These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Changes:
14  *      Yuji SEKIYA @USAGI:     Support default route on router node;
15  *                              remove ip6_null_entry from the top of
16  *                              routing table.
17  *      Ville Nuorvala:         Fixed routing subtrees.
18  */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51         struct fib6_walker w;
52         struct net *net;
53         int (*func)(struct rt6_info *, void *arg);
54         int sernum;
55         void *arg;
56 };
57
58 static DEFINE_RWLOCK(fib6_walker_lock);
59
60 #ifdef CONFIG_IPV6_SUBTREES
61 #define FWS_INIT FWS_S
62 #else
63 #define FWS_INIT FWS_L
64 #endif
65
66 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
67 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
68 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
69 static int fib6_walk(struct fib6_walker *w);
70 static int fib6_walk_continue(struct fib6_walker *w);
71
72 /*
73  *      A routing update causes an increase of the serial number on the
74  *      affected subtree. This allows for cached routes to be asynchronously
75  *      tested when modifications are made to the destination cache as a
76  *      result of redirects, path MTU changes, etc.
77  */
78
79 static void fib6_gc_timer_cb(unsigned long arg);
80
81 static LIST_HEAD(fib6_walkers);
82 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
83
84 static void fib6_walker_link(struct fib6_walker *w)
85 {
86         write_lock_bh(&fib6_walker_lock);
87         list_add(&w->lh, &fib6_walkers);
88         write_unlock_bh(&fib6_walker_lock);
89 }
90
91 static void fib6_walker_unlink(struct fib6_walker *w)
92 {
93         write_lock_bh(&fib6_walker_lock);
94         list_del(&w->lh);
95         write_unlock_bh(&fib6_walker_lock);
96 }
97
98 static int fib6_new_sernum(struct net *net)
99 {
100         int new, old;
101
102         do {
103                 old = atomic_read(&net->ipv6.fib6_sernum);
104                 new = old < INT_MAX ? old + 1 : 1;
105         } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
106                                 old, new) != old);
107         return new;
108 }
109
110 enum {
111         FIB6_NO_SERNUM_CHANGE = 0,
112 };
113
114 /*
115  *      Auxiliary address test functions for the radix tree.
116  *
117  *      These assume a 32bit processor (although it will work on
118  *      64bit processors)
119  */
120
121 /*
122  *      test bit
123  */
124 #if defined(__LITTLE_ENDIAN)
125 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
126 #else
127 # define BITOP_BE32_SWIZZLE     0
128 #endif
129
130 static __be32 addr_bit_set(const void *token, int fn_bit)
131 {
132         const __be32 *addr = token;
133         /*
134          * Here,
135          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
136          * is optimized version of
137          *      htonl(1 << ((~fn_bit)&0x1F))
138          * See include/asm-generic/bitops/le.h.
139          */
140         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
141                addr[fn_bit >> 5];
142 }
143
144 static struct fib6_node *node_alloc(void)
145 {
146         struct fib6_node *fn;
147
148         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
149
150         return fn;
151 }
152
153 static void node_free(struct fib6_node *fn)
154 {
155         kmem_cache_free(fib6_node_kmem, fn);
156 }
157
158 static void rt6_rcu_free(struct rt6_info *rt)
159 {
160         call_rcu(&rt->dst.rcu_head, dst_rcu_free);
161 }
162
163 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
164 {
165         int cpu;
166
167         if (!non_pcpu_rt->rt6i_pcpu)
168                 return;
169
170         for_each_possible_cpu(cpu) {
171                 struct rt6_info **ppcpu_rt;
172                 struct rt6_info *pcpu_rt;
173
174                 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
175                 pcpu_rt = *ppcpu_rt;
176                 if (pcpu_rt) {
177                         rt6_rcu_free(pcpu_rt);
178                         *ppcpu_rt = NULL;
179                 }
180         }
181
182         non_pcpu_rt->rt6i_pcpu = NULL;
183 }
184
185 static void rt6_release(struct rt6_info *rt)
186 {
187         if (atomic_dec_and_test(&rt->rt6i_ref)) {
188                 rt6_free_pcpu(rt);
189                 rt6_rcu_free(rt);
190         }
191 }
192
193 static void fib6_link_table(struct net *net, struct fib6_table *tb)
194 {
195         unsigned int h;
196
197         /*
198          * Initialize table lock at a single place to give lockdep a key,
199          * tables aren't visible prior to being linked to the list.
200          */
201         rwlock_init(&tb->tb6_lock);
202
203         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
204
205         /*
206          * No protection necessary, this is the only list mutatation
207          * operation, tables never disappear once they exist.
208          */
209         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
210 }
211
212 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
213
214 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
215 {
216         struct fib6_table *table;
217
218         table = kzalloc(sizeof(*table), GFP_ATOMIC);
219         if (table) {
220                 table->tb6_id = id;
221                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
222                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
223                 inet_peer_base_init(&table->tb6_peers);
224         }
225
226         return table;
227 }
228
229 struct fib6_table *fib6_new_table(struct net *net, u32 id)
230 {
231         struct fib6_table *tb;
232
233         if (id == 0)
234                 id = RT6_TABLE_MAIN;
235         tb = fib6_get_table(net, id);
236         if (tb)
237                 return tb;
238
239         tb = fib6_alloc_table(net, id);
240         if (tb)
241                 fib6_link_table(net, tb);
242
243         return tb;
244 }
245
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248         struct fib6_table *tb;
249         struct hlist_head *head;
250         unsigned int h;
251
252         if (id == 0)
253                 id = RT6_TABLE_MAIN;
254         h = id & (FIB6_TABLE_HASHSZ - 1);
255         rcu_read_lock();
256         head = &net->ipv6.fib_table_hash[h];
257         hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258                 if (tb->tb6_id == id) {
259                         rcu_read_unlock();
260                         return tb;
261                 }
262         }
263         rcu_read_unlock();
264
265         return NULL;
266 }
267 EXPORT_SYMBOL_GPL(fib6_get_table);
268
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271         fib6_link_table(net, net->ipv6.fib6_main_tbl);
272         fib6_link_table(net, net->ipv6.fib6_local_tbl);
273 }
274 #else
275
276 struct fib6_table *fib6_new_table(struct net *net, u32 id)
277 {
278         return fib6_get_table(net, id);
279 }
280
281 struct fib6_table *fib6_get_table(struct net *net, u32 id)
282 {
283           return net->ipv6.fib6_main_tbl;
284 }
285
286 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
287                                    int flags, pol_lookup_t lookup)
288 {
289         struct rt6_info *rt;
290
291         rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
292         if (rt->rt6i_flags & RTF_REJECT &&
293             rt->dst.error == -EAGAIN) {
294                 ip6_rt_put(rt);
295                 rt = net->ipv6.ip6_null_entry;
296                 dst_hold(&rt->dst);
297         }
298
299         return &rt->dst;
300 }
301
302 static void __net_init fib6_tables_init(struct net *net)
303 {
304         fib6_link_table(net, net->ipv6.fib6_main_tbl);
305 }
306
307 #endif
308
309 static int fib6_dump_node(struct fib6_walker *w)
310 {
311         int res;
312         struct rt6_info *rt;
313
314         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
315                 res = rt6_dump_route(rt, w->args);
316                 if (res < 0) {
317                         /* Frame is full, suspend walking */
318                         w->leaf = rt;
319                         return 1;
320                 }
321         }
322         w->leaf = NULL;
323         return 0;
324 }
325
326 static void fib6_dump_end(struct netlink_callback *cb)
327 {
328         struct fib6_walker *w = (void *)cb->args[2];
329
330         if (w) {
331                 if (cb->args[4]) {
332                         cb->args[4] = 0;
333                         fib6_walker_unlink(w);
334                 }
335                 cb->args[2] = 0;
336                 kfree(w);
337         }
338         cb->done = (void *)cb->args[3];
339         cb->args[1] = 3;
340 }
341
