Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / net / openvswitch / actions.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/checksum.h>
35 #include <net/dsfield.h>
36 #include <net/mpls.h>
37 #include <net/sctp/checksum.h>
38
39 #include "datapath.h"
40 #include "flow.h"
41 #include "vport.h"
42
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44                               struct sw_flow_key *key,
45                               const struct nlattr *attr, int len);
46
47 struct deferred_action {
48         struct sk_buff *skb;
49         const struct nlattr *actions;
50
51         /* Store pkt_key clone when creating deferred action. */
52         struct sw_flow_key pkt_key;
53 };
54
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57         int head;
58         int tail;
59         /* Deferred action fifo queue storage. */
60         struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62
63 static struct action_fifo __percpu *action_fifos;
64 static DEFINE_PER_CPU(int, exec_actions_level);
65
66 static void action_fifo_init(struct action_fifo *fifo)
67 {
68         fifo->head = 0;
69         fifo->tail = 0;
70 }
71
72 static bool action_fifo_is_empty(const struct action_fifo *fifo)
73 {
74         return (fifo->head == fifo->tail);
75 }
76
77 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
78 {
79         if (action_fifo_is_empty(fifo))
80                 return NULL;
81
82         return &fifo->fifo[fifo->tail++];
83 }
84
85 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
86 {
87         if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
88                 return NULL;
89
90         return &fifo->fifo[fifo->head++];
91 }
92
93 /* Return true if fifo is not full */
94 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
95                                                     const struct sw_flow_key *key,
96                                                     const struct nlattr *attr)
97 {
98         struct action_fifo *fifo;
99         struct deferred_action *da;
100
101         fifo = this_cpu_ptr(action_fifos);
102         da = action_fifo_put(fifo);
103         if (da) {
104                 da->skb = skb;
105                 da->actions = attr;
106                 da->pkt_key = *key;
107         }
108
109         return da;
110 }
111
112 static void invalidate_flow_key(struct sw_flow_key *key)
113 {
114         key->eth.type = htons(0);
115 }
116
117 static bool is_flow_key_valid(const struct sw_flow_key *key)
118 {
119         return !!key->eth.type;
120 }
121
122 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
123                      const struct ovs_action_push_mpls *mpls)
124 {
125         __be32 *new_mpls_lse;
126         struct ethhdr *hdr;
127
128         /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
129         if (skb->encapsulation)
130                 return -ENOTSUPP;
131
132         if (skb_cow_head(skb, MPLS_HLEN) < 0)
133                 return -ENOMEM;
134
135         skb_push(skb, MPLS_HLEN);
136         memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
137                 skb->mac_len);
138         skb_reset_mac_header(skb);
139
140         new_mpls_lse = (__be32 *)skb_mpls_header(skb);
141         *new_mpls_lse = mpls->mpls_lse;
142
143         if (skb->ip_summed == CHECKSUM_COMPLETE)
144                 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
145                                                              MPLS_HLEN, 0));
146
147         hdr = eth_hdr(skb);
148         hdr->h_proto = mpls->mpls_ethertype;
149
150         if (!skb->inner_protocol)
151                 skb_set_inner_protocol(skb, skb->protocol);
152         skb->protocol = mpls->mpls_ethertype;
153
154         invalidate_flow_key(key);
155         return 0;
156 }
157
158 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
159                     const __be16 ethertype)
160 {
161         struct ethhdr *hdr;
162         int err;
163
164         err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
165         if (unlikely(err))
166                 return err;
167
168         skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
169
170         memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
171                 skb->mac_len);
172
173         __skb_pull(skb, MPLS_HLEN);
174         skb_reset_mac_header(skb);
175
176         /* skb_mpls_header() is used to locate the ethertype
177          * field correctly in the presence of VLAN tags.
