Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/if_arp.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/mpls.h>
36 #include <linux/sctp.h>
37 #include <linux/smp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ip_tunnels.h>
45 #include <net/ipv6.h>
46 #include <net/mpls.h>
47 #include <net/ndisc.h>
48
49 #include "datapath.h"
50 #include "flow.h"
51 #include "flow_netlink.h"
52
53 u64 ovs_flow_used_time(unsigned long flow_jiffies)
54 {
55         struct timespec cur_ts;
56         u64 cur_ms, idle_ms;
57
58         ktime_get_ts(&cur_ts);
59         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
60         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
61                  cur_ts.tv_nsec / NSEC_PER_MSEC;
62
63         return cur_ms - idle_ms;
64 }
65
66 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
67
68 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
69                            const struct sk_buff *skb)
70 {
71         struct flow_stats *stats;
72         int node = numa_node_id();
73         int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
74
75         stats = rcu_dereference(flow->stats[node]);
76
77         /* Check if already have node-specific stats. */
78         if (likely(stats)) {
79                 spin_lock(&stats->lock);
80                 /* Mark if we write on the pre-allocated stats. */
81                 if (node == 0 && unlikely(flow->stats_last_writer != node))
82                         flow->stats_last_writer = node;
83         } else {
84                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
85                 spin_lock(&stats->lock);
86
87                 /* If the current NUMA-node is the only writer on the
88                  * pre-allocated stats keep using them.
89                  */
90                 if (unlikely(flow->stats_last_writer != node)) {
91                         /* A previous locker may have already allocated the
92                          * stats, so we need to check again.  If node-specific
93                          * stats were already allocated, we update the pre-
94                          * allocated stats as we have already locked them.
95                          */
96                         if (likely(flow->stats_last_writer != NUMA_NO_NODE)
97                             && likely(!rcu_access_pointer(flow->stats[node]))) {
98                                 /* Try to allocate node-specific stats. */
99                                 struct flow_stats *new_stats;
100
101                                 new_stats =
102                                         kmem_cache_alloc_node(flow_stats_cache,
103                                                               GFP_NOWAIT |
104                                                               __GFP_THISNODE |
105                                                               __GFP_NOWARN |
106                                                               __GFP_NOMEMALLOC,
107                                                               node);
108                                 if (likely(new_stats)) {
109                                         new_stats->used = jiffies;
110                                         new_stats->packet_count = 1;
111                                         new_stats->byte_count = len;
112                                         new_stats->tcp_flags = tcp_flags;
113                                         spin_lock_init(&new_stats->lock);
114
115                                         rcu_assign_pointer(flow->stats[node],
116                                                            new_stats);
117                                         goto unlock;
118                                 }
119                         }
120                         flow->stats_last_writer = node;
121                 }
122         }
123
124         stats->used = jiffies;
125         stats->packet_count++;
126         stats->byte_count += len;
127         stats->tcp_flags |= tcp_flags;
128 unlock:
129         spin_unlock(&stats->lock);
130 }
131
132 /* Must be called with rcu_read_lock or ovs_mutex. */
133 void ovs_flow_stats_get(const struct sw_flow *flow,
134                         struct ovs_flow_stats *ovs_stats,
135                         unsigned long *used, __be16 *tcp_flags)
136 {
137         int node;
138
139         *used = 0;
140         *tcp_flags = 0;
141         memset(ovs_stats, 0, sizeof(*ovs_stats));
142
143         for_each_node(node) {
144                 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
145
146                 if (stats) {
147                         /* Local CPU may write on non-local stats, so we must
148                          * block bottom-halves here.