342 static int fib6_dump_done(struct netlink_callback *cb)
343 {
344         fib6_dump_end(cb);
345         return cb->done ? cb->done(cb) : 0;
346 }
347
348 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
349                            struct netlink_callback *cb)
350 {
351         struct fib6_walker *w;
352         int res;
353
354         w = (void *)cb->args[2];
355         w->root = &table->tb6_root;
356
357         if (cb->args[4] == 0) {
358                 w->count = 0;
359                 w->skip = 0;
360
361                 read_lock_bh(&table->tb6_lock);
362                 res = fib6_walk(w);
363                 read_unlock_bh(&table->tb6_lock);
364                 if (res > 0) {
365                         cb->args[4] = 1;
366                         cb->args[5] = w->root->fn_sernum;
367                 }
368         } else {
369                 if (cb->args[5] != w->root->fn_sernum) {
370                         /* Begin at the root if the tree changed */
371                         cb->args[5] = w->root->fn_sernum;
372                         w->state = FWS_INIT;
373                         w->node = w->root;
374                         w->skip = w->count;
375                 } else
376                         w->skip = 0;
377
378                 read_lock_bh(&table->tb6_lock);
379                 res = fib6_walk_continue(w);
380                 read_unlock_bh(&table->tb6_lock);
381                 if (res <= 0) {
382                         fib6_walker_unlink(w);
383                         cb->args[4] = 0;
384                 }
385         }
386
387         return res;
388 }
389
390 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
391 {
392         struct net *net = sock_net(skb->sk);
393         unsigned int h, s_h;
394         unsigned int e = 0, s_e;
395         struct rt6_rtnl_dump_arg arg;
396         struct fib6_walker *w;
397         struct fib6_table *tb;
398         struct hlist_head *head;
399         int res = 0;
400
401         s_h = cb->args[0];
402         s_e = cb->args[1];
403
404         w = (void *)cb->args[2];
405         if (!w) {
406                 /* New dump:
407                  *
408                  * 1. hook callback destructor.
409                  */
410                 cb->args[3] = (long)cb->done;
411                 cb->done = fib6_dump_done;
412
413                 /*
414                  * 2. allocate and initialize walker.
415                  */
416                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
417                 if (!w)
418                         return -ENOMEM;
419                 w->func = fib6_dump_node;
420                 cb->args[2] = (long)w;
421         }
422
423         arg.skb = skb;
424         arg.cb = cb;
425         arg.net = net;
426         w->args = &arg;
427
428         rcu_read_lock();
429         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
430                 e = 0;
431                 head = &net->ipv6.fib_table_hash[h];
432                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
433                         if (e < s_e)
434                                 goto next;
435                         res = fib6_dump_table(tb, skb, cb);
436                         if (res != 0)
437                                 goto out;
438 next:
439                         e++;
440                 }
441         }
442 out:
443         rcu_read_unlock();
444         cb->args[1] = e;
445         cb->args[0] = h;
446
447         res = res < 0 ? res : skb->len;
448         if (res <= 0)
449                 fib6_dump_end(cb);
450         return res;
451 }
452
453 /*
454  *      Routing Table
455  *
456  *      return the appropriate node for a routing tree "add" operation
457  *      by either creating and inserting or by returning an existing
458  *      node.
459  */
460
461 static struct fib6_node *fib6_add_1(struct fib6_node *root,
462                                      struct in6_addr *addr, int plen,
463                                      int offset, int allow_create,
464                                      int replace_required, int sernum)
465 {
466         struct fib6_node *fn, *in, *ln;
467         struct fib6_node *pn = NULL;
468         struct rt6key *key;
469         int     bit;
470         __be32  dir = 0;
471
472         RT6_TRACE("fib6_add_1\n");
473
474         /* insert node in tree */
475
476         fn = root;
477
478         do {
479                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
480
481                 /*
482                  *      Prefix match
483                  */
484                 if (plen < fn->fn_bit ||
485                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
486                         if (!allow_create) {
487                                 if (replace_required) {
488                                         pr_warn("Can't replace route, no match found\n");
489                                         return ERR_PTR(-ENOENT);
490                                 }
491                                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
492                         }
493                         goto insert_above;
494                 }
495
496                 /*
497                  *      Exact match ?
498                  */
499
500                 if (plen == fn->fn_bit) {
501                         /* clean up an intermediate node */
502                         if (!(fn->fn_flags & RTN_RTINFO)) {
503                                 rt6_release(fn->leaf);
504                                 fn->leaf = NULL;
505                         }
506
507                         fn->fn_sernum = sernum;
508
509                         return fn;
510                 }
511
512                 /*
513                  *      We have more bits to go
514                  */
515
516                 /* Try to walk down on tree. */
517                 fn->fn_sernum = sernum;
518                 dir = addr_bit_set(addr, fn->fn_bit);
519                 pn = fn;
520                 fn = dir ? fn->right : fn->left;
521         } while (fn);
522
523         if (!allow_create) {
524                 /* We should not create new node because
525                  * NLM_F_REPLACE was specified without NLM_F_CREATE
526                  * I assume it is safe to require NLM_F_CREATE when
527                  * REPLACE flag is used! Later we may want to remove the
528                  * check for replace_required, because according
529                  * to netlink specification, NLM_F_CREATE
530                  * MUST be specified if new route is created.
531                  * That would keep IPv6 consistent with IPv4
532                  */
533                 if (replace_required) {
534                         pr_warn("Can't replace route, no match found\n");
535                         return ERR_PTR(-ENOENT);
536                 }
537                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
538         }
539         /*
540          *      We walked to the bottom of tree.
541          *      Create new leaf node without children.
542          */
543
544         ln = node_alloc();
545
546         if (!ln)
547                 return ERR_PTR(-ENOMEM);
548         ln->fn_bit = plen;
549
550         ln->parent = pn;
551         ln->fn_sernum = sernum;
552
553         if (dir)
554                 pn->right = ln;
555         else
556                 pn->left  = ln;
557
558         return ln;
559
560
561 insert_above:
562         /*
563          * split since we don't have a common prefix anymore or
564          * we have a less significant route.
565          * we've to insert an intermediate node on the list
566          * this new node will point to the one we need to create
567          * and the current
568          */
569
570         pn = fn->parent;
571
572         /* find 1st bit in difference between the 2 addrs.
573
574            See comment in __ipv6_addr_diff: bit may be an invalid value,
575            but if it is >= plen, the value is ignored in any case.
576          */
577
578         bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
579
580         /*
581          *              (intermediate)[in]
582          *                /        \
583          *      (new leaf node)[ln] (old node)[fn]
584          */
585         if (plen > bit) {
586                 in = node_alloc();
587                 ln = node_alloc();
588
589                 if (!in || !ln) {
590                         if (in)
591                                 node_free(in);
592                         if (ln)
593                                 node_free(ln);
594                         return ERR_PTR(-ENOMEM);
595                 }
596
597                 /*
598                  * new intermediate node.
