Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / net / netfilter / nf_nat_core.c
1 /*
2  * (C) 1999-2001 Paul `Rusty' Russell
3  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4  * (C) 2011 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_seqadj.h>
29 #include <net/netfilter/nf_conntrack_l3proto.h>
30 #include <net/netfilter/nf_conntrack_zones.h>
31 #include <linux/netfilter/nf_nat.h>
32
33 static DEFINE_SPINLOCK(nf_nat_lock);
34
35 static DEFINE_MUTEX(nf_nat_proto_mutex);
36 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
37                                                 __read_mostly;
38 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
39                                                 __read_mostly;
40
41
42 inline const struct nf_nat_l3proto *
43 __nf_nat_l3proto_find(u8 family)
44 {
45         return rcu_dereference(nf_nat_l3protos[family]);
46 }
47
48 inline const struct nf_nat_l4proto *
49 __nf_nat_l4proto_find(u8 family, u8 protonum)
50 {
51         return rcu_dereference(nf_nat_l4protos[family][protonum]);
52 }
53 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
54
55 #ifdef CONFIG_XFRM
56 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
57 {
58         const struct nf_nat_l3proto *l3proto;
59         const struct nf_conn *ct;
60         enum ip_conntrack_info ctinfo;
61         enum ip_conntrack_dir dir;
62         unsigned  long statusbit;
63         u8 family;
64
65         ct = nf_ct_get(skb, &ctinfo);
66         if (ct == NULL)
67                 return;
68
69         family = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num;
70         rcu_read_lock();
71         l3proto = __nf_nat_l3proto_find(family);
72         if (l3proto == NULL)
73                 goto out;
74
75         dir = CTINFO2DIR(ctinfo);
76         if (dir == IP_CT_DIR_ORIGINAL)
77                 statusbit = IPS_DST_NAT;
78         else
79                 statusbit = IPS_SRC_NAT;
80
81         l3proto->decode_session(skb, ct, dir, statusbit, fl);
82 out:
83         rcu_read_unlock();
84 }
85
86 int nf_xfrm_me_harder(struct sk_buff *skb, unsigned int family)
87 {
88         struct flowi fl;
89         unsigned int hh_len;
90         struct dst_entry *dst;
91         int err;
92
93         err = xfrm_decode_session(skb, &fl, family);
94         if (err < 0)
95                 return err;
96
97         dst = skb_dst(skb);
98         if (dst->xfrm)
99                 dst = ((struct xfrm_dst *)dst)->route;
100         dst_hold(dst);
101
102         dst = xfrm_lookup(dev_net(dst->dev), dst, &fl, skb->sk, 0);
103         if (IS_ERR(dst))
104                 return PTR_ERR(dst);
105
106         skb_dst_drop(skb);
107         skb_dst_set(skb, dst);
108
109         /* Change in oif may mean change in hh_len. */
110         hh_len = skb_dst(skb)->dev->hard_header_len;
111         if (skb_headroom(skb) < hh_len &&
112             pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
113                 return -ENOMEM;
114         return 0;
115 }
116 EXPORT_SYMBOL(nf_xfrm_me_harder);
117 #endif /* CONFIG_XFRM */
118
119 /* We keep an extra hash for each conntrack, for fast searching. */
120 static inline unsigned int
121 hash_by_src(const struct net *net, u16 zone,
122             const struct nf_conntrack_tuple *tuple)
123 {
124         unsigned int hash;
125
126         /* Original src, to ensure we map it consistently if poss. */
127         hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
128                       tuple->dst.protonum ^ zone ^ nf_conntrack_hash_rnd);
129
130         return reciprocal_scale(hash, net->ct.nat_htable_size);
131 }
132
133 /* Is this tuple already taken? (not by us) */
134 int
135 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
136                   const struct nf_conn *ignored_conntrack)
137 {
138         /* Conntrack tracking doesn't keep track of outgoing tuples; only
139          * incoming ones.  NAT means they don't have a fixed mapping,
140          * so we invert the tuple and look for the incoming reply.
141          *
142          * We could keep a separate hash if this proves too slow.