149                          */
150                         spin_lock_bh(&stats->lock);
151                         if (!*used || time_after(stats->used, *used))
152                                 *used = stats->used;
153                         *tcp_flags |= stats->tcp_flags;
154                         ovs_stats->n_packets += stats->packet_count;
155                         ovs_stats->n_bytes += stats->byte_count;
156                         spin_unlock_bh(&stats->lock);
157                 }
158         }
159 }
160
161 /* Called with ovs_mutex. */
162 void ovs_flow_stats_clear(struct sw_flow *flow)
163 {
164         int node;
165
166         for_each_node(node) {
167                 struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
168
169                 if (stats) {
170                         spin_lock_bh(&stats->lock);
171                         stats->used = 0;
172                         stats->packet_count = 0;
173                         stats->byte_count = 0;
174                         stats->tcp_flags = 0;
175                         spin_unlock_bh(&stats->lock);
176                 }
177         }
178 }
179
180 static int check_header(struct sk_buff *skb, int len)
181 {
182         if (unlikely(skb->len < len))
183                 return -EINVAL;
184         if (unlikely(!pskb_may_pull(skb, len)))
185                 return -ENOMEM;
186         return 0;
187 }
188
189 static bool arphdr_ok(struct sk_buff *skb)
190 {
191         return pskb_may_pull(skb, skb_network_offset(skb) +
192                                   sizeof(struct arp_eth_header));
193 }
194
195 static int check_iphdr(struct sk_buff *skb)
196 {
197         unsigned int nh_ofs = skb_network_offset(skb);
198         unsigned int ip_len;
199         int err;
200
201         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
202         if (unlikely(err))
203                 return err;
204
205         ip_len = ip_hdrlen(skb);
206         if (unlikely(ip_len < sizeof(struct iphdr) ||
207                      skb->len < nh_ofs + ip_len))
208                 return -EINVAL;
209
210         skb_set_transport_header(skb, nh_ofs + ip_len);
211         return 0;
212 }
213
214 static bool tcphdr_ok(struct sk_buff *skb)
215 {
216         int th_ofs = skb_transport_offset(skb);
217         int tcp_len;
218
219         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
220                 return false;
221
222         tcp_len = tcp_hdrlen(skb);
223         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
224                      skb->len < th_ofs + tcp_len))
225                 return false;
226
227         return true;
228 }
229
230 static bool udphdr_ok(struct sk_buff *skb)
231 {
232         return pskb_may_pull(skb, skb_transport_offset(skb) +
233                                   sizeof(struct udphdr));
234 }
235
236 static bool sctphdr_ok(struct sk_buff *skb)
237 {
238         return pskb_may_pull(skb, skb_transport_offset(skb) +
239                                   sizeof(struct sctphdr));
240 }
241
242 static bool icmphdr_ok(struct sk_buff *skb)
243 {
244         return pskb_may_pull(skb, skb_transport_offset(skb) +
245                                   sizeof(struct icmphdr));
246 }
247
248 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
249 {
250         unsigned int nh_ofs = skb_network_offset(skb);
251         unsigned int nh_len;
252         int payload_ofs;
253         struct ipv6hdr *nh;
254         uint8_t nexthdr;
255         __be16 frag_off;
256         int err;
257
258         err = check_header(skb, nh_ofs + sizeof(*nh));
259         if (unlikely(err))
260                 return err;
261
262         nh = ipv6_hdr(skb);
263         nexthdr = nh->nexthdr;
264         payload_ofs = (u8 *)(nh + 1) - skb->data;
265
266         key->ip.proto = NEXTHDR_NONE;
267         key->ip.tos = ipv6_get_dsfield(nh);
268         key->ip.ttl = nh->hop_limit;
269         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
270         key->ipv6.addr.src = nh->saddr;
271         key->ipv6.addr.dst = nh->daddr;
272
273         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
274         if (unlikely(payload_ofs < 0))
275                 return -EINVAL;
276
277         if (frag_off) {
278                 if (frag_off & htons(~0x7))
279                         key->ip.frag = OVS_FRAG_TYPE_LATER;
280                 else
281                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
282         } else {
283                 key->ip.frag = OVS_FRAG_TYPE_NONE;
284         }
285
286         nh_len = payload_ofs - nh_ofs;
287         skb_set_transport_header(skb, nh_ofs + nh_len);
288         key->ip.proto = nexthdr;
289         return nh_len;
290 }
291
292 static bool icmp6hdr_ok(struct sk_buff *skb)
293 {
294         return pskb_may_pull(skb, skb_transport_offset(skb) +
295                                   sizeof(struct icmp6hdr));
296 }
297
298 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
299 {
300         struct qtag_prefix {
301                 __be16 eth_type; /* ETH_P_8021Q */
302                 __be16 tci;
303         };
304         struct qtag_prefix *qp;
305
306         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
307                 return 0;
308
309         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
310                                          sizeof(__be16))))
311                 return -ENOMEM;
312
313         qp = (struct qtag_prefix *) skb->data;
314         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
315         __skb_pull(skb, sizeof(struct qtag_prefix));
316
317         return 0;
318 }
319
320 static __be16 parse_ethertype(struct sk_buff *skb)
321 {
322         struct llc_snap_hdr {
323                 u8  dsap;  /* Always 0xAA */
324                 u8  ssap;  /* Always 0xAA */
325                 u8  ctrl;
326                 u8  oui[3];
327                 __be16 ethertype;
328         };
329         struct llc_snap_hdr *llc;
330         __be16 proto;
331
332         proto = *(__be16 *) skb->data;
333         __skb_pull(skb, sizeof(__be16));
334
335         if (ntohs(proto) >= ETH_P_802_3_MIN)
336                 return proto;
337
338         if (skb->len < sizeof(struct llc_snap_hdr))
339                 return htons(ETH_P_802_2);
340
341         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
342                 return htons(0);
343
344         llc = (struct llc_snap_hdr *) skb->data;
345         if (llc->dsap != LLC_SAP_SNAP ||
346             llc->ssap != LLC_SAP_SNAP ||
347             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
348                 return htons(ETH_P_802_2);
349
350         __skb_pull(skb, sizeof(struct llc_snap_hdr));
351
352         if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
353                 return llc->ethertype;
354
355         return htons(ETH_P_802_2);
356 }
357
358 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
359                         int nh_len)
360 {
361         struct icmp6hdr *icmp = icmp6_hdr(skb);
362
363         /* The ICMPv6 type and code fields use the 16-bit transport port
364          * fields, so we need to store them in 16-bit network byte order.