599                  * RTN_RTINFO will
600                  * be off since that an address that chooses one of
601                  * the branches would not match less specific routes
602                  * in the other branch
603                  */
604
605                 in->fn_bit = bit;
606
607                 in->parent = pn;
608                 in->leaf = fn->leaf;
609                 atomic_inc(&in->leaf->rt6i_ref);
610
611                 in->fn_sernum = sernum;
612
613                 /* update parent pointer */
614                 if (dir)
615                         pn->right = in;
616                 else
617                         pn->left  = in;
618
619                 ln->fn_bit = plen;
620
621                 ln->parent = in;
622                 fn->parent = in;
623
624                 ln->fn_sernum = sernum;
625
626                 if (addr_bit_set(addr, bit)) {
627                         in->right = ln;
628                         in->left  = fn;
629                 } else {
630                         in->left  = ln;
631                         in->right = fn;
632                 }
633         } else { /* plen <= bit */
634
635                 /*
636                  *              (new leaf node)[ln]
637                  *                /        \
638                  *           (old node)[fn] NULL
639                  */
640
641                 ln = node_alloc();
642
643                 if (!ln)
644                         return ERR_PTR(-ENOMEM);
645
646                 ln->fn_bit = plen;
647
648                 ln->parent = pn;
649
650                 ln->fn_sernum = sernum;
651
652                 if (dir)
653                         pn->right = ln;
654                 else
655                         pn->left  = ln;
656
657                 if (addr_bit_set(&key->addr, plen))
658                         ln->right = fn;
659                 else
660                         ln->left  = fn;
661
662                 fn->parent = ln;
663         }
664         return ln;
665 }
666
667 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
668 {
669         return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
670                RTF_GATEWAY;
671 }
672
673 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
674 {
675         int i;
676
677         for (i = 0; i < RTAX_MAX; i++) {
678                 if (test_bit(i, mxc->mx_valid))
679                         mp[i] = mxc->mx[i];
680         }
681 }
682
683 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
684 {
685         if (!mxc->mx)
686                 return 0;
687
688         if (dst->flags & DST_HOST) {
689                 u32 *mp = dst_metrics_write_ptr(dst);
690
691                 if (unlikely(!mp))
692                         return -ENOMEM;
693
694                 fib6_copy_metrics(mp, mxc);
695         } else {
696                 dst_init_metrics(dst, mxc->mx, false);
697
698                 /* We've stolen mx now. */
699                 mxc->mx = NULL;
700         }
701
702         return 0;
703 }
704
705 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
706                           struct net *net)
707 {
708         if (atomic_read(&rt->rt6i_ref) != 1) {
709                 /* This route is used as dummy address holder in some split
710                  * nodes. It is not leaked, but it still holds other resources,
711                  * which must be released in time. So, scan ascendant nodes
712                  * and replace dummy references to this route with references
713                  * to still alive ones.
714                  */
715                 while (fn) {
716                         if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
717                                 fn->leaf = fib6_find_prefix(net, fn);
718                                 atomic_inc(&fn->leaf->rt6i_ref);
719                                 rt6_release(rt);
720                         }
721                         fn = fn->parent;
722                 }
723                 /* No more references are possible at this point. */
724                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
725         }
726 }
727
728 /*
729  *      Insert routing information in a node.
730  */
731
732 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
733                             struct nl_info *info, struct mx6_config *mxc)
734 {
735         struct rt6_info *iter = NULL;
736         struct rt6_info **ins;
737         struct rt6_info **fallback_ins = NULL;
738         int replace = (info->nlh &&
739                        (info->nlh->nlmsg_flags & NLM_F_REPLACE));
740         int add = (!info->nlh ||
741                    (info->nlh->nlmsg_flags & NLM_F_CREATE));
742         int found = 0;
743         bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
744         int err;
745
746         ins = &fn->leaf;
747
748         for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
749                 /*
750                  *      Search for duplicates
751                  */
752
753                 if (iter->rt6i_metric == rt->rt6i_metric) {
754                         /*
755                          *      Same priority level
756                          */
757                         if (info->nlh &&
758                             (info->nlh->nlmsg_flags & NLM_F_EXCL))
759                                 return -EEXIST;
760                         if (replace) {
761                                 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
762                                         found++;
763                                         break;
764                                 }
765                                 if (rt_can_ecmp)
766                                         fallback_ins = fallback_ins ?: ins;
767                                 goto next_iter;
768                         }
769
770                         if (iter->dst.dev == rt->dst.dev &&
771                             iter->rt6i_idev == rt->rt6i_idev &&
772                             ipv6_addr_equal(&iter->rt6i_gateway,
773                                             &rt->rt6i_gateway)) {
774                                 if (rt->rt6i_nsiblings)
775                                         rt->rt6i_nsiblings = 0;
776                                 if (!(iter->rt6i_flags & RTF_EXPIRES))
777                                         return -EEXIST;
778                                 if (!(rt->rt6i_flags & RTF_EXPIRES))
779                                         rt6_clean_expires(iter);
780                                 else
781                                         rt6_set_expires(iter, rt->dst.expires);
782                                 iter->rt6i_pmtu = rt->rt6i_pmtu;
783                                 return -EEXIST;
784                         }
785                         /* If we have the same destination and the same metric,
786                          * but not the same gateway, then the route we try to
787                          * add is sibling to this route, increment our counter
788                          * of siblings, and later we will add our route to the
789                          * list.
790                          * Only static routes (which don't have flag
791                          * RTF_EXPIRES) are used for ECMPv6.
792                          *
793                          * To avoid long list, we only had siblings if the
794                          * route have a gateway.
795                          */
796                         if (rt_can_ecmp &&
797                             rt6_qualify_for_ecmp(iter))
798                                 rt->rt6i_nsiblings++;
799                 }
800
801                 if (iter->rt6i_metric > rt->rt6i_metric)
802                         break;
803
804 next_iter:
805                 ins = &iter->dst.rt6_next;
806         }
807
808         if (fallback_ins && !found) {
809                 /* No ECMP-able route found, replace first non-ECMP one */
810                 ins = fallback_ins;
811                 iter = *ins;
812                 found++;
813         }
814
815         /* Reset round-robin state, if necessary */
816         if (ins == &fn->leaf)
817                 fn->rr_ptr = NULL;
818
819         /* Link this route to others same route. */
820         if (rt->rt6i_nsiblings) {
821                 unsigned int rt6i_nsiblings;
822                 struct rt6_info *sibling, *temp_sibling;
823
824                 /* Find the first route that have the same metric */
825                 sibling = fn->leaf;
826                 while (sibling) {
827                         if (sibling->rt6i_metric == rt->rt6i_metric &&
828                             rt6_qualify_for_ecmp(sibling)) {
829                                 list_add_tail(&rt->rt6i_siblings,
830                                               &sibling->rt6i_siblings);
831                                 break;
832                         }
833                         sibling = sibling->dst.rt6_next;
834                 }
835                 /* For each sibling in the list, increment the counter of
836                  * siblings. BUG() if counters does not match, list of siblings
837                  * is broken!
