nla)
1498                 return -EMSGSIZE;
1499         err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1500         if (err)
1501                 return err;
1502         nla_nest_end(skb, nla);
1503
1504         return 0;
1505 }
1506
1507 /* Called with ovs_mutex or RCU read lock. */
1508 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1509 {
1510         if (ovs_identifier_is_ufid(&flow->id))
1511                 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1512                                flow->id.ufid);
1513
1514         return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1515                                OVS_FLOW_ATTR_KEY, false, skb);
1516 }
1517
1518 /* Called with ovs_mutex or RCU read lock. */
1519 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1520 {
1521         return ovs_nla_put_key(&flow->key, &flow->key,
1522                                 OVS_FLOW_ATTR_KEY, false, skb);
1523 }
1524
1525 /* Called with ovs_mutex or RCU read lock. */
1526 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1527 {
1528         return ovs_nla_put_key(&flow->key, &flow->mask->key,
1529                                 OVS_FLOW_ATTR_MASK, true, skb);
1530 }
1531
1532 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
1533
1534 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1535 {
1536         struct sw_flow_actions *sfa;
1537
1538         if (size > MAX_ACTIONS_BUFSIZE) {
1539                 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1540                 return ERR_PTR(-EINVAL);
1541         }
1542
1543         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1544         if (!sfa)
1545                 return ERR_PTR(-ENOMEM);
1546
1547         sfa->actions_len = 0;
1548         return sfa;
1549 }
1550
1551 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1552  * The caller must hold rcu_read_lock for this to be sensible. */
1553 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1554 {
1555         kfree_rcu(sf_acts, rcu);
1556 }
1557
1558 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1559                                        int attr_len, bool log)
1560 {
1561
1562         struct sw_flow_actions *acts;
1563         int new_acts_size;
1564         int req_size = NLA_ALIGN(attr_len);
1565         int next_offset = offsetof(struct sw_flow_actions, actions) +
1566                                         (*sfa)->actions_len;
1567
1568         if (req_size <= (ksize(*sfa) - next_offset))
1569                 goto out;
1570
1571         new_acts_size = ksize(*sfa) * 2;
1572
1573         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1574                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1575                         return ERR_PTR(-EMSGSIZE);
1576                 new_acts_size = MAX_ACTIONS_BUFSIZE;
1577         }
1578
1579         acts = nla_alloc_flow_actions(new_acts_size, log);
1580         if (IS_ERR(acts))
1581                 return (void *)acts;
1582
1583         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1584         acts->actions_len = (*sfa)->actions_len;
1585         kfree(*sfa);
1586         *sfa = acts;
1587
1588 out:
1589         (*sfa)->actions_len += req_size;
1590         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1591 }
1592
1593 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1594                                    int attrtype, void *data, int len, bool log)
1595 {
1596         struct nlattr *a;
1597
1598         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1599         if (IS_ERR(a))
1600                 return a;
1601
1602         a->nla_type = attrtype;
1603         a->nla_len = nla_attr_size(len);
1604
1605         if (data)
1606                 memcpy(nla_data(a), data, len);
1607         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1608
1609         return a;
1610 }
1611
1612 static int add_action(struct sw_flow_actions **sfa, int attrtype,
1613                       void *data, int len, bool log)
1614 {
1615         struct nlattr *a;
1616
1617         a = __add_action(sfa, attrtype, data, len, log);
1618
1619         return PTR_ERR_OR_ZERO(a);
1620 }
1621
1622 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1623                                           int attrtype, bool log)
1624 {
1625         int used = (*sfa)->actions_len;
1626         int err;
1627
1628         err = add_action(sfa, attrtype, NULL, 0, log);
1629         if (err)
1630                 return err;
1631
1632         return used;
1633 }
1634
1635 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1636                                          int st_offset)
1637 {
1638         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1639                                                                st_offset);
1640
1641         a->nla_len = sfa->actions_len - st_offset;
1642 }
1643
1644 static int __ovs_nla_copy_actions(const struct nlattr *attr,
1645                                   const struct sw_flow_key *key,
1646                                   int depth, struct sw_flow_actions **sfa,
1647                                   __be16 eth_type, __be16 vlan_tci, bool log);
1648
1649 static int validate_and_copy_sample(const struct nlattr *attr,