365          */
366         key->tp.src = htons(icmp->icmp6_type);
367         key->tp.dst = htons(icmp->icmp6_code);
368         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
369
370         if (icmp->icmp6_code == 0 &&
371             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
372              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
373                 int icmp_len = skb->len - skb_transport_offset(skb);
374                 struct nd_msg *nd;
375                 int offset;
376
377                 /* In order to process neighbor discovery options, we need the
378                  * entire packet.
379                  */
380                 if (unlikely(icmp_len < sizeof(*nd)))
381                         return 0;
382
383                 if (unlikely(skb_linearize(skb)))
384                         return -ENOMEM;
385
386                 nd = (struct nd_msg *)skb_transport_header(skb);
387                 key->ipv6.nd.target = nd->target;
388
389                 icmp_len -= sizeof(*nd);
390                 offset = 0;
391                 while (icmp_len >= 8) {
392                         struct nd_opt_hdr *nd_opt =
393                                  (struct nd_opt_hdr *)(nd->opt + offset);
394                         int opt_len = nd_opt->nd_opt_len * 8;
395
396                         if (unlikely(!opt_len || opt_len > icmp_len))
397                                 return 0;
398
399                         /* Store the link layer address if the appropriate
400                          * option is provided.  It is considered an error if
401                          * the same link layer option is specified twice.
402                          */
403                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
404                             && opt_len == 8) {
405                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
406                                         goto invalid;
407                                 ether_addr_copy(key->ipv6.nd.sll,
408                                                 &nd->opt[offset+sizeof(*nd_opt)]);
409                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
410                                    && opt_len == 8) {
411                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
412                                         goto invalid;
413                                 ether_addr_copy(key->ipv6.nd.tll,
414                                                 &nd->opt[offset+sizeof(*nd_opt)]);
415                         }
416
417                         icmp_len -= opt_len;
418                         offset += opt_len;
419                 }
420         }
421
422         return 0;
423
424 invalid:
425         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
426         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
427         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
428
429         return 0;
430 }
431
432 /**
433  * key_extract - extracts a flow key from an Ethernet frame.
434  * @skb: sk_buff that contains the frame, with skb->data pointing to the
435  * Ethernet header
436  * @key: output flow key
437  *
438  * The caller must ensure that skb->len >= ETH_HLEN.
439  *
440  * Returns 0 if successful, otherwise a negative errno value.
441  *
442  * Initializes @skb header pointers as follows:
443  *
444  *    - skb->mac_header: the Ethernet header.
445  *
446  *    - skb->network_header: just past the Ethernet header, or just past the
447  *      VLAN header, to the first byte of the Ethernet payload.
448  *
449  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
450  *      on output, then just past the IP header, if one is present and
451  *      of a correct length, otherwise the same as skb->network_header.
452  *      For other key->eth.type values it is left untouched.
453  */
454 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
455 {
456         int error;
457         struct ethhdr *eth;
458
459         /* Flags are always used as part of stats */
460         key->tp.flags = 0;
461
462         skb_reset_mac_header(skb);
463
464         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
465          * header in the linear data area.
466          */
467         eth = eth_hdr(skb);
468         ether_addr_copy(key->eth.src, eth->h_source);
469         ether_addr_copy(key->eth.dst, eth->h_dest);
470
471         __skb_pull(skb, 2 * ETH_ALEN);
472         /* We are going to push all headers that we pull, so no need to
473          * update skb->csum here.