838                  */
839                 rt6i_nsiblings = 0;
840                 list_for_each_entry_safe(sibling, temp_sibling,
841                                          &rt->rt6i_siblings, rt6i_siblings) {
842                         sibling->rt6i_nsiblings++;
843                         BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
844                         rt6i_nsiblings++;
845                 }
846                 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
847         }
848
849         /*
850          *      insert node
851          */
852         if (!replace) {
853                 if (!add)
854                         pr_warn("NLM_F_CREATE should be set when creating new route\n");
855
856 add:
857                 err = fib6_commit_metrics(&rt->dst, mxc);
858                 if (err)
859                         return err;
860
861                 rt->dst.rt6_next = iter;
862                 *ins = rt;
863                 rt->rt6i_node = fn;
864                 atomic_inc(&rt->rt6i_ref);
865                 inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
866                 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
867
868                 if (!(fn->fn_flags & RTN_RTINFO)) {
869                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
870                         fn->fn_flags |= RTN_RTINFO;
871                 }
872
873         } else {
874                 int nsiblings;
875
876                 if (!found) {
877                         if (add)
878                                 goto add;
879                         pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
880                         return -ENOENT;
881                 }
882
883                 err = fib6_commit_metrics(&rt->dst, mxc);
884                 if (err)
885                         return err;
886
887                 *ins = rt;
888                 rt->rt6i_node = fn;
889                 rt->dst.rt6_next = iter->dst.rt6_next;
890                 atomic_inc(&rt->rt6i_ref);
891                 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
892                 if (!(fn->fn_flags & RTN_RTINFO)) {
893                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
894                         fn->fn_flags |= RTN_RTINFO;
895                 }
896                 nsiblings = iter->rt6i_nsiblings;
897                 fib6_purge_rt(iter, fn, info->nl_net);
898                 rt6_release(iter);
899
900                 if (nsiblings) {
901                         /* Replacing an ECMP route, remove all siblings */
902                         ins = &rt->dst.rt6_next;
903                         iter = *ins;
904                         while (iter) {
905                                 if (rt6_qualify_for_ecmp(iter)) {
906                                         *ins = iter->dst.rt6_next;
907                                         fib6_purge_rt(iter, fn, info->nl_net);
908                                         rt6_release(iter);
909                                         nsiblings--;
910                                 } else {
911                                         ins = &iter->dst.rt6_next;
912                                 }
913                                 iter = *ins;
914                         }
915                         WARN_ON(nsiblings != 0);
916                 }
917         }
918
919         return 0;
920 }
921
922 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
923 {
924         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
925             (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
926                 mod_timer(&net->ipv6.ip6_fib_timer,
927                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
928 }
929
930 void fib6_force_start_gc(struct net *net)
931 {
932         if (!timer_pending(&net->ipv6.ip6_fib_timer))
933                 mod_timer(&net->ipv6.ip6_fib_timer,
934                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
935 }
936
937 /*
938  *      Add routing information to the routing tree.
939  *      <destination addr>/<source addr>
940  *      with source addr info in sub-trees
941  */
942
943 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
944              struct nl_info *info, struct mx6_config *mxc)
945 {
946         struct fib6_node *fn, *pn = NULL;
947         int err = -ENOMEM;
948         int allow_create = 1;
949         int replace_required = 0;
950         int sernum = fib6_new_sernum(info->nl_net);
951
952         if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
953                          !atomic_read(&rt->dst.__refcnt)))
954                 return -EINVAL;
955
956         if (info->nlh) {
957                 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
958                         allow_create = 0;
959                 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
960                         replace_required = 1;
961         }
962         if (!allow_create && !replace_required)
963                 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
964
965         fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
966                         offsetof(struct rt6_info, rt6i_dst), allow_create,
967                         replace_required, sernum);
968         if (IS_ERR(fn)) {
969                 err = PTR_ERR(fn);
970                 fn = NULL;
971                 goto out;
972         }
973
974         pn = fn;
975
976 #ifdef CONFIG_IPV6_SUBTREES
977         if (rt->rt6i_src.plen) {
978                 struct fib6_node *sn;
979
980                 if (!fn->subtree) {
981                         struct fib6_node *sfn;
982
983                         /*
984                          * Create subtree.
985                          *
986                          *              fn[main tree]
987                          *              |
988                          *              sfn[subtree root]
989                          *                 \
990                          *                  sn[new leaf node]
991                          */
992
993                         /* Create subtree root node */
994                         sfn = node_alloc();
995                         if (!sfn)
996                                 goto st_failure;
997
998                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
999                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1000                         sfn->fn_flags = RTN_ROOT;
1001                         sfn->fn_sernum = sernum;
1002
1003                         /* Now add the first leaf node to new subtree */
1004
1005                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1006                                         rt->rt6i_src.plen,
1007                                         offsetof(struct rt6_info, rt6i_src),
1008                                         allow_create, replace_required, sernum);
1009
1010                         if (IS_ERR(sn)) {
1011                                 /* If it is failed, discard just allocated
1012                                    root, and then (in st_failure) stale node
1013                                    in main tree.
1014                                  */
1015                                 node_free(sfn);
1016                                 err = PTR_ERR(sn);
1017                                 goto st_failure;
1018                         }
1019
1020                         /* Now link new subtree to main tree */
1021                         sfn->parent = fn;
1022                         fn->subtree = sfn;
1023                 } else {
1024                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1025                                         rt->rt6i_src.plen,
1026                                         offsetof(struct rt6_info, rt6i_src),
1027                                         allow_create, replace_required, sernum);
1028
1029                         if (IS_ERR(sn)) {
1030                                 err = PTR_ERR(sn);
1031                                 goto st_failure;
1032                         }
1033                 }
1034
1035                 if (!fn->leaf) {
1036                         fn->leaf = rt;
1037                         atomic_inc(&rt->rt6i_ref);
1038                 }
1039                 fn = sn;
1040         }
1041 #endif
1042
1043         err = fib6_add_rt2node(fn, rt, info, mxc);
1044         if (!err) {
1045                 fib6_start_gc(info->nl_net, rt);
1046                 if (!(rt->rt6i_flags & RTF_CACHE))
1047                         fib6_prune_clones(info->nl_net, pn);
1048                 rt->dst.flags &= ~DST_NOCACHE;
1049         }
1050
1051 out:
1052         if (err) {
1053 #ifdef CONFIG_IPV6_SUBTREES
1054                 /*
1055                  * If fib6_add_1 has cleared the old leaf pointer in the
1056                  * super-tree leaf node we have to find a new one for it.
1057                  */
1058                 if (pn != fn && pn->leaf == rt) {
1059                         pn->leaf = NULL;
1060                         atomic_dec(&rt->rt6i_ref);
1061                 }
1062                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1063                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
1064 #if RT6_DEBUG >= 2
1065                         if (!pn->leaf) {
1066                                 WARN_ON(pn->leaf == NULL);
1067                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1068                         }
1069 #endif
1070                         atomic_inc(&pn->leaf->rt6i_ref);
1071                 }
1072 #endif
1073                 if (!(rt->dst.flags & DST_NOCACHE))
1074                         dst_free(&rt->dst);
1075         }
1076         return err;
1077
1078 #ifdef CONFIG_IPV6_SUBTREES
1079         /* Subtree creation failed, probably main tree node
1080            is orphan. If it is, shoot it.