1650                                     const struct sw_flow_key *key, int depth,
1651                                     struct sw_flow_actions **sfa,
1652                                     __be16 eth_type, __be16 vlan_tci, bool log)
1653 {
1654         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1655         const struct nlattr *probability, *actions;
1656         const struct nlattr *a;
1657         int rem, start, err, st_acts;
1658
1659         memset(attrs, 0, sizeof(attrs));
1660         nla_for_each_nested(a, attr, rem) {
1661                 int type = nla_type(a);
1662                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1663                         return -EINVAL;
1664                 attrs[type] = a;
1665         }
1666         if (rem)
1667                 return -EINVAL;
1668
1669         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1670         if (!probability || nla_len(probability) != sizeof(u32))
1671                 return -EINVAL;
1672
1673         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1674         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1675                 return -EINVAL;
1676
1677         /* validation done, copy sample action. */
1678         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1679         if (start < 0)
1680                 return start;
1681         err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1682                          nla_data(probability), sizeof(u32), log);
1683         if (err)
1684                 return err;
1685         st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1686         if (st_acts < 0)
1687                 return st_acts;
1688
1689         err = __ovs_nla_copy_actions(actions, key, depth + 1, sfa,
1690                                      eth_type, vlan_tci, log);
1691         if (err)
1692                 return err;
1693
1694         add_nested_action_end(*sfa, st_acts);
1695         add_nested_action_end(*sfa, start);
1696
1697         return 0;
1698 }
1699
1700 void ovs_match_init(struct sw_flow_match *match,
1701                     struct sw_flow_key *key,
1702                     struct sw_flow_mask *mask)
1703 {
1704         memset(match, 0, sizeof(*match));
1705         match->key = key;
1706         match->mask = mask;
1707
1708         memset(key, 0, sizeof(*key));
1709
1710         if (mask) {
1711                 memset(&mask->key, 0, sizeof(mask->key));
1712                 mask->range.start = mask->range.end = 0;
1713         }
1714 }
1715
1716 static int validate_geneve_opts(struct sw_flow_key *key)
1717 {
1718         struct geneve_opt *option;
1719         int opts_len = key->tun_opts_len;
1720         bool crit_opt = false;
1721
1722         option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1723         while (opts_len > 0) {
1724                 int len;
1725
1726                 if (opts_len < sizeof(*option))
1727                         return -EINVAL;
1728
1729                 len = sizeof(*option) + option->length * 4;
1730                 if (len > opts_len)
1731                         return -EINVAL;
1732
1733                 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1734
1735                 option = (struct geneve_opt *)((u8 *)option + len);
1736                 opts_len -= len;
1737         };
1738
1739         key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1740
1741         return 0;
1742 }
1743
1744 static int validate_and_copy_set_tun(const struct nlattr *attr,
1745                                      struct sw_flow_actions **sfa, bool log)
1746 {
1747         struct sw_flow_match match;
1748         struct sw_flow_key key;
1749         struct ovs_tunnel_info *tun_info;
1750         struct nlattr *a;
1751         int err = 0, start, opts_type;
1752
1753         ovs_match_init(&match, &key, NULL);
1754         opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1755         if (opts_type < 0)
1756                 return opts_type;
1757
1758         if (key.tun_opts_len) {
1759                 switch (opts_type) {
1760                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1761                         err = validate_geneve_opts(&key);
1762                         if (err < 0)
1763                                 return err;
1764                         break;
1765                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1766                         break;
1767                 }
1768         };
1769
1770         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1771         if (start < 0)
1772                 return start;
1773
1774         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1775                          sizeof(*tun_info) + key.tun_opts_len, log);
1776         if (IS_ERR(a))
1777                 return PTR_ERR(a);
1778
1779         tun_info = nla_data(a);
1780         tun_info->tunnel = key.tun_key;
1781         tun_info->options_len = key.tun_opts_len;
1782
1783         if (tun_info->options_len) {
1784                 /* We need to store the options in the action itself since
1785                  * everything else will go away after flow setup. We can append
1786                  * it to tun_info and then point there.