178          */
179         hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
180         hdr->h_proto = ethertype;
181         if (eth_p_mpls(skb->protocol))
182                 skb->protocol = ethertype;
183
184         invalidate_flow_key(key);
185         return 0;
186 }
187
188 /* 'KEY' must not have any bits set outside of the 'MASK' */
189 #define MASKED(OLD, KEY, MASK) ((KEY) | ((OLD) & ~(MASK)))
190 #define SET_MASKED(OLD, KEY, MASK) ((OLD) = MASKED(OLD, KEY, MASK))
191
192 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
193                     const __be32 *mpls_lse, const __be32 *mask)
194 {
195         __be32 *stack;
196         __be32 lse;
197         int err;
198
199         err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
200         if (unlikely(err))
201                 return err;
202
203         stack = (__be32 *)skb_mpls_header(skb);
204         lse = MASKED(*stack, *mpls_lse, *mask);
205         if (skb->ip_summed == CHECKSUM_COMPLETE) {
206                 __be32 diff[] = { ~(*stack), lse };
207
208                 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
209                                           ~skb->csum);
210         }
211
212         *stack = lse;
213         flow_key->mpls.top_lse = lse;
214         return 0;
215 }
216
217 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
218 {
219         int err;
220
221         err = skb_vlan_pop(skb);
222         if (skb_vlan_tag_present(skb))
223                 invalidate_flow_key(key);
224         else
225                 key->eth.tci = 0;
226         return err;
227 }
228
229 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
230                      const struct ovs_action_push_vlan *vlan)
231 {
232         if (skb_vlan_tag_present(skb))
233                 invalidate_flow_key(key);
234         else
235                 key->eth.tci = vlan->vlan_tci;
236         return skb_vlan_push(skb, vlan->vlan_tpid,
237                              ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
238 }
239
240 /* 'src' is already properly masked. */
241 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
242 {
243         u16 *dst = (u16 *)dst_;
244         const u16 *src = (const u16 *)src_;
245         const u16 *mask = (const u16 *)mask_;
246
247         SET_MASKED(dst[0], src[0], mask[0]);
248         SET_MASKED(dst[1], src[1], mask[1]);
249         SET_MASKED(dst[2], src[2], mask[2]);
250 }
251
252 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
253                         const struct ovs_key_ethernet *key,
254                         const struct ovs_key_ethernet *mask)
255 {
256         int err;
257
258         err = skb_ensure_writable(skb, ETH_HLEN);
259         if (unlikely(err))
260                 return err;
261
262         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
263
264         ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
265                                mask->eth_src);
266         ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
267                                mask->eth_dst);
268
269         ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
270
271         ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
272         ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
273         return 0;
274 }
275
276 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
277                         __be32 *addr, __be32 new_addr)
278 {
279         int transport_len = skb->len - skb_transport_offset(skb);
280
281         if (nh->protocol == IPPROTO_TCP) {
282                 if (likely(transport_len >= sizeof(struct tcphdr)))
283                         inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
284                                                  *addr, new_addr, 1);
285         } else if (nh->protocol == IPPROTO_UDP) {
286                 if (likely(transport_len >= sizeof(struct udphdr))) {
287                         struct udphdr *uh = udp_hdr(skb);
288
289                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
290                                 inet_proto_csum_replace4(&uh->check, skb,
291                                                          *addr, new_addr, 1);
292                                 if (!uh->check)
293                                         uh->check = CSUM_MANGLED_0;
294                         }
295                 }
296         }
297
298         csum_replace4(&nh->check, *addr, new_addr);
299         skb_clear_hash(skb);
300         *addr = new_addr;
301 }
302
303 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
304                                  __be32 addr[4], const __be32 new_addr[4])
305 {
306         int transport_len = skb->len - skb_transport_offset(skb);
307
308         if (l4_proto == NEXTHDR_TCP) {
309                 if (likely(transport_len >= sizeof(struct tcphdr)))
310                         inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