1081          */
1082 st_failure:
1083         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1084                 fib6_repair_tree(info->nl_net, fn);
1085         if (!(rt->dst.flags & DST_NOCACHE))
1086                 dst_free(&rt->dst);
1087         return err;
1088 #endif
1089 }
1090
1091 /*
1092  *      Routing tree lookup
1093  *
1094  */
1095
1096 struct lookup_args {
1097         int                     offset;         /* key offset on rt6_info       */
1098         const struct in6_addr   *addr;          /* search key                   */
1099 };
1100
1101 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1102                                        struct lookup_args *args)
1103 {
1104         struct fib6_node *fn;
1105         __be32 dir;
1106
1107         if (unlikely(args->offset == 0))
1108                 return NULL;
1109
1110         /*
1111          *      Descend on a tree
1112          */
1113
1114         fn = root;
1115
1116         for (;;) {
1117                 struct fib6_node *next;
1118
1119                 dir = addr_bit_set(args->addr, fn->fn_bit);
1120
1121                 next = dir ? fn->right : fn->left;
1122
1123                 if (next) {
1124                         fn = next;
1125                         continue;
1126                 }
1127                 break;
1128         }
1129
1130         while (fn) {
1131                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1132                         struct rt6key *key;
1133
1134                         key = (struct rt6key *) ((u8 *) fn->leaf +
1135                                                  args->offset);
1136
1137                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1138 #ifdef CONFIG_IPV6_SUBTREES
1139                                 if (fn->subtree) {
1140                                         struct fib6_node *sfn;
1141                                         sfn = fib6_lookup_1(fn->subtree,
1142                                                             args + 1);
1143                                         if (!sfn)
1144                                                 goto backtrack;
1145                                         fn = sfn;
1146                                 }
1147 #endif
1148                                 if (fn->fn_flags & RTN_RTINFO)
1149                                         return fn;
1150                         }
1151                 }
1152 #ifdef CONFIG_IPV6_SUBTREES
1153 backtrack:
1154 #endif
1155                 if (fn->fn_flags & RTN_ROOT)
1156                         break;
1157
1158                 fn = fn->parent;
1159         }
1160
1161         return NULL;
1162 }
1163
1164 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1165                               const struct in6_addr *saddr)
1166 {
1167         struct fib6_node *fn;
1168         struct lookup_args args[] = {
1169                 {
1170                         .offset = offsetof(struct rt6_info, rt6i_dst),
1171                         .addr = daddr,
1172                 },
1173 #ifdef CONFIG_IPV6_SUBTREES
1174                 {
1175                         .offset = offsetof(struct rt6_info, rt6i_src),
1176                         .addr = saddr,
1177                 },
1178 #endif
1179                 {
1180                         .offset = 0,    /* sentinel */
1181                 }
1182         };
1183
1184         fn = fib6_lookup_1(root, daddr ? args : args + 1);
1185         if (!fn || fn->fn_flags & RTN_TL_ROOT)
1186                 fn = root;
1187
1188         return fn;
1189 }
1190
1191 /*
1192  *      Get node with specified destination prefix (and source prefix,
1193  *      if subtrees are used)
1194  */
1195
1196
1197 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1198                                        const struct in6_addr *addr,
1199                                        int plen, int offset)
1200 {
1201         struct fib6_node *fn;
1202
1203         for (fn = root; fn ; ) {
1204                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1205
1206                 /*
1207                  *      Prefix match
1208                  */
1209                 if (plen < fn->fn_bit ||
1210                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1211                         return NULL;
1212
1213                 if (plen == fn->fn_bit)
1214                         return fn;
1215
1216                 /*
1217                  *      We have more bits to go
1218                  */
1219                 if (addr_bit_set(addr, fn->fn_bit))
1220                         fn = fn->right;
1221                 else
1222                         fn = fn->left;
1223         }
1224         return NULL;
1225 }
1226
1227 struct fib6_node *fib6_locate(struct fib6_node *root,
1228                               const struct in6_addr *daddr, int dst_len,
1229                               const struct in6_addr *saddr, int src_len)
1230 {
1231         struct fib6_node *fn;
1232
1233         fn = fib6_locate_1(root, daddr, dst_len,
1234                            offsetof(struct rt6_info, rt6i_dst));
1235
1236 #ifdef CONFIG_IPV6_SUBTREES
1237         if (src_len) {
1238                 WARN_ON(saddr == NULL);
1239                 if (fn && fn->subtree)
1240                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
1241                                            offsetof(struct rt6_info, rt6i_src));
1242         }
1243 #endif
1244
1245         if (fn && fn->fn_flags & RTN_RTINFO)
1246                 return fn;
1247
1248         return NULL;
1249 }
1250
1251
1252 /*
1253  *      Deletion
1254  *
1255  */
1256
1257 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1258 {
1259         if (fn->fn_flags & RTN_ROOT)
1260                 return net->ipv6.ip6_null_entry;
1261
1262         while (fn) {
1263                 if (fn->left)
1264                         return fn->left->leaf;
1265                 if (fn->right)
1266                         return fn->right->leaf;
1267
1268                 fn = FIB6_SUBTREE(fn);
1269         }
1270         return NULL;
1271 }
1272
1273 /*
1274  *      Called to trim the tree of intermediate nodes when possible. "fn"
1275  *      is the node we want to try and remove.
1276  */
1277
1278 static struct fib6_node *fib6_repair_tree(struct net *net,
1279                                            struct fib6_node *fn)
1280 {
1281         int children;
1282         int nstate;
1283         struct fib6_node *child, *pn;
1284         struct fib6_walker *w;
1285         int iter = 0;
1286
1287         for (;;) {
1288                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1289                 iter++;
1290
1291                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1292                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1293                 WARN_ON(fn->leaf);
1294
1295                 children = 0;
1296                 child = NULL;
1297                 if (fn->right)
1298                         child = fn->right, children |= 1;
1299                 if (fn->left)
1300                         child = fn->left, children |= 2;
1301
1302                 if (children == 3 || FIB6_SUBTREE(fn)
1303 #ifdef CONFIG_IPV6_SUBTREES
1304                     /* Subtree root (i.e. fn) may have one child */
1305                     || (children && fn->fn_flags & RTN_ROOT)
1306 #endif
1307                     ) {
1308                         fn->leaf = fib6_find_prefix(net, fn);
1309 #if RT6_DEBUG >= 2
1310                         if (!fn->leaf) {
1311                                 WARN_ON(!fn->leaf);
1312                                 fn->leaf = net->ipv6.ip6_null_entry;
1313                         }
1314 #endif
1315                         atomic_inc(&fn->leaf->rt6i_ref);
1316                         return fn->parent;
1317                 }
1318
1319                 pn = fn->parent;
1320 #ifdef CONFIG_IPV6_SUBTREES
1321                 if (FIB6_SUBTREE(pn) == fn) {
1322                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1323                         FIB6_SUBTREE(pn) = NULL;
1324                         nstate = FWS_L;
1325                 } else {
1326                         WARN_ON(fn->fn_flags & RTN_ROOT);
1327 #endif
1328                         if (pn->right == fn)
1329                                 pn->right = child;
1330                         else if (pn->left == fn)
1331                                 pn->left = child;
1332 #if RT6_DEBUG >= 2
1333                         else
1334                                 WARN_ON(1);
1335 #endif
1336                         if (child)
1337                                 child->parent = pn;
1338                         nstate = FWS_R;
1339 #ifdef CONFIG_IPV6_SUBTREES
1340                 }
1341 #endif
1342
1343                 read_lock(&fib6_walker_lock);
1344                 FOR_WALKERS(w) {
1345                         if (!child) {
1346                                 if (w->root == fn) {
1347                                         w->root = w->node = NULL;
1348                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1349                                 } else if (w->node == fn) {
1350                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1351                                         w->node = pn;
1352                                         w->state = nstate;
1353                                 }
1354                         } else {
1355                                 if (w->root == fn) {
1356                                         w->root = child;
1357                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1358                                 }
1359                                 if (w->node == fn) {
1360                                         w->node = child;
1361                                         if (children&2) {
1362                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1363                                                 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1364                                         } else {