474          */
475
476         key->eth.tci = 0;
477         if (skb_vlan_tag_present(skb))
478                 key->eth.tci = htons(skb->vlan_tci);
479         else if (eth->h_proto == htons(ETH_P_8021Q))
480                 if (unlikely(parse_vlan(skb, key)))
481                         return -ENOMEM;
482
483         key->eth.type = parse_ethertype(skb);
484         if (unlikely(key->eth.type == htons(0)))
485                 return -ENOMEM;
486
487         skb_reset_network_header(skb);
488         skb_reset_mac_len(skb);
489         __skb_push(skb, skb->data - skb_mac_header(skb));
490
491         /* Network layer. */
492         if (key->eth.type == htons(ETH_P_IP)) {
493                 struct iphdr *nh;
494                 __be16 offset;
495
496                 error = check_iphdr(skb);
497                 if (unlikely(error)) {
498                         memset(&key->ip, 0, sizeof(key->ip));
499                         memset(&key->ipv4, 0, sizeof(key->ipv4));
500                         if (error == -EINVAL) {
501                                 skb->transport_header = skb->network_header;
502                                 error = 0;
503                         }
504                         return error;
505                 }
506
507                 nh = ip_hdr(skb);
508                 key->ipv4.addr.src = nh->saddr;
509                 key->ipv4.addr.dst = nh->daddr;
510
511                 key->ip.proto = nh->protocol;
512                 key->ip.tos = nh->tos;
513                 key->ip.ttl = nh->ttl;
514
515                 offset = nh->frag_off & htons(IP_OFFSET);
516                 if (offset) {
517                         key->ip.frag = OVS_FRAG_TYPE_LATER;
518                         return 0;
519                 }
520                 if (nh->frag_off & htons(IP_MF) ||
521                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
522                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
523                 else
524                         key->ip.frag = OVS_FRAG_TYPE_NONE;
525
526                 /* Transport layer. */
527                 if (key->ip.proto == IPPROTO_TCP) {
528                         if (tcphdr_ok(skb)) {
529                                 struct tcphdr *tcp = tcp_hdr(skb);
530                                 key->tp.src = tcp->source;
531                                 key->tp.dst = tcp->dest;
532                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
533                         } else {
534                                 memset(&key->tp, 0, sizeof(key->tp));
535                         }
536
537                 } else if (key->ip.proto == IPPROTO_UDP) {
538                         if (udphdr_ok(skb)) {
539                                 struct udphdr *udp = udp_hdr(skb);
540                                 key->tp.src = udp->source;
541                                 key->tp.dst = udp->dest;
542                         } else {
543                                 memset(&key->tp, 0, sizeof(key->tp));
544                         }
545                 } else if (key->ip.proto == IPPROTO_SCTP) {
546                         if (sctphdr_ok(skb)) {
547                                 struct sctphdr *sctp = sctp_hdr(skb);
548                                 key->tp.src = sctp->source;
549                                 key->tp.dst = sctp->dest;
550                         } else {
551                                 memset(&key->tp, 0, sizeof(key->tp));
552                         }
553                 } else if (key->ip.proto == IPPROTO_ICMP) {
554                         if (icmphdr_ok(skb)) {
555                                 struct icmphdr *icmp = icmp_hdr(skb);
556                                 /* The ICMP type and code fields use the 16-bit
557                                  * transport port fields, so we need to store
558                                  * them in 16-bit network byte order. */
559                                 key->tp.src = htons(icmp->type);
560                                 key->tp.dst = htons(icmp->code);
561                         } else {
562                                 memset(&key->tp, 0, sizeof(key->tp));
563                         }
564                 }
565
566         } else if (key->eth.type == htons(ETH_P_ARP) ||
567                    key->eth.type == htons(ETH_P_RARP)) {
568                 struct arp_eth_header *arp;
569                 bool arp_available = arphdr_ok(skb);
570
571                 arp = (struct arp_eth_header *)skb_network_header(skb);
572
573                 if (arp_available &&
574                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
575                     arp->ar_pro == htons(ETH_P_IP) &&
576                     arp->ar_hln == ETH_ALEN &&
577                     arp->ar_pln == 4) {
578
579                         /* We only match on the lower 8 bits of the opcode. */
580                         if (ntohs(arp->ar_op) <= 0xff)
581                                 key->ip.proto = ntohs(arp->ar_op);
582                         else
583                                 key->ip.proto = 0;
584
585                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
586                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
587                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
588                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
589                 } else {
590                         memset(&key->ip, 0, sizeof(key->ip));
591                         memset(&key->ipv4, 0, sizeof(key->ipv4));
592                 }
593         } else if (eth_p_mpls(key->eth.type)) {
594                 size_t stack_len = MPLS_HLEN;
595
596                 /* In the presence of an MPLS label stack the end of the L2
597                  * header and the beginning of the L3 header differ.