311                                                   addr, new_addr, 1);
312         } else if (l4_proto == NEXTHDR_UDP) {
313                 if (likely(transport_len >= sizeof(struct udphdr))) {
314                         struct udphdr *uh = udp_hdr(skb);
315
316                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
317                                 inet_proto_csum_replace16(&uh->check, skb,
318                                                           addr, new_addr, 1);
319                                 if (!uh->check)
320                                         uh->check = CSUM_MANGLED_0;
321                         }
322                 }
323         } else if (l4_proto == NEXTHDR_ICMP) {
324                 if (likely(transport_len >= sizeof(struct icmp6hdr)))
325                         inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
326                                                   skb, addr, new_addr, 1);
327         }
328 }
329
330 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
331                            const __be32 mask[4], __be32 masked[4])
332 {
333         masked[0] = MASKED(old[0], addr[0], mask[0]);
334         masked[1] = MASKED(old[1], addr[1], mask[1]);
335         masked[2] = MASKED(old[2], addr[2], mask[2]);
336         masked[3] = MASKED(old[3], addr[3], mask[3]);
337 }
338
339 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
340                           __be32 addr[4], const __be32 new_addr[4],
341                           bool recalculate_csum)
342 {
343         if (recalculate_csum)
344                 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
345
346         skb_clear_hash(skb);
347         memcpy(addr, new_addr, sizeof(__be32[4]));
348 }
349
350 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
351 {
352         /* Bits 21-24 are always unmasked, so this retains their values. */
353         SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
354         SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
355         SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
356 }
357
358 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
359                        u8 mask)
360 {
361         new_ttl = MASKED(nh->ttl, new_ttl, mask);
362
363         csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
364         nh->ttl = new_ttl;
365 }
366
367 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
368                     const struct ovs_key_ipv4 *key,
369                     const struct ovs_key_ipv4 *mask)
370 {
371         struct iphdr *nh;
372         __be32 new_addr;
373         int err;
374
375         err = skb_ensure_writable(skb, skb_network_offset(skb) +
376                                   sizeof(struct iphdr));
377         if (unlikely(err))
378                 return err;
379
380         nh = ip_hdr(skb);
381
382         /* Setting an IP addresses is typically only a side effect of
383          * matching on them in the current userspace implementation, so it
384          * makes sense to check if the value actually changed.
385          */
386         if (mask->ipv4_src) {
387                 new_addr = MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
388
389                 if (unlikely(new_addr != nh->saddr)) {
390                         set_ip_addr(skb, nh, &nh->saddr, new_addr);
391                         flow_key->ipv4.addr.src = new_addr;
392                 }
393         }
394         if (mask->ipv4_dst) {
395                 new_addr = MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
396
397                 if (unlikely(new_addr != nh->daddr)) {
398                         set_ip_addr(skb, nh, &nh->daddr, new_addr);
399                         flow_key->ipv4.addr.dst = new_addr;
400                 }
401         }
402         if (mask->ipv4_tos) {
403                 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
404                 flow_key->ip.tos = nh->tos;
405         }
406         if (mask->ipv4_ttl) {
407                 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
408                 flow_key->ip.ttl = nh->ttl;
409         }
410
411         return 0;
412 }
413
414 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
415 {
416         return !!(addr[0] | addr[1] | addr[2] | addr[3]);
417 }
418
419 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
420                     const struct ovs_key_ipv6 *key,
421                     const struct ovs_key_ipv6 *mask)
422 {
423         struct ipv6hdr *nh;
424         int err;
425
426         err = skb_ensure_writable(skb, skb_network_offset(skb) +
427                                   sizeof(struct ipv6hdr));
428         if (unlikely(err))
429                 return err;
430
431         nh = ipv6_hdr(skb);
432
433         /* Setting an IP addresses is typically only a side effect of
434          * matching on them in the current userspace implementation, so it
435          * makes sense to check if the value actually changed.