1365                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1366                                                 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1367                                         }
1368                                 }
1369                         }
1370                 }
1371                 read_unlock(&fib6_walker_lock);
1372
1373                 node_free(fn);
1374                 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1375                         return pn;
1376
1377                 rt6_release(pn->leaf);
1378                 pn->leaf = NULL;
1379                 fn = pn;
1380         }
1381 }
1382
1383 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1384                            struct nl_info *info)
1385 {
1386         struct fib6_walker *w;
1387         struct rt6_info *rt = *rtp;
1388         struct net *net = info->nl_net;
1389
1390         RT6_TRACE("fib6_del_route\n");
1391
1392         /* Unlink it */
1393         *rtp = rt->dst.rt6_next;
1394         rt->rt6i_node = NULL;
1395         net->ipv6.rt6_stats->fib_rt_entries--;
1396         net->ipv6.rt6_stats->fib_discarded_routes++;
1397
1398         /* Reset round-robin state, if necessary */
1399         if (fn->rr_ptr == rt)
1400                 fn->rr_ptr = NULL;
1401
1402         /* Remove this entry from other siblings */
1403         if (rt->rt6i_nsiblings) {
1404                 struct rt6_info *sibling, *next_sibling;
1405
1406                 list_for_each_entry_safe(sibling, next_sibling,
1407                                          &rt->rt6i_siblings, rt6i_siblings)
1408                         sibling->rt6i_nsiblings--;
1409                 rt->rt6i_nsiblings = 0;
1410                 list_del_init(&rt->rt6i_siblings);
1411         }
1412
1413         /* Adjust walkers */
1414         read_lock(&fib6_walker_lock);
1415         FOR_WALKERS(w) {
1416                 if (w->state == FWS_C && w->leaf == rt) {
1417                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1418                         w->leaf = rt->dst.rt6_next;
1419                         if (!w->leaf)
1420                                 w->state = FWS_U;
1421                 }
1422         }
1423         read_unlock(&fib6_walker_lock);
1424
1425         rt->dst.rt6_next = NULL;
1426
1427         /* If it was last route, expunge its radix tree node */
1428         if (!fn->leaf) {
1429                 fn->fn_flags &= ~RTN_RTINFO;
1430                 net->ipv6.rt6_stats->fib_route_nodes--;
1431                 fn = fib6_repair_tree(net, fn);
1432         }
1433
1434         fib6_purge_rt(rt, fn, net);
1435
1436         inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1437         rt6_release(rt);
1438 }
1439
1440 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1441 {
1442         struct net *net = info->nl_net;
1443         struct fib6_node *fn = rt->rt6i_node;
1444         struct rt6_info **rtp;
1445
1446 #if RT6_DEBUG >= 2
1447         if (rt->dst.obsolete > 0) {
1448                 WARN_ON(fn);
1449                 return -ENOENT;
1450         }
1451 #endif
1452         if (!fn || rt == net->ipv6.ip6_null_entry)
1453                 return -ENOENT;
1454
1455         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1456
1457         if (!(rt->rt6i_flags & RTF_CACHE)) {
1458                 struct fib6_node *pn = fn;
1459 #ifdef CONFIG_IPV6_SUBTREES
1460                 /* clones of this route might be in another subtree */
1461                 if (rt->rt6i_src.plen) {
1462                         while (!(pn->fn_flags & RTN_ROOT))
1463                                 pn = pn->parent;
1464                         pn = pn->parent;
1465                 }
1466 #endif
1467                 fib6_prune_clones(info->nl_net, pn);
1468         }
1469
1470         /*
1471          *      Walk the leaf entries looking for ourself
1472          */
1473
1474         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1475                 if (*rtp == rt) {
1476                         fib6_del_route(fn, rtp, info);
1477                         return 0;
1478                 }
1479         }
1480         return -ENOENT;
1481 }
1482
1483 /*
1484  *      Tree traversal function.
1485  *
1486  *      Certainly, it is not interrupt safe.
1487  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1488  *      It means, that we can modify tree during walking
1489  *      and use this function for garbage collection, clone pruning,
1490  *      cleaning tree when a device goes down etc. etc.
1491  *
1492  *      It guarantees that every node will be traversed,
1493  *      and that it will be traversed only once.
1494  *
1495  *      Callback function w->func may return:
1496  *      0 -> continue walking.
1497  *      positive value -> walking is suspended (used by tree dumps,
1498  *      and probably by gc, if it will be split to several slices)
1499  *      negative value -> terminate walking.
1500  *
1501  *      The function itself returns:
1502  *      0   -> walk is complete.
1503  *      >0  -> walk is incomplete (i.e. suspended)
1504  *      <0  -> walk is terminated by an error.
1505  */
1506
1507 static int fib6_walk_continue(struct fib6_walker *w)
1508 {
1509         struct fib6_node *fn, *pn;
1510
1511         for (;;) {
1512                 fn = w->node;
1513                 if (!fn)
1514                         return 0;
1515
1516                 if (w->prune && fn != w->root &&
1517                     fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1518                         w->state = FWS_C;
1519                         w->leaf = fn->leaf;
1520                 }
1521                 switch (w->state) {
1522 #ifdef CONFIG_IPV6_SUBTREES
1523                 case FWS_S:
1524                         if (FIB6_SUBTREE(fn)) {
1525                                 w->node = FIB6_SUBTREE(fn);
1526                                 continue;
1527                         }
1528                         w->state = FWS_L;
1529 #endif
1530                 case FWS_L:
1531                         if (fn->left) {
1532                                 w->node = fn->left;
1533                                 w->state = FWS_INIT;
1534                                 continue;
1535                         }
1536                         w->state = FWS_R;
1537                 case FWS_R:
1538                         if (fn->right) {
1539                                 w->node = fn->right;
1540                                 w->state = FWS_INIT;
1541                                 continue;
1542                         }
1543                         w->state = FWS_C;
1544                         w->leaf = fn->leaf;
1545                 case FWS_C:
1546                         if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1547                                 int err;
1548
1549                                 if (w->skip) {
1550                                         w->skip--;
1551                                         goto skip;
1552                                 }
1553
1554                                 err = w->func(w);
1555                                 if (err)
1556                                         return err;
1557
1558                                 w->count++;
1559                                 continue;
1560                         }
1561 skip:
1562                         w->state = FWS_U;
1563                 case FWS_U:
1564                         if (fn == w->root)
1565                                 return 0;
1566                         pn = fn->parent;
1567                         w->node = pn;
1568 #ifdef CONFIG_IPV6_SUBTREES
1569                         if (FIB6_SUBTREE(pn) == fn) {
1570                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1571                                 w->state = FWS_L;
1572                                 continue;
1573                         }
1574 #endif
1575                         if (pn->left == fn) {
1576                                 w->state = FWS_R;
1577                                 continue;
1578                         }
1579                         if (pn->right == fn) {
1580                                 w->state = FWS_C;
1581                                 w->leaf = w->node->leaf;
1582                                 continue;
1583                         }
1584 #if RT6_DEBUG >= 2
1585                         WARN_ON(1);
1586 #endif
1587                 }
1588         }
1589 }
1590
1591 static int fib6_walk(struct fib6_walker *w)
1592 {
1593         int res;
1594
1595         w->state = FWS_INIT;
1596         w->node = w->root;
1597
1598         fib6_walker_link(w);
1599         res = fib6_walk_continue(w);
1600         if (res <= 0)
1601                 fib6_walker_unlink(w);
1602         return res;
1603 }
1604
1605 static int fib6_clean_node(struct fib6_walker *w)
1606 {
1607         int res;
1608         struct rt6_info *rt;
1609         struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1610         struct nl_info info = {
1611                 .nl_net = c->net,
1612         };
1613
1614         if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1615             w->node->fn_sernum != c->sernum)
1616                 w->node->fn_sernum = c->sernum;
1617
1618         if (!c->func) {
1619                 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1620                 w->leaf = NULL;
1621                 return 0;
1622         }
1623
1624         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1625                 res = c->func(rt, c->arg);
1626                 if (res < 0) {
1627                         w->leaf = rt;
1628                         res = fib6_del(rt, &info);
1629                         if (res) {
1630 #if RT6_DEBUG >= 2
1631                                 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1632                                          __func__, rt, rt->rt6i_node, res);
1633 #endif
1634                                 continue;
1635                         }
1636                         return 0;
1637                 }
1638                 WARN_ON(res != 0);
1639         }
1640         w->leaf = rt;
1641         return 0;
1642 }
1643
1644 /*
1645  *      Convenient frontend to tree walker.