1787                  */
1788                 memcpy((tun_info + 1),
1789                        TUN_METADATA_OPTS(&key, key.tun_opts_len), key.tun_opts_len);
1790                 tun_info->options = (tun_info + 1);
1791         } else {
1792                 tun_info->options = NULL;
1793         }
1794
1795         add_nested_action_end(*sfa, start);
1796
1797         return err;
1798 }
1799
1800 /* Return false if there are any non-masked bits set.
1801  * Mask follows data immediately, before any netlink padding.
1802  */
1803 static bool validate_masked(u8 *data, int len)
1804 {
1805         u8 *mask = data + len;
1806
1807         while (len--)
1808                 if (*data++ & ~*mask++)
1809                         return false;
1810
1811         return true;
1812 }
1813
1814 static int validate_set(const struct nlattr *a,
1815                         const struct sw_flow_key *flow_key,
1816                         struct sw_flow_actions **sfa,
1817                         bool *skip_copy, __be16 eth_type, bool masked, bool log)
1818 {
1819         const struct nlattr *ovs_key = nla_data(a);
1820         int key_type = nla_type(ovs_key);
1821         size_t key_len;
1822
1823         /* There can be only one key in a action */
1824         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1825                 return -EINVAL;
1826
1827         key_len = nla_len(ovs_key);
1828         if (masked)
1829                 key_len /= 2;
1830
1831         if (key_type > OVS_KEY_ATTR_MAX ||
1832             (ovs_key_lens[key_type].len != key_len &&
1833              ovs_key_lens[key_type].len != OVS_ATTR_NESTED))
1834                 return -EINVAL;
1835
1836         if (masked && !validate_masked(nla_data(ovs_key), key_len))
1837                 return -EINVAL;
1838
1839         switch (key_type) {
1840         const struct ovs_key_ipv4 *ipv4_key;
1841         const struct ovs_key_ipv6 *ipv6_key;
1842         int err;
1843
1844         case OVS_KEY_ATTR_PRIORITY:
1845         case OVS_KEY_ATTR_SKB_MARK:
1846         case OVS_KEY_ATTR_ETHERNET:
1847                 break;
1848
1849         case OVS_KEY_ATTR_TUNNEL:
1850                 if (eth_p_mpls(eth_type))
1851                         return -EINVAL;
1852
1853                 if (masked)
1854                         return -EINVAL; /* Masked tunnel set not supported. */
1855
1856                 *skip_copy = true;
1857                 err = validate_and_copy_set_tun(a, sfa, log);
1858                 if (err)
1859                         return err;
1860                 break;
1861
1862         case OVS_KEY_ATTR_IPV4:
1863                 if (eth_type != htons(ETH_P_IP))
1864                         return -EINVAL;
1865
1866                 ipv4_key = nla_data(ovs_key);
1867
1868                 if (masked) {
1869                         const struct ovs_key_ipv4 *mask = ipv4_key + 1;
1870
1871                         /* Non-writeable fields. */
1872                         if (mask->ipv4_proto || mask->ipv4_frag)
1873                                 return -EINVAL;
1874                 } else {
1875                         if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1876                                 return -EINVAL;
1877
1878                         if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1879                                 return -EINVAL;
1880                 }
1881                 break;
1882
1883         case OVS_KEY_ATTR_IPV6:
1884                 if (eth_type != htons(ETH_P_IPV6))
1885                         return -EINVAL;
1886
1887                 ipv6_key = nla_data(ovs_key);
1888
1889                 if (masked) {
1890                         const struct ovs_key_ipv6 *mask = ipv6_key + 1;
1891
1892                         /* Non-writeable fields. */
1893                         if (mask->ipv6_proto || mask->ipv6_frag)
1894                                 return -EINVAL;
1895
1896                         /* Invalid bits in the flow label mask? */
1897                         if (ntohl(mask->ipv6_label) & 0xFFF00000)
1898                                 return -EINVAL;
1899                 } else {
1900                         if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1901                                 return -EINVAL;
1902
1903                         if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1904                                 return -EINVAL;
1905                 }
1906                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1907                         return -EINVAL;
1908
1909                 break;