436          */
437         if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
438                 __be32 *saddr = (__be32 *)&nh->saddr;
439                 __be32 masked[4];
440
441                 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
442
443                 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
444                         set_ipv6_addr(skb, key->ipv6_proto, saddr, masked,
445                                       true);
446                         memcpy(&flow_key->ipv6.addr.src, masked,
447                                sizeof(flow_key->ipv6.addr.src));
448                 }
449         }
450         if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
451                 unsigned int offset = 0;
452                 int flags = IP6_FH_F_SKIP_RH;
453                 bool recalc_csum = true;
454                 __be32 *daddr = (__be32 *)&nh->daddr;
455                 __be32 masked[4];
456
457                 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
458
459                 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
460                         if (ipv6_ext_hdr(nh->nexthdr))
461                                 recalc_csum = (ipv6_find_hdr(skb, &offset,
462                                                              NEXTHDR_ROUTING,
463                                                              NULL, &flags)
464                                                != NEXTHDR_ROUTING);
465
466                         set_ipv6_addr(skb, key->ipv6_proto, daddr, masked,
467                                       recalc_csum);
468                         memcpy(&flow_key->ipv6.addr.dst, masked,
469                                sizeof(flow_key->ipv6.addr.dst));
470                 }
471         }
472         if (mask->ipv6_tclass) {
473                 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
474                 flow_key->ip.tos = ipv6_get_dsfield(nh);
475         }
476         if (mask->ipv6_label) {
477                 set_ipv6_fl(nh, ntohl(key->ipv6_label),
478                             ntohl(mask->ipv6_label));
479                 flow_key->ipv6.label =
480                     *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
481         }
482         if (mask->ipv6_hlimit) {
483                 SET_MASKED(nh->hop_limit, key->ipv6_hlimit, mask->ipv6_hlimit);
484                 flow_key->ip.ttl = nh->hop_limit;
485         }
486         return 0;
487 }
488
489 /* Must follow skb_ensure_writable() since that can move the skb data. */
490 static void set_tp_port(struct sk_buff *skb, __be16 *port,
491                         __be16 new_port, __sum16 *check)
492 {
493         inet_proto_csum_replace2(check, skb, *port, new_port, 0);
494         *port = new_port;
495 }
496
497 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
498                    const struct ovs_key_udp *key,
499                    const struct ovs_key_udp *mask)
500 {
501         struct udphdr *uh;
502         __be16 src, dst;
503         int err;
504
505         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
506                                   sizeof(struct udphdr));
507         if (unlikely(err))
508                 return err;
509
510         uh = udp_hdr(skb);
511         /* Either of the masks is non-zero, so do not bother checking them. */
512         src = MASKED(uh->source, key->udp_src, mask->udp_src);
513         dst = MASKED(uh->dest, key->udp_dst, mask->udp_dst);
514
515         if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
516                 if (likely(src != uh->source)) {
517                         set_tp_port(skb, &uh->source, src, &uh->check);
518                         flow_key->tp.src = src;
519                 }
520                 if (likely(dst != uh->dest)) {
521                         set_tp_port(skb, &uh->dest, dst, &uh->check);
522                         flow_key->tp.dst = dst;
523                 }
524
525                 if (unlikely(!uh->check))
526                         uh->check = CSUM_MANGLED_0;
527         } else {
528                 uh->source = src;
529                 uh->dest = dst;
530                 flow_key->tp.src = src;
531                 flow_key->tp.dst = dst;
532         }
533
534         skb_clear_hash(skb);
535
536         return 0;
537 }
538
539 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
540                    const struct ovs_key_tcp *key,
541                    const struct ovs_key_tcp *mask)
542 {
543         struct tcphdr *th;
544         __be16 src, dst;
545         int err;
546
547         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
548                                   sizeof(struct tcphdr));
549         if (unlikely(err))
550                 return err;
551
552         th = tcp_hdr(skb);
553         src = MASKED(th->source, key->tcp_src, mask->tcp_src);
554         if (likely(src != th->source)) {
555                 set_tp_port(skb, &th->source, src, &th->check);
556                 flow_key->tp.src = src;
557         }
558         dst = MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
559         if (likely(dst != th->dest)) {
560                 set_tp_port(skb, &th->dest, dst, &th->check);
561                 flow_key->tp.dst = dst;