1646  *
1647  *      func is called on each route.
1648  *              It may return -1 -> delete this route.
1649  *                            0  -> continue walking
1650  *
1651  *      prune==1 -> only immediate children of node (certainly,
1652  *      ignoring pure split nodes) will be scanned.
1653  */
1654
1655 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1656                             int (*func)(struct rt6_info *, void *arg),
1657                             bool prune, int sernum, void *arg)
1658 {
1659         struct fib6_cleaner c;
1660
1661         c.w.root = root;
1662         c.w.func = fib6_clean_node;
1663         c.w.prune = prune;
1664         c.w.count = 0;
1665         c.w.skip = 0;
1666         c.func = func;
1667         c.sernum = sernum;
1668         c.arg = arg;
1669         c.net = net;
1670
1671         fib6_walk(&c.w);
1672 }
1673
1674 static void __fib6_clean_all(struct net *net,
1675                              int (*func)(struct rt6_info *, void *),
1676                              int sernum, void *arg)
1677 {
1678         struct fib6_table *table;
1679         struct hlist_head *head;
1680         unsigned int h;
1681
1682         rcu_read_lock();
1683         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1684                 head = &net->ipv6.fib_table_hash[h];
1685                 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1686                         write_lock_bh(&table->tb6_lock);
1687                         fib6_clean_tree(net, &table->tb6_root,
1688                                         func, false, sernum, arg);
1689                         write_unlock_bh(&table->tb6_lock);
1690                 }
1691         }
1692         rcu_read_unlock();
1693 }
1694
1695 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1696                     void *arg)
1697 {
1698         __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1699 }
1700
1701 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1702 {
1703         if (rt->rt6i_flags & RTF_CACHE) {
1704                 RT6_TRACE("pruning clone %p\n", rt);
1705                 return -1;
1706         }
1707
1708         return 0;
1709 }
1710
1711 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1712 {
1713         fib6_clean_tree(net, fn, fib6_prune_clone, true,
1714                         FIB6_NO_SERNUM_CHANGE, NULL);
1715 }
1716
1717 static void fib6_flush_trees(struct net *net)
1718 {
1719         int new_sernum = fib6_new_sernum(net);
1720
1721         __fib6_clean_all(net, NULL, new_sernum, NULL);
1722 }
1723
1724 /*
1725  *      Garbage collection
1726  */
1727
1728 static struct fib6_gc_args
1729 {
1730         int                     timeout;
1731         int                     more;
1732 } gc_args;
1733
1734 static int fib6_age(struct rt6_info *rt, void *arg)
1735 {
1736         unsigned long now = jiffies;
1737
1738         /*
1739          *      check addrconf expiration here.
1740          *      Routes are expired even if they are in use.
1741          *
1742          *      Also age clones. Note, that clones are aged out
1743          *      only if they are not in use now.
1744          */
1745
1746         if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1747                 if (time_after(now, rt->dst.expires)) {
1748                         RT6_TRACE("expiring %p\n", rt);
1749                         return -1;
1750                 }
1751                 gc_args.more++;
1752         } else if (rt->rt6i_flags & RTF_CACHE) {
1753                 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1754                     time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1755                         RT6_TRACE("aging clone %p\n", rt);
1756                         return -1;
1757                 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1758                         struct neighbour *neigh;
1759                         __u8 neigh_flags = 0;
1760
1761                         neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1762                         if (neigh) {
1763                                 neigh_flags = neigh->flags;
1764                                 neigh_release(neigh);
1765                         }
1766                         if (!(neigh_flags & NTF_ROUTER)) {
1767                                 RT6_TRACE("purging route %p via non-router but gateway\n",
1768                                           rt);
1769                                 return -1;
1770                         }
1771                 }
1772                 gc_args.more++;
1773         }
1774
1775         return 0;
1776 }
1777
1778 static DEFINE_SPINLOCK(fib6_gc_lock);
1779
1780 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1781 {
1782         unsigned long now;
1783
1784         if (force) {
1785                 spin_lock_bh(&fib6_gc_lock);
1786         } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1787                 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1788                 return;
1789         }
1790         gc_args.timeout = expires ? (int)expires :
1791                           net->ipv6.sysctl.ip6_rt_gc_interval;
1792
1793         gc_args.more = icmp6_dst_gc();
1794
1795         fib6_clean_all(net, fib6_age, NULL);
1796         now = jiffies;
1797         net->ipv6.ip6_rt_last_gc = now;
1798
1799         if (gc_args.more)
1800                 mod_timer(&net->ipv6.ip6_fib_timer,
1801                           round_jiffies(now
1802                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1803         else
1804                 del_timer(&net->ipv6.ip6_fib_timer);
1805         spin_unlock_bh(&fib6_gc_lock);
1806 }
1807
1808 static void fib6_gc_timer_cb(unsigned long arg)
1809 {
1810         fib6_run_gc(0, (struct net *)arg, true);
1811 }
1812
1813 static int __net_init fib6_net_init(struct net *net)
1814 {
1815         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1816
1817         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1818
1819         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1820         if (!net->ipv6.rt6_stats)
1821                 goto out_timer;
1822
1823         /* Avoid false sharing : Use at least a full cache line */
1824         size = max_t(size_t, size, L1_CACHE_BYTES);
1825
1826         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1827         if (!net->ipv6.fib_table_hash)
1828                 goto out_rt6_stats;
1829
1830         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1831                                           GFP_KERNEL);
1832         if (!net->ipv6.fib6_main_tbl)
1833                 goto out_fib_table_hash;
1834
1835         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1836         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1837         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1838                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1839         inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1840
1841 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1842         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1843                                            GFP_KERNEL);
1844         if (!net->ipv6.fib6_local_tbl)
1845                 goto out_fib6_main_tbl;
1846         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1847         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1848         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1849                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1850         inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1851 #endif
1852         fib6_tables_init(net);
1853
1854         return 0;