1910
1911         case OVS_KEY_ATTR_TCP:
1912                 if ((eth_type != htons(ETH_P_IP) &&
1913                      eth_type != htons(ETH_P_IPV6)) ||
1914                     flow_key->ip.proto != IPPROTO_TCP)
1915                         return -EINVAL;
1916
1917                 break;
1918
1919         case OVS_KEY_ATTR_UDP:
1920                 if ((eth_type != htons(ETH_P_IP) &&
1921                      eth_type != htons(ETH_P_IPV6)) ||
1922                     flow_key->ip.proto != IPPROTO_UDP)
1923                         return -EINVAL;
1924
1925                 break;
1926
1927         case OVS_KEY_ATTR_MPLS:
1928                 if (!eth_p_mpls(eth_type))
1929                         return -EINVAL;
1930                 break;
1931
1932         case OVS_KEY_ATTR_SCTP:
1933                 if ((eth_type != htons(ETH_P_IP) &&
1934                      eth_type != htons(ETH_P_IPV6)) ||
1935                     flow_key->ip.proto != IPPROTO_SCTP)
1936                         return -EINVAL;
1937
1938                 break;
1939
1940         default:
1941                 return -EINVAL;
1942         }
1943
1944         /* Convert non-masked non-tunnel set actions to masked set actions. */
1945         if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
1946                 int start, len = key_len * 2;
1947                 struct nlattr *at;
1948
1949                 *skip_copy = true;
1950
1951                 start = add_nested_action_start(sfa,
1952                                                 OVS_ACTION_ATTR_SET_TO_MASKED,
1953                                                 log);
1954                 if (start < 0)
1955                         return start;
1956
1957                 at = __add_action(sfa, key_type, NULL, len, log);
1958                 if (IS_ERR(at))
1959                         return PTR_ERR(at);
1960
1961                 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
1962                 memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
1963                 /* Clear non-writeable bits from otherwise writeable fields. */
1964                 if (key_type == OVS_KEY_ATTR_IPV6) {
1965                         struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
1966
1967                         mask->ipv6_label &= htonl(0x000FFFFF);
1968                 }
1969                 add_nested_action_end(*sfa, start);
1970         }
1971
1972         return 0;
1973 }
1974
1975 static int validate_userspace(const struct nlattr *attr)
1976 {
1977         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
1978                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
1979                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
1980                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
1981         };
1982         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
1983         int error;
1984
1985         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
1986                                  attr, userspace_policy);
1987         if (error)
1988                 return error;
1989
1990         if (!a[OVS_USERSPACE_ATTR_PID] ||
1991             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
1992                 return -EINVAL;
1993
1994         return 0;
1995 }
1996
1997 static int copy_action(const struct nlattr *from,
1998                        struct sw_flow_actions **sfa, bool log)
1999 {
2000         int totlen = NLA_ALIGN(from->nla_len);
2001         struct nlattr *to;
2002
2003         to = reserve_sfa_size(sfa, from->nla_len, log);
2004         if (IS_ERR(to))
2005                 return PTR_ERR(to);
2006
2007         memcpy(to, from, totlen);
2008         return 0;
2009 }
2010
2011 static int __ovs_nla_copy_actions(const struct nlattr *attr,
2012                                   const struct sw_flow_key *key,
2013                                   int depth, struct sw_flow_actions **sfa,
2014                                   __be16 eth_type, __be16 vlan_tci, bool log)
2015 {
2016         const struct nlattr *a;
2017         int rem, err;
2018
2019         if (depth >= SAMPLE_ACTION_DEPTH)
2020                 return -EOVERFLOW;
2021
2022         nla_for_each_nested(a, attr, rem) {
2023                 /* Expected argument lengths, (u32)-1 for variable length. */