143          */
144         struct nf_conntrack_tuple reply;
145
146         nf_ct_invert_tuplepr(&reply, tuple);
147         return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
148 }
149 EXPORT_SYMBOL(nf_nat_used_tuple);
150
151 /* If we source map this tuple so reply looks like reply_tuple, will
152  * that meet the constraints of range.
153  */
154 static int in_range(const struct nf_nat_l3proto *l3proto,
155                     const struct nf_nat_l4proto *l4proto,
156                     const struct nf_conntrack_tuple *tuple,
157                     const struct nf_nat_range *range)
158 {
159         /* If we are supposed to map IPs, then we must be in the
160          * range specified, otherwise let this drag us onto a new src IP.
161          */
162         if (range->flags & NF_NAT_RANGE_MAP_IPS &&
163             !l3proto->in_range(tuple, range))
164                 return 0;
165
166         if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
167             l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
168                               &range->min_proto, &range->max_proto))
169                 return 1;
170
171         return 0;
172 }
173
174 static inline int
175 same_src(const struct nf_conn *ct,
176          const struct nf_conntrack_tuple *tuple)
177 {
178         const struct nf_conntrack_tuple *t;
179
180         t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
181         return (t->dst.protonum == tuple->dst.protonum &&
182                 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
183                 t->src.u.all == tuple->src.u.all);
184 }
185
186 /* Only called for SRC manip */
187 static int
188 find_appropriate_src(struct net *net, u16 zone,
189                      const struct nf_nat_l3proto *l3proto,
190                      const struct nf_nat_l4proto *l4proto,
191                      const struct nf_conntrack_tuple *tuple,
192                      struct nf_conntrack_tuple *result,
193                      const struct nf_nat_range *range)
194 {
195         unsigned int h = hash_by_src(net, zone, tuple);
196         const struct nf_conn_nat *nat;
197         const struct nf_conn *ct;
198
199         hlist_for_each_entry_rcu(nat, &net->ct.nat_bysource[h], bysource) {
200                 ct = nat->ct;
201                 if (same_src(ct, tuple) && nf_ct_zone(ct) == zone) {
202                         /* Copy source part from reply tuple. */
203                         nf_ct_invert_tuplepr(result,
204                                        &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
205                         result->dst = tuple->dst;
206
207                         if (in_range(l3proto, l4proto, result, range))
208                                 return 1;
209                 }
210         }
211         return 0;
212 }
213
214 /* For [FUTURE] fragmentation handling, we want the least-used
215  * src-ip/dst-ip/proto triple.  Fairness doesn't come into it.  Thus
216  * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
217  * 1-65535, we don't do pro-rata allocation based on ports; we choose
218  * the ip with the lowest src-ip/dst-ip/proto usage.
219  */
220 static void
221 find_best_ips_proto(u16 zone, struct nf_conntrack_tuple *tuple,
222                     const struct nf_nat_range *range,
223                     const struct nf_conn *ct,
224                     enum nf_nat_manip_type maniptype)
225 {
226         union nf_inet_addr *var_ipp;
227         unsigned int i, max;
228         /* Host order */
229         u32 minip, maxip, j, dist;
230         bool full_range;
231
232         /* No IP mapping?  Do nothing. */
233         if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
234                 return;
235
236         if (maniptype == NF_NAT_MANIP_SRC)
237                 var_ipp = &tuple->src.u3;
238         else
239                 var_ipp = &tuple->dst.u3;
240
241         /* Fast path: only one choice. */
242         if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
243                 *var_ipp = range->min_addr;
244                 return;
245         }
246
247         if (nf_ct_l3num(ct) == NFPROTO_IPV4)
248                 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
249         else
250                 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
251
252         /* Hashing source and destination IPs gives a fairly even
253          * spread in practice (if there are a small number of IPs
254          * involved, there usually aren't that many connections
255          * anyway).  The consistency means that servers see the same
256          * client coming from the same IP (some Internet Banking sites
257          * like this), even across reboots.
258          */
259         j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
260                    range->flags & NF_NAT_RANGE_PERSISTENT ?