562         }
563         skb_clear_hash(skb);
564
565         return 0;
566 }
567
568 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
569                     const struct ovs_key_sctp *key,
570                     const struct ovs_key_sctp *mask)
571 {
572         unsigned int sctphoff = skb_transport_offset(skb);
573         struct sctphdr *sh;
574         __le32 old_correct_csum, new_csum, old_csum;
575         int err;
576
577         err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
578         if (unlikely(err))
579                 return err;
580
581         sh = sctp_hdr(skb);
582         old_csum = sh->checksum;
583         old_correct_csum = sctp_compute_cksum(skb, sctphoff);
584
585         sh->source = MASKED(sh->source, key->sctp_src, mask->sctp_src);
586         sh->dest = MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
587
588         new_csum = sctp_compute_cksum(skb, sctphoff);
589
590         /* Carry any checksum errors through. */
591         sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
592
593         skb_clear_hash(skb);
594         flow_key->tp.src = sh->source;
595         flow_key->tp.dst = sh->dest;
596
597         return 0;
598 }
599
600 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
601 {
602         struct vport *vport = ovs_vport_rcu(dp, out_port);
603
604         if (likely(vport))
605                 ovs_vport_send(vport, skb);
606         else
607                 kfree_skb(skb);
608 }
609
610 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
611                             struct sw_flow_key *key, const struct nlattr *attr)
612 {
613         struct ovs_tunnel_info info;
614         struct dp_upcall_info upcall;
615         const struct nlattr *a;
616         int rem;
617
618         upcall.cmd = OVS_PACKET_CMD_ACTION;
619         upcall.userdata = NULL;
620         upcall.portid = 0;
621         upcall.egress_tun_info = NULL;
622
623         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
624                  a = nla_next(a, &rem)) {
625                 switch (nla_type(a)) {
626                 case OVS_USERSPACE_ATTR_USERDATA:
627                         upcall.userdata = a;
628                         break;
629
630                 case OVS_USERSPACE_ATTR_PID:
631                         upcall.portid = nla_get_u32(a);
632                         break;
633
634                 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
635                         /* Get out tunnel info. */
636                         struct vport *vport;
637
638                         vport = ovs_vport_rcu(dp, nla_get_u32(a));
639                         if (vport) {
640                                 int err;
641
642                                 err = ovs_vport_get_egress_tun_info(vport, skb,
643                                                                     &info);
644                                 if (!err)
645                                         upcall.egress_tun_info = &info;
646                         }
647                         break;
648                 }
649
650                 } /* End of switch. */
651         }
652
653         return ovs_dp_upcall(dp, skb, key, &upcall);
654 }
655
656 static int sample(struct datapath *dp, struct sk_buff *skb,
657                   struct sw_flow_key *key, const struct nlattr *attr)
658 {
659         const struct nlattr *acts_list = NULL;
660         const struct nlattr *a;
661         int rem;
662
663         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
664                  a = nla_next(a, &rem)) {
665                 switch (nla_type(a)) {
666                 case OVS_SAMPLE_ATTR_PROBABILITY:
667                         if (prandom_u32() >= nla_get_u32(a))
668                                 return 0;
669                         break;
670
671                 case OVS_SAMPLE_ATTR_ACTIONS:
672                         acts_list = a;
673                         break;
674                 }
675         }
676
677         rem = nla_len(acts_list);
678         a = nla_data(acts_list);
679
680         /* Actions list is empty, do nothing */
681         if (unlikely(!rem))
682                 return 0;
683
684         /* The only known usage of sample action is having a single user-space
685          * action. Treat this usage as a special case.
686          * The output_userspace() should clone the skb to be sent to the
687          * user space. This skb will be consumed by its caller.
688          */
689         if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
690                    nla_is_last(a, rem)))
691                 return output_userspace(dp, skb, key, a);
692
693         skb = skb_clone(skb, GFP_ATOMIC);
694         if (!skb)
695                 /* Skip the sample action when out of memory. */
696                 return 0;
697
698         if (!add_deferred_actions(skb, key, a)) {
699                 if (net_ratelimit())
700                         pr_warn("%s: deferred actions limit reached, dropping sample action\n",
701                                 ovs_dp_name(dp));
702
703                 kfree_skb(skb);
704         }
705         return 0;
706 }
707
708 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
709                          const struct nlattr *attr)