2024                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2025                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2026                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2027                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2028                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2029                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2030                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2031                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
2032                         [OVS_ACTION_ATTR_SET] = (u32)-1,
2033                         [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2034                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2035                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
2036                 };
2037                 const struct ovs_action_push_vlan *vlan;
2038                 int type = nla_type(a);
2039                 bool skip_copy;
2040
2041                 if (type > OVS_ACTION_ATTR_MAX ||
2042                     (action_lens[type] != nla_len(a) &&
2043                      action_lens[type] != (u32)-1))
2044                         return -EINVAL;
2045
2046                 skip_copy = false;
2047                 switch (type) {
2048                 case OVS_ACTION_ATTR_UNSPEC:
2049                         return -EINVAL;
2050
2051                 case OVS_ACTION_ATTR_USERSPACE:
2052                         err = validate_userspace(a);
2053                         if (err)
2054                                 return err;
2055                         break;
2056
2057                 case OVS_ACTION_ATTR_OUTPUT:
2058                         if (nla_get_u32(a) >= DP_MAX_PORTS)
2059                                 return -EINVAL;
2060                         break;
2061
2062                 case OVS_ACTION_ATTR_HASH: {
2063                         const struct ovs_action_hash *act_hash = nla_data(a);
2064
2065                         switch (act_hash->hash_alg) {
2066                         case OVS_HASH_ALG_L4:
2067                                 break;
2068                         default:
2069                                 return  -EINVAL;
2070                         }
2071
2072                         break;
2073                 }
2074
2075                 case OVS_ACTION_ATTR_POP_VLAN:
2076                         vlan_tci = htons(0);
2077                         break;
2078
2079                 case OVS_ACTION_ATTR_PUSH_VLAN:
2080                         vlan = nla_data(a);
2081                         if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2082                                 return -EINVAL;
2083                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2084                                 return -EINVAL;
2085                         vlan_tci = vlan->vlan_tci;
2086                         break;
2087
2088                 case OVS_ACTION_ATTR_RECIRC:
2089                         break;
2090
2091                 case OVS_ACTION_ATTR_PUSH_MPLS: {
2092                         const struct ovs_action_push_mpls *mpls = nla_data(a);
2093
2094                         if (!eth_p_mpls(mpls->mpls_ethertype))
2095                                 return -EINVAL;
2096                         /* Prohibit push MPLS other than to a white list
2097                          * for packets that have a known tag order.
2098                          */
2099                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2100                             (eth_type != htons(ETH_P_IP) &&
2101                              eth_type != htons(ETH_P_IPV6) &&
2102                              eth_type != htons(ETH_P_ARP) &&
2103                              eth_type != htons(ETH_P_RARP) &&
2104                              !eth_p_mpls(eth_type)))
2105                                 return -EINVAL;
2106                         eth_type = mpls->mpls_ethertype;
2107                         break;
2108                 }
2109
2110                 case OVS_ACTION_ATTR_POP_MPLS:
2111                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2112                             !eth_p_mpls(eth_type))
2113                                 return -EINVAL;
2114
2115                         /* Disallow subsequent L2.5+ set and mpls_pop actions
2116                          * as there is no check here to ensure that the new
2117                          * eth_type is valid and thus set actions could
2118                          * write off the end of the packet or otherwise
2119                          * corrupt it.
2120                          *
2121                          * Support for these actions is planned using packet
2122                          * recirculation.