261                         0 : (__force u32)tuple->dst.u3.all[max] ^ zone);
262
263         full_range = false;
264         for (i = 0; i <= max; i++) {
265                 /* If first bytes of the address are at the maximum, use the
266                  * distance. Otherwise use the full range.
267                  */
268                 if (!full_range) {
269                         minip = ntohl((__force __be32)range->min_addr.all[i]);
270                         maxip = ntohl((__force __be32)range->max_addr.all[i]);
271                         dist  = maxip - minip + 1;
272                 } else {
273                         minip = 0;
274                         dist  = ~0;
275                 }
276
277                 var_ipp->all[i] = (__force __u32)
278                         htonl(minip + reciprocal_scale(j, dist));
279                 if (var_ipp->all[i] != range->max_addr.all[i])
280                         full_range = true;
281
282                 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
283                         j ^= (__force u32)tuple->dst.u3.all[i];
284         }
285 }
286
287 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
288  * we change the source to map into the range. For NF_INET_PRE_ROUTING
289  * and NF_INET_LOCAL_OUT, we change the destination to map into the
290  * range. It might not be possible to get a unique tuple, but we try.
291  * At worst (or if we race), we will end up with a final duplicate in
292  * __ip_conntrack_confirm and drop the packet. */
293 static void
294 get_unique_tuple(struct nf_conntrack_tuple *tuple,
295                  const struct nf_conntrack_tuple *orig_tuple,
296                  const struct nf_nat_range *range,
297                  struct nf_conn *ct,
298                  enum nf_nat_manip_type maniptype)
299 {
300         const struct nf_nat_l3proto *l3proto;
301         const struct nf_nat_l4proto *l4proto;
302         struct net *net = nf_ct_net(ct);
303         u16 zone = nf_ct_zone(ct);
304
305         rcu_read_lock();
306         l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
307         l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
308                                         orig_tuple->dst.protonum);
309
310         /* 1) If this srcip/proto/src-proto-part is currently mapped,
311          * and that same mapping gives a unique tuple within the given
312          * range, use that.
313          *
314          * This is only required for source (ie. NAT/masq) mappings.
315          * So far, we don't do local source mappings, so multiple
316          * manips not an issue.
317          */
318         if (maniptype == NF_NAT_MANIP_SRC &&
319             !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
320                 /* try the original tuple first */
321                 if (in_range(l3proto, l4proto, orig_tuple, range)) {
322                         if (!nf_nat_used_tuple(orig_tuple, ct)) {
323                                 *tuple = *orig_tuple;
324                                 goto out;
325                         }
326                 } else if (find_appropriate_src(net, zone, l3proto, l4proto,
327                                                 orig_tuple, tuple, range)) {
328                         pr_debug("get_unique_tuple: Found current src map\n");
329                         if (!nf_nat_used_tuple(tuple, ct))
330                                 goto out;
331                 }
332         }
333
334         /* 2) Select the least-used IP/proto combination in the given range */
335         *tuple = *orig_tuple;
336         find_best_ips_proto(zone, tuple, range, ct, maniptype);
337
338         /* 3) The per-protocol part of the manip is made to map into
339          * the range to make a unique tuple.