710 {
711         struct ovs_action_hash *hash_act = nla_data(attr);
712         u32 hash = 0;
713
714         /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
715         hash = skb_get_hash(skb);
716         hash = jhash_1word(hash, hash_act->hash_basis);
717         if (!hash)
718                 hash = 0x1;
719
720         key->ovs_flow_hash = hash;
721 }
722
723 static int execute_set_action(struct sk_buff *skb,
724                               struct sw_flow_key *flow_key,
725                               const struct nlattr *a)
726 {
727         /* Only tunnel set execution is supported without a mask. */
728         if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
729                 OVS_CB(skb)->egress_tun_info = nla_data(a);
730                 return 0;
731         }
732
733         return -EINVAL;
734 }
735
736 /* Mask is at the midpoint of the data. */
737 #define get_mask(a, type) ((const type)nla_data(a) + 1)
738
739 static int execute_masked_set_action(struct sk_buff *skb,
740                                      struct sw_flow_key *flow_key,
741                                      const struct nlattr *a)
742 {
743         int err = 0;
744
745         switch (nla_type(a)) {
746         case OVS_KEY_ATTR_PRIORITY:
747                 SET_MASKED(skb->priority, nla_get_u32(a), *get_mask(a, u32 *));
748                 flow_key->phy.priority = skb->priority;
749                 break;
750
751         case OVS_KEY_ATTR_SKB_MARK:
752                 SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
753                 flow_key->phy.skb_mark = skb->mark;
754                 break;
755
756         case OVS_KEY_ATTR_TUNNEL_INFO:
757                 /* Masked data not supported for tunnel. */
758                 err = -EINVAL;
759                 break;
760
761         case OVS_KEY_ATTR_ETHERNET:
762                 err = set_eth_addr(skb, flow_key, nla_data(a),
763                                    get_mask(a, struct ovs_key_ethernet *));
764                 break;
765
766         case OVS_KEY_ATTR_IPV4:
767                 err = set_ipv4(skb, flow_key, nla_data(a),
768                                get_mask(a, struct ovs_key_ipv4 *));
769                 break;
770
771         case OVS_KEY_ATTR_IPV6:
772                 err = set_ipv6(skb, flow_key, nla_data(a),
773                                get_mask(a, struct ovs_key_ipv6 *));
774                 break;
775
776         case OVS_KEY_ATTR_TCP:
777                 err = set_tcp(skb, flow_key, nla_data(a),
778                               get_mask(a, struct ovs_key_tcp *));
779                 break;
780
781         case OVS_KEY_ATTR_UDP:
782                 err = set_udp(skb, flow_key, nla_data(a),
783                               get_mask(a, struct ovs_key_udp *));
784                 break;
785
786         case OVS_KEY_ATTR_SCTP:
787                 err = set_sctp(skb, flow_key, nla_data(a),
788                                get_mask(a, struct ovs_key_sctp *));
789                 break;
790
791         case OVS_KEY_ATTR_MPLS:
792                 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
793                                                                     __be32 *));
794                 break;
795         }
796
797         return err;
798 }
799
800 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
801                           struct sw_flow_key *key,
802                           const struct nlattr *a, int rem)
803 {
804         struct deferred_action *da;
805
806         if (!is_flow_key_valid(key)) {
807                 int err;
808
809                 err = ovs_flow_key_update(skb, key);
810                 if (err)
811                         return err;
812         }
813         BUG_ON(!is_flow_key_valid(key));
814
815         if (!nla_is_last(a, rem)) {
816                 /* Recirc action is the not the last action
817                  * of the action list, need to clone the skb.
818                  */
819                 skb = skb_clone(skb, GFP_ATOMIC);
820
821                 /* Skip the recirc action when out of memory, but
822                  * continue on with the rest of the action list.
823                  */
824                 if (!skb)
825                         return 0;
826         }
827
828         da = add_deferred_actions(skb, key, NULL);
829         if (da) {
830                 da->pkt_key.recirc_id = nla_get_u32(a);
831         } else {
832                 kfree_skb(skb);
833
834                 if (net_ratelimit())
835                         pr_warn("%s: deferred action limit reached, drop recirc action\n",
836                                 ovs_dp_name(dp));
837         }
838
839         return 0;
840 }
841
842 /* Execute a list of actions against 'skb'. */
843 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
844                               struct sw_flow_key *key,
845                               const struct nlattr *attr, int len)
846 {
847         /* Every output action needs a separate clone of 'skb', but the common
848          * case is just a single output action, so that doing a clone and
849          * then freeing the original skbuff is wasteful.  So the following code
850          * is slightly obscure just to avoid that.