2123                          */
2124                         eth_type = htons(0);
2125                         break;
2126
2127                 case OVS_ACTION_ATTR_SET:
2128                         err = validate_set(a, key, sfa,
2129                                            &skip_copy, eth_type, false, log);
2130                         if (err)
2131                                 return err;
2132                         break;
2133
2134                 case OVS_ACTION_ATTR_SET_MASKED:
2135                         err = validate_set(a, key, sfa,
2136                                            &skip_copy, eth_type, true, log);
2137                         if (err)
2138                                 return err;
2139                         break;
2140
2141                 case OVS_ACTION_ATTR_SAMPLE:
2142                         err = validate_and_copy_sample(a, key, depth, sfa,
2143                                                        eth_type, vlan_tci, log);
2144                         if (err)
2145                                 return err;
2146                         skip_copy = true;
2147                         break;
2148
2149                 default:
2150                         OVS_NLERR(log, "Unknown Action type %d", type);
2151                         return -EINVAL;
2152                 }
2153                 if (!skip_copy) {
2154                         err = copy_action(a, sfa, log);
2155                         if (err)
2156                                 return err;
2157                 }
2158         }
2159
2160         if (rem > 0)
2161                 return -EINVAL;
2162
2163         return 0;
2164 }
2165
2166 /* 'key' must be the masked key. */
2167 int ovs_nla_copy_actions(const struct nlattr *attr,
2168                          const struct sw_flow_key *key,
2169                          struct sw_flow_actions **sfa, bool log)
2170 {
2171         int err;
2172
2173         *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2174         if (IS_ERR(*sfa))
2175                 return PTR_ERR(*sfa);
2176
2177         err = __ovs_nla_copy_actions(attr, key, 0, sfa, key->eth.type,
2178                                      key->eth.tci, log);
2179         if (err)
2180                 kfree(*sfa);
2181
2182         return err;
2183 }
2184
2185 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2186 {
2187         const struct nlattr *a;
2188         struct nlattr *start;
2189         int err = 0, rem;
2190
2191         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2192         if (!start)
2193                 return -EMSGSIZE;
2194
2195         nla_for_each_nested(a, attr, rem) {
2196                 int type = nla_type(a);
2197                 struct nlattr *st_sample;
2198
2199                 switch (type) {
2200                 case OVS_SAMPLE_ATTR_PROBABILITY:
2201                         if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2202                                     sizeof(u32), nla_data(a)))
2203                                 return -EMSGSIZE;
2204                         break;
2205                 case OVS_SAMPLE_ATTR_ACTIONS:
2206                         st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2207                         if (!st_sample)
2208                                 return -EMSGSIZE;
2209                         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2210                         if (err)
2211                                 return err;
2212                         nla_nest_end(skb, st_sample);
2213                         break;
2214                 }
2215         }
2216
2217         nla_nest_end(skb, start);
2218         return err;
2219 }
2220
2221 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2222 {
2223         const struct nlattr *ovs_key = nla_data(a);
2224         int key_type = nla_type(ovs_key);
2225         struct nlattr *start;
2226         int err;
2227
2228         switch (key_type) {
2229         case OVS_KEY_ATTR_TUNNEL_INFO: {
2230                 struct ovs_tunnel_info *tun_info = nla_data(ovs_key);
2231
2232                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2233                 if (!start)
2234                         return -EMSGSIZE;
2235
2236                 err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
2237                                          tun_info->options_len ?
2238                                                 tun_info->options : NULL,
2239                                          tun_info->options_len);
2240                 if (err)
2241                         return err;
2242                 nla_nest_end(skb, start);
2243                 break;
2244         }
2245         default:
2246                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2247                         return -EMSGSIZE;
2248                 break;
2249         }
2250
2251         return 0;
2252 }
2253
2254 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2255                                                 struct sk_buff *skb)
2256 {
2257         const struct nlattr *ovs_key = nla_data(a);
2258         struct nlattr *nla;
2259         size_t key_len = nla_len(ovs_key) / 2;
2260
2261         /* Revert the conversion we did from a non-masked set action to
2262          * masked set action.
2263          */
2264         nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2265         if (!nla)
2266                 return -EMSGSIZE;
2267
2268         if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2269                 return -EMSGSIZE;
2270
2271         nla_nest_end(skb, nla);
2272         return 0;
2273 }
2274
2275 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2276 {
2277         const struct nlattr *a;
2278         int rem, err;
2279
2280         nla_for_each_attr(a, attr, len, rem) {
2281                 int type = nla_type(a);
2282
2283                 switch (type) {
2284                 case OVS_ACTION_ATTR_SET:
2285                         err = set_action_to_attr(a, skb);
2286                         if (err)
2287                                 return err;
2288                         break;
2289
2290                 case OVS_ACTION_ATTR_SET_TO_MASKED:
2291                         err = masked_set_action_to_set_action_attr(a, skb);
2292                         if (err)
2293                                 return err;
2294                         break;
2295
2296                 case OVS_ACTION_ATTR_SAMPLE:
2297                         err = sample_action_to_attr(a, skb);
2298                         if (err)
2299                                 return err;
2300                         break;
2301                 default:
2302                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
2303                                 return -EMSGSIZE;
2304                         break;
2305                 }
2306         }
2307
2308         return 0;
2309 }