340          */
341
342         /* Only bother mapping if it's not already in range and unique */
343         if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
344                 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
345                         if (l4proto->in_range(tuple, maniptype,
346                                               &range->min_proto,
347                                               &range->max_proto) &&
348                             (range->min_proto.all == range->max_proto.all ||
349                              !nf_nat_used_tuple(tuple, ct)))
350                                 goto out;
351                 } else if (!nf_nat_used_tuple(tuple, ct)) {
352                         goto out;
353                 }
354         }
355
356         /* Last change: get protocol to try to obtain unique tuple. */
357         l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
358 out:
359         rcu_read_unlock();
360 }
361
362 struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct)
363 {
364         struct nf_conn_nat *nat = nfct_nat(ct);
365         if (nat)
366                 return nat;
367
368         if (!nf_ct_is_confirmed(ct))
369                 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
370
371         return nat;
372 }
373 EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add);
374
375 unsigned int
376 nf_nat_setup_info(struct nf_conn *ct,
377                   const struct nf_nat_range *range,
378                   enum nf_nat_manip_type maniptype)
379 {
380         struct net *net = nf_ct_net(ct);
381         struct nf_conntrack_tuple curr_tuple, new_tuple;
382         struct nf_conn_nat *nat;
383
384         /* nat helper or nfctnetlink also setup binding */
385         nat = nf_ct_nat_ext_add(ct);
386         if (nat == NULL)
387                 return NF_ACCEPT;
388
389         NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
390                      maniptype == NF_NAT_MANIP_DST);
391         BUG_ON(nf_nat_initialized(ct, maniptype));
392
393         /* What we've got will look like inverse of reply. Normally
394          * this is what is in the conntrack, except for prior
395          * manipulations (future optimization: if num_manips == 0,
396          * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
397          */
398         nf_ct_invert_tuplepr(&curr_tuple,
399                              &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
400
401         get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
402
403         if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
404                 struct nf_conntrack_tuple reply;
405
406                 /* Alter conntrack table so will recognize replies. */
407                 nf_ct_invert_tuplepr(&reply, &new_tuple);
408                 nf_conntrack_alter_reply(ct, &reply);
409
410                 /* Non-atomic: we own this at the moment. */
411                 if (maniptype == NF_NAT_MANIP_SRC)
412                         ct->status |= IPS_SRC_NAT;
413                 else
414                         ct->status |= IPS_DST_NAT;
415
416                 if (nfct_help(ct))
417                         nfct_seqadj_ext_add(ct);
418         }
419
420         if (maniptype == NF_NAT_MANIP_SRC) {
421                 unsigned int srchash;
422
423                 srchash = hash_by_src(net, nf_ct_zone(ct),
424                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
425                 spin_lock_bh(&nf_nat_lock);
426                 /* nf_conntrack_alter_reply might re-allocate extension aera */
427                 nat = nfct_nat(ct);
428                 nat->ct = ct;
429                 hlist_add_head_rcu(&nat->bysource,
430                                    &net->ct.nat_bysource[srchash]);
431                 spin_unlock_bh(&nf_nat_lock);
432         }
433
434         /* It's done. */
435         if (maniptype == NF_NAT_MANIP_DST)
436                 ct->status |= IPS_DST_NAT_DONE;
437         else
438                 ct->status |= IPS_SRC_NAT_DONE;
439
440         return NF_ACCEPT;
441 }
442 EXPORT_SYMBOL(nf_nat_setup_info);
443
444 static unsigned int
445 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
446 {
447         /* Force range to this IP; let proto decide mapping for
448          * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
449          * Use reply in case it's already been mangled (eg local packet).
450          */
451         union nf_inet_addr ip =
452                 (manip == NF_NAT_MANIP_SRC ?