851          */
852         int prev_port = -1;
853         const struct nlattr *a;
854         int rem;
855
856         for (a = attr, rem = len; rem > 0;
857              a = nla_next(a, &rem)) {
858                 int err = 0;
859
860                 if (unlikely(prev_port != -1)) {
861                         struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
862
863                         if (out_skb)
864                                 do_output(dp, out_skb, prev_port);
865
866                         prev_port = -1;
867                 }
868
869                 switch (nla_type(a)) {
870                 case OVS_ACTION_ATTR_OUTPUT:
871                         prev_port = nla_get_u32(a);
872                         break;
873
874                 case OVS_ACTION_ATTR_USERSPACE:
875                         output_userspace(dp, skb, key, a);
876                         break;
877
878                 case OVS_ACTION_ATTR_HASH:
879                         execute_hash(skb, key, a);
880                         break;
881
882                 case OVS_ACTION_ATTR_PUSH_MPLS:
883                         err = push_mpls(skb, key, nla_data(a));
884                         break;
885
886                 case OVS_ACTION_ATTR_POP_MPLS:
887                         err = pop_mpls(skb, key, nla_get_be16(a));
888                         break;
889
890                 case OVS_ACTION_ATTR_PUSH_VLAN:
891                         err = push_vlan(skb, key, nla_data(a));
892                         break;
893
894                 case OVS_ACTION_ATTR_POP_VLAN:
895                         err = pop_vlan(skb, key);
896                         break;
897
898                 case OVS_ACTION_ATTR_RECIRC:
899                         err = execute_recirc(dp, skb, key, a, rem);
900                         if (nla_is_last(a, rem)) {
901                                 /* If this is the last action, the skb has
902                                  * been consumed or freed.
903                                  * Return immediately.
904                                  */
905                                 return err;
906                         }
907                         break;
908
909                 case OVS_ACTION_ATTR_SET:
910                         err = execute_set_action(skb, key, nla_data(a));
911                         break;
912
913                 case OVS_ACTION_ATTR_SET_MASKED:
914                 case OVS_ACTION_ATTR_SET_TO_MASKED:
915                         err = execute_masked_set_action(skb, key, nla_data(a));
916                         break;
917
918                 case OVS_ACTION_ATTR_SAMPLE:
919                         err = sample(dp, skb, key, a);
920                         break;
921                 }
922
923                 if (unlikely(err)) {
924                         kfree_skb(skb);
925                         return err;
926                 }
927         }
928
929         if (prev_port != -1)
930                 do_output(dp, skb, prev_port);
931         else
932                 consume_skb(skb);
933
934         return 0;
935 }
936
937 static void process_deferred_actions(struct datapath *dp)
938 {
939         struct action_fifo *fifo = this_cpu_ptr(action_fifos);
940
941         /* Do not touch the FIFO in case there is no deferred actions. */
942         if (action_fifo_is_empty(fifo))
943                 return;
944
945         /* Finishing executing all deferred actions. */
946         do {
947                 struct deferred_action *da = action_fifo_get(fifo);
948                 struct sk_buff *skb = da->skb;
949                 struct sw_flow_key *key = &da->pkt_key;
950                 const struct nlattr *actions = da->actions;
951
952                 if (actions)
953                         do_execute_actions(dp, skb, key, actions,
954                                            nla_len(actions));
955                 else
956                         ovs_dp_process_packet(skb, key);
957         } while (!action_fifo_is_empty(fifo));
958
959         /* Reset FIFO for the next packet.  */
960         action_fifo_init(fifo);
961 }
962
963 /* Execute a list of actions against 'skb'. */
964 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
965                         const struct sw_flow_actions *acts,
966                         struct sw_flow_key *key)
967 {
968         int level = this_cpu_read(exec_actions_level);
969         int err;
970
971         this_cpu_inc(exec_actions_level);
972         OVS_CB(skb)->egress_tun_info = NULL;
973         err = do_execute_actions(dp, skb, key,
974                                  acts->actions, acts->actions_len);
975
976         if (!level)
977                 process_deferred_actions(dp);
978
979         this_cpu_dec(exec_actions_level);
980         return err;
981 }
982
983 int action_fifos_init(void)
984 {
985         action_fifos = alloc_percpu(struct action_fifo);
986         if (!action_fifos)
987                 return -ENOMEM;
988
989         return 0;
990 }
991
992 void action_fifos_exit(void)
993 {
994         free_percpu(action_fifos);
995 }