598                  *
599                  * Advance network_header to the beginning of the L3
600                  * header. mac_len corresponds to the end of the L2 header.
601                  */
602                 while (1) {
603                         __be32 lse;
604
605                         error = check_header(skb, skb->mac_len + stack_len);
606                         if (unlikely(error))
607                                 return 0;
608
609                         memcpy(&lse, skb_network_header(skb), MPLS_HLEN);
610
611                         if (stack_len == MPLS_HLEN)
612                                 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
613
614                         skb_set_network_header(skb, skb->mac_len + stack_len);
615                         if (lse & htonl(MPLS_LS_S_MASK))
616                                 break;
617
618                         stack_len += MPLS_HLEN;
619                 }
620         } else if (key->eth.type == htons(ETH_P_IPV6)) {
621                 int nh_len;             /* IPv6 Header + Extensions */
622
623                 nh_len = parse_ipv6hdr(skb, key);
624                 if (unlikely(nh_len < 0)) {
625                         memset(&key->ip, 0, sizeof(key->ip));
626                         memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
627                         if (nh_len == -EINVAL) {
628                                 skb->transport_header = skb->network_header;
629                                 error = 0;
630                         } else {
631                                 error = nh_len;
632                         }
633                         return error;
634                 }
635
636                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
637                         return 0;
638                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
639                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
640
641                 /* Transport layer. */
642                 if (key->ip.proto == NEXTHDR_TCP) {
643                         if (tcphdr_ok(skb)) {
644                                 struct tcphdr *tcp = tcp_hdr(skb);
645                                 key->tp.src = tcp->source;
646                                 key->tp.dst = tcp->dest;
647                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
648                         } else {
649                                 memset(&key->tp, 0, sizeof(key->tp));
650                         }
651                 } else if (key->ip.proto == NEXTHDR_UDP) {
652                         if (udphdr_ok(skb)) {
653                                 struct udphdr *udp = udp_hdr(skb);
654                                 key->tp.src = udp->source;
655                                 key->tp.dst = udp->dest;
656                         } else {
657                                 memset(&key->tp, 0, sizeof(key->tp));
658                         }
659                 } else if (key->ip.proto == NEXTHDR_SCTP) {
660                         if (sctphdr_ok(skb)) {
661                                 struct sctphdr *sctp = sctp_hdr(skb);
662                                 key->tp.src = sctp->source;
663                                 key->tp.dst = sctp->dest;
664                         } else {
665                                 memset(&key->tp, 0, sizeof(key->tp));
666                         }
667                 } else if (key->ip.proto == NEXTHDR_ICMP) {
668                         if (icmp6hdr_ok(skb)) {
669                                 error = parse_icmpv6(skb, key, nh_len);
670                                 if (error)
671                                         return error;
672                         } else {
673                                 memset(&key->tp, 0, sizeof(key->tp));
674                         }
675                 }
676         }
677         return 0;
678 }
679
680 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
681 {
682         return key_extract(skb, key);
683 }
684
685 int ovs_flow_key_extract(const struct ovs_tunnel_info *tun_info,
686                          struct sk_buff *skb, struct sw_flow_key *key)
687 {
688         /* Extract metadata from packet. */
689         if (tun_info) {
690                 memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key));
691
692                 if (tun_info->options) {
693                         BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
694                                                    8)) - 1
695                                         > sizeof(key->tun_opts));
696                         memcpy(TUN_METADATA_OPTS(key, tun_info->options_len),
697                                tun_info->options, tun_info->options_len);
698                         key->tun_opts_len = tun_info->options_len;
699                 } else {
700                         key->tun_opts_len = 0;
701                 }
702         } else  {
703                 key->tun_opts_len = 0;
704                 memset(&key->tun_key, 0, sizeof(key->tun_key));
705         }
706
707         key->phy.priority = skb->priority;
708         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
709         key->phy.skb_mark = skb->mark;
710         key->ovs_flow_hash = 0;
711         key->recirc_id = 0;
712
713         return key_extract(skb, key);
714 }
715
716 int ovs_flow_key_extract_userspace(const struct nlattr *attr,
717                                    struct sk_buff *skb,
718                                    struct sw_flow_key *key, bool log)
719 {
720         int err;
721
722         memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
723
724         /* Extract metadata from netlink attributes. */
725         err = ovs_nla_get_flow_metadata(attr, key, log);
726         if (err)
727                 return err;
728
729         return key_extract(skb, key);
730 }