453                 ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
454                 ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
455         struct nf_nat_range range = {
456                 .flags          = NF_NAT_RANGE_MAP_IPS,
457                 .min_addr       = ip,
458                 .max_addr       = ip,
459         };
460         return nf_nat_setup_info(ct, &range, manip);
461 }
462
463 unsigned int
464 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
465 {
466         return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
467 }
468 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
469
470 /* Do packet manipulations according to nf_nat_setup_info. */
471 unsigned int nf_nat_packet(struct nf_conn *ct,
472                            enum ip_conntrack_info ctinfo,
473                            unsigned int hooknum,
474                            struct sk_buff *skb)
475 {
476         const struct nf_nat_l3proto *l3proto;
477         const struct nf_nat_l4proto *l4proto;
478         enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
479         unsigned long statusbit;
480         enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
481
482         if (mtype == NF_NAT_MANIP_SRC)
483                 statusbit = IPS_SRC_NAT;
484         else
485                 statusbit = IPS_DST_NAT;
486
487         /* Invert if this is reply dir. */
488         if (dir == IP_CT_DIR_REPLY)
489                 statusbit ^= IPS_NAT_MASK;
490
491         /* Non-atomic: these bits don't change. */
492         if (ct->status & statusbit) {
493                 struct nf_conntrack_tuple target;
494
495                 /* We are aiming to look like inverse of other direction. */
496                 nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
497
498                 l3proto = __nf_nat_l3proto_find(target.src.l3num);
499                 l4proto = __nf_nat_l4proto_find(target.src.l3num,
500                                                 target.dst.protonum);
501                 if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
502                         return NF_DROP;
503         }
504         return NF_ACCEPT;
505 }
506 EXPORT_SYMBOL_GPL(nf_nat_packet);
507
508 struct nf_nat_proto_clean {
509         u8      l3proto;
510         u8      l4proto;
511 };
512
513 /* kill conntracks with affected NAT section */
514 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
515 {
516         const struct nf_nat_proto_clean *clean = data;
517         struct nf_conn_nat *nat = nfct_nat(i);
518
519         if (!nat)
520                 return 0;
521
522         if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
523             (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
524                 return 0;
525
526         return i->status & IPS_NAT_MASK ? 1 : 0;
527 }
528
529 static int nf_nat_proto_clean(struct nf_conn *ct, void *data)
530 {
531         struct nf_conn_nat *nat = nfct_nat(ct);
532
533         if (nf_nat_proto_remove(ct, data))
534                 return 1;
535
536         if (!nat || !nat->ct)
537                 return 0;
538
539         /* This netns is being destroyed, and conntrack has nat null binding.
540          * Remove it from bysource hash, as the table will be freed soon.
541          *
542          * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack()
543          * will delete entry from already-freed table.
544          */
545         if (!del_timer(&ct->timeout))
546                 return 1;
547
548         spin_lock_bh(&nf_nat_lock);
549         hlist_del_rcu(&nat->bysource);
550         ct->status &= ~IPS_NAT_DONE_MASK;
551         nat->ct = NULL;
552         spin_unlock_bh(&nf_nat_lock);
553
554         add_timer(&ct->timeout);
555
556         /* don't delete conntrack.  Although that would make things a lot
557          * simpler, we'd end up flushing all conntracks on nat rmmod.
558          */
559         return 0;
560 }
561
562 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
563 {
564         struct nf_nat_proto_clean clean = {
565                 .l3proto = l3proto,
566                 .l4proto = l4proto,
567         };
568         struct net *net;
569
570         rtnl_lock();
571         for_each_net(net)
572                 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean, 0, 0);
573         rtnl_unlock();
574 }
575
576 static void nf_nat_l3proto_clean(u8 l3proto)
577 {
578         struct nf_nat_proto_clean clean = {
579                 .l3proto = l3proto,
580         };
581         struct net *net;
582
583         rtnl_lock();
584
585         for_each_net(net)
586                 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean, 0, 0);
587         rtnl_unlock();
588 }
589
590 /* Protocol registration. */
591 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
592 {
593         const struct nf_nat_l4proto **l4protos;
594         unsigned int i;
595         int ret = 0;
596
597         mutex_lock(&nf_nat_proto_mutex);
598         if (nf_nat_l4protos[l3proto] == NULL) {
599                 l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
600                                    GFP_KERNEL);
601                 if (l4protos == NULL) {
602                         ret = -ENOMEM;
603                         goto out;
604                 }
605
606                 for (i = 0; i < IPPROTO_MAX; i++)
607                         RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
608
609                 /* Before making proto_array visible to lockless readers,
610                  * we must make sure its content is committed to memory.
611                  */
612                 smp_wmb();
613
614                 nf_nat_l4protos[l3proto] = l4protos;
615         }
616
617         if (rcu_dereference_protected(
618                         nf_nat_l4protos[l3proto][l4proto->l4proto],
619                         lockdep_is_held(&nf_nat_proto_mutex)
620                         ) != &nf_nat_l4proto_unknown) {
621                 ret = -EBUSY;
622                 goto out;
623         }
624         RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
625  out:
626         mutex_unlock(&nf_nat_proto_mutex);
627         return ret;
628 }
629 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
630
631 /* No one stores the protocol anywhere; simply delete it. */
632 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
633 {
634         mutex_lock(&nf_nat_proto_mutex);
635         RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
636                          &nf_nat_l4proto_unknown);
637         mutex_unlock(&nf_nat_proto_mutex);
638         synchronize_rcu();
639
640         nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
641 }
642 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
643
644 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
645 {
646         int err;
647
648         err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
649         if (err < 0)
650                 return err;
651
652         mutex_lock(&nf_nat_proto_mutex);
653         RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
654                          &nf_nat_l4proto_tcp);
655         RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
656                          &nf_nat_l4proto_udp);
657         mutex_unlock(&nf_nat_proto_mutex);
658
659         RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
660         return 0;
661 }
662 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
663
664 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
665 {
666         mutex_lock(&nf_nat_proto_mutex);
667         RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
668         mutex_unlock(&nf_nat_proto_mutex);
669         synchronize_rcu();
670
671         nf_nat_l3proto_clean(l3proto->l3proto);
672         nf_ct_l3proto_module_put(l3proto->l3proto);
673 }
674 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
675
676 /* No one using conntrack by the time this called. */
677 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
678 {
679         struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
680
681         if (nat == NULL || nat->ct == NULL)
682                 return;
683
684         NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
685
686         spin_lock_bh(&nf_nat_lock);
687         hlist_del_rcu(&nat->bysource);
688         spin_unlock_bh(&nf_nat_lock);
689 }
690
691 static void nf_nat_move_storage(void *new, void *old)
692 {
693         struct nf_conn_nat *new_nat = new;
694         struct nf_conn_nat *old_nat = old;
695         struct nf_conn *ct = old_nat->ct;
696
697         if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
698                 return;
699
700         spin_lock_bh(&nf_nat_lock);
701         hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
702         spin_unlock_bh(&nf_nat_lock);
703 }
704
705 static struct nf_ct_ext_type nat_extend __read_mostly = {
706         .len            = sizeof(struct nf_conn_nat),
707         .align          = __alignof__(struct nf_conn_nat),
708         .destroy        = nf_nat_cleanup_conntrack,
709         .move           = nf_nat_move_storage,
710         .id             = NF_CT_EXT_NAT,
711         .flags          = NF_CT_EXT_F_PREALLOC,
712 };
713
714 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
715
716 #include <linux/netfilter/nfnetlink.h>
717 #include <linux/netfilter/nfnetlink_conntrack.h>
718
719 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
720         [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
721         [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
722 };
723
724 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
725                                      const struct nf_conn *ct,
726                                      struct nf_nat_range *range)
727 {
728         struct nlattr *tb[CTA_PROTONAT_MAX+1];
729         const struct nf_nat_l4proto *l4proto;
730         int err;
731
732         err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
733         if (err < 0)
734                 return err;
735
736         l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
737         if (l4proto->nlattr_to_range)
738                 err = l4proto->nlattr_to_range(tb, range);
739
740         return err;
741 }
742
743 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
744         [CTA_NAT_V4_MINIP]      = { .type = NLA_U32 },
745         [CTA_NAT_V4_MAXIP]      = { .type = NLA_U32 },
746         [CTA_NAT_V6_MINIP]      = { .len = sizeof(struct in6_addr) },
747         [CTA_NAT_V6_MAXIP]      = { .len = sizeof(struct in6_addr) },
748         [CTA_NAT_PROTO]         = { .type = NLA_NESTED },
749 };
750
751 static int
752 nfnetlink_parse_nat(const struct nlattr *nat,
753                     const struct nf_conn *ct, struct nf_nat_range *range,
754                     const struct nf_nat_l3proto *l3proto)
755 {
756         struct nlattr *tb[CTA_NAT_MAX+1];
757         int err;
758
759         memset(range, 0, sizeof(*range));
760
761         err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
762         if (err < 0)
763                 return err;
764
765         err = l3proto->nlattr_to_range(tb, range);
766         if (err < 0)
767                 return err;
768
769         if (!tb[CTA_NAT_PROTO])
770                 return 0;
771
772         return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
773 }
774
775 /* This function is called under rcu_read_lock() */
776 static int
777 nfnetlink_parse_nat_setup(struct nf_conn *ct,
778                           enum nf_nat_manip_type manip,
779                           const struct nlattr *attr)
780 {
781         struct nf_nat_range range;
782         const struct nf_nat_l3proto *l3proto;
783         int err;
784
785         /* Should not happen, restricted to creating new conntracks
786          * via ctnetlink.
787          */
788         if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
789                 return -EEXIST;
790
791         /* Make sure that L3 NAT is there by when we call nf_nat_setup_info to
792          * attach the null binding, otherwise this may oops.
793          */
794         l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
795         if (l3proto == NULL)
796                 return -EAGAIN;
797
798         /* No NAT information has been passed, allocate the null-binding */
799         if (attr == NULL)
800                 return __nf_nat_alloc_null_binding(ct, manip);
801
802         err = nfnetlink_parse_nat(attr, ct, &range, l3proto);
803         if (err < 0)
804                 return err;
805
806         return nf_nat_setup_info(ct, &range, manip);
807 }
808 #else
809 static int
810 nfnetlink_parse_nat_setup(struct nf_conn *ct,
811                           enum nf_nat_manip_type manip,
812                           const struct nlattr *attr)
813 {
814         return -EOPNOTSUPP;
815 }
816 #endif
817
818 static int __net_init nf_nat_net_init(struct net *net)
819 {
820         /* Leave them the same for the moment. */
821         net->ct.nat_htable_size = net->ct.htable_size;
822         net->ct.nat_bysource = nf_ct_alloc_hashtable(&net->ct.nat_htable_size, 0);
823         if (!net->ct.nat_bysource)
824                 return -ENOMEM;
825         return 0;
826 }
827
828 static void __net_exit nf_nat_net_exit(struct net *net)
829 {
830         struct nf_nat_proto_clean clean = {};
831
832         nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean, 0, 0);
833         synchronize_rcu();
834         nf_ct_free_hashtable(net->ct.nat_bysource, net->ct.nat_htable_size);
835 }
836
837 static struct pernet_operations nf_nat_net_ops = {
838         .init = nf_nat_net_init,
839         .exit = nf_nat_net_exit,
840 };
841
842 static struct nf_ct_helper_expectfn follow_master_nat = {
843         .name           = "nat-follow-master",
844         .expectfn       = nf_nat_follow_master,
845 };
846
847 static int __init nf_nat_init(void)
848 {
849         int ret;
850
851         ret = nf_ct_extend_register(&nat_extend);
852         if (ret < 0) {
853                 printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
854                 return ret;
855         }
856
857         ret = register_pernet_subsys(&nf_nat_net_ops);
858         if (ret < 0)
859                 goto cleanup_extend;
860
861         nf_ct_helper_expectfn_register(&follow_master_nat);
862
863         /* Initialize fake conntrack so that NAT will skip it */
864         nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
865
866         BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
867         RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
868                            nfnetlink_parse_nat_setup);
869 #ifdef CONFIG_XFRM
870         BUG_ON(nf_nat_decode_session_hook != NULL);
871         RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
872 #endif
873         return 0;
874
875  cleanup_extend:
876         nf_ct_extend_unregister(&nat_extend);
877         return ret;
878 }
879
880 static void __exit nf_nat_cleanup(void)
881 {
882         unsigned int i;
883
884         unregister_pernet_subsys(&nf_nat_net_ops);
885         nf_ct_extend_unregister(&nat_extend);
886         nf_ct_helper_expectfn_unregister(&follow_master_nat);
887         RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
888 #ifdef CONFIG_XFRM
889         RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
890 #endif
891         for (i = 0; i < NFPROTO_NUMPROTO; i++)
892                 kfree(nf_nat_l4protos[i]);
893         synchronize_net();
894 }
895
896 MODULE_LICENSE("GPL");
897
898 module_init(nf_nat_init);
899 module_exit(nf_nat_cleanup);