1855
1856 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1857 out_fib6_main_tbl:
1858         kfree(net->ipv6.fib6_main_tbl);
1859 #endif
1860 out_fib_table_hash:
1861         kfree(net->ipv6.fib_table_hash);
1862 out_rt6_stats:
1863         kfree(net->ipv6.rt6_stats);
1864 out_timer:
1865         return -ENOMEM;
1866 }
1867
1868 static void fib6_net_exit(struct net *net)
1869 {
1870         rt6_ifdown(net, NULL);
1871         del_timer_sync(&net->ipv6.ip6_fib_timer);
1872
1873 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1874         inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1875         kfree(net->ipv6.fib6_local_tbl);
1876 #endif
1877         inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1878         kfree(net->ipv6.fib6_main_tbl);
1879         kfree(net->ipv6.fib_table_hash);
1880         kfree(net->ipv6.rt6_stats);
1881 }
1882
1883 static struct pernet_operations fib6_net_ops = {
1884         .init = fib6_net_init,
1885         .exit = fib6_net_exit,
1886 };
1887
1888 int __init fib6_init(void)
1889 {
1890         int ret = -ENOMEM;
1891
1892         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1893                                            sizeof(struct fib6_node),
1894                                            0, SLAB_HWCACHE_ALIGN,
1895                                            NULL);
1896         if (!fib6_node_kmem)
1897                 goto out;
1898
1899         ret = register_pernet_subsys(&fib6_net_ops);
1900         if (ret)
1901                 goto out_kmem_cache_create;
1902
1903         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1904                               NULL);
1905         if (ret)
1906                 goto out_unregister_subsys;
1907
1908         __fib6_flush_trees = fib6_flush_trees;
1909 out:
1910         return ret;
1911
1912 out_unregister_subsys:
1913         unregister_pernet_subsys(&fib6_net_ops);
1914 out_kmem_cache_create:
1915         kmem_cache_destroy(fib6_node_kmem);
1916         goto out;
1917 }
1918
1919 void fib6_gc_cleanup(void)
1920 {
1921         unregister_pernet_subsys(&fib6_net_ops);
1922         kmem_cache_destroy(fib6_node_kmem);
1923 }
1924
1925 #ifdef CONFIG_PROC_FS
1926
1927 struct ipv6_route_iter {
1928         struct seq_net_private p;
1929         struct fib6_walker w;
1930         loff_t skip;
1931         struct fib6_table *tbl;
1932         int sernum;
1933 };
1934
1935 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1936 {
1937         struct rt6_info *rt = v;
1938         struct ipv6_route_iter *iter = seq->private;
1939
1940         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1941
1942 #ifdef CONFIG_IPV6_SUBTREES
1943         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1944 #else
1945         seq_puts(seq, "00000000000000000000000000000000 00 ");
1946 #endif
1947         if (rt->rt6i_flags & RTF_GATEWAY)
1948                 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1949         else
1950                 seq_puts(seq, "00000000000000000000000000000000");
1951
1952         seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1953                    rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1954                    rt->dst.__use, rt->rt6i_flags,
1955                    rt->dst.dev ? rt->dst.dev->name : "");
1956         iter->w.leaf = NULL;
1957         return 0;
1958 }
1959
1960 static int ipv6_route_yield(struct fib6_walker *w)
1961 {
1962         struct ipv6_route_iter *iter = w->args;
1963
1964         if (!iter->skip)
1965                 return 1;
1966
1967         do {
1968                 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1969                 iter->skip--;
1970                 if (!iter->skip && iter->w.leaf)
1971                         return 1;
1972         } while (iter->w.leaf);
1973
1974         return 0;
1975 }
1976
1977 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1978 {
1979         memset(&iter->w, 0, sizeof(iter->w));
1980         iter->w.func = ipv6_route_yield;
1981         iter->w.root = &iter->tbl->tb6_root;
1982         iter->w.state = FWS_INIT;
1983         iter->w.node = iter->w.root;
1984         iter->w.args = iter;
1985         iter->sernum = iter->w.root->fn_sernum;
1986         INIT_LIST_HEAD(&iter->w.lh);
1987         fib6_walker_link(&iter->w);
1988 }
1989
1990 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1991                                                     struct net *net)
1992 {
1993         unsigned int h;
1994         struct hlist_node *node;
1995
1996         if (tbl) {
1997                 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1998                 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1999         } else {
2000                 h = 0;
2001                 node = NULL;
2002         }
2003
2004         while (!node && h < FIB6_TABLE_HASHSZ) {
2005                 node = rcu_dereference_bh(
2006                         hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2007         }
2008         return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2009 }
2010
2011 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2012 {
2013         if (iter->sernum != iter->w.root->fn_sernum) {
2014                 iter->sernum = iter->w.root->fn_sernum;
2015                 iter->w.state = FWS_INIT;
2016                 iter->w.node = iter->w.root;
2017                 WARN_ON(iter->w.skip);
2018                 iter->w.skip = iter->w.count;
2019         }
2020 }
2021
2022 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2023 {
2024         int r;
2025         struct rt6_info *n;
2026         struct net *net = seq_file_net(seq);
2027         struct ipv6_route_iter *iter = seq->private;
2028
2029         if (!v)
2030                 goto iter_table;
2031
2032         n = ((struct rt6_info *)v)->dst.rt6_next;
2033         if (n) {
2034                 ++*pos;
2035                 return n;
2036         }
2037
2038 iter_table:
2039         ipv6_route_check_sernum(iter);
2040         read_lock(&iter->tbl->tb6_lock);
2041         r = fib6_walk_continue(&iter->w);
2042         read_unlock(&iter->tbl->tb6_lock);
2043         if (r > 0) {
2044                 if (v)
2045                         ++*pos;
2046                 return iter->w.leaf;
2047         } else if (r < 0) {
2048                 fib6_walker_unlink(&iter->w);
2049                 return NULL;
2050         }
2051         fib6_walker_unlink(&iter->w);
2052
2053         iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2054         if (!iter->tbl)
2055                 return NULL;
2056
2057         ipv6_route_seq_setup_walk(iter);
2058         goto iter_table;
2059 }
2060
2061 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2062         __acquires(RCU_BH)
2063 {
2064         struct net *net = seq_file_net(seq);
2065         struct ipv6_route_iter *iter = seq->private;
2066
2067         rcu_read_lock_bh();
2068         iter->tbl = ipv6_route_seq_next_table(NULL, net);
2069         iter->skip = *pos;
2070
2071         if (iter->tbl) {
2072                 ipv6_route_seq_setup_walk(iter);
2073                 return ipv6_route_seq_next(seq, NULL, pos);
2074         } else {
2075                 return NULL;
2076         }
2077 }
2078
2079 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2080 {
2081         struct fib6_walker *w = &iter->w;
2082         return w->node && !(w->state == FWS_U && w->node == w->root);
2083 }
2084
2085 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2086         __releases(RCU_BH)
2087 {
2088         struct ipv6_route_iter *iter = seq->private;
2089
2090         if (ipv6_route_iter_active(iter))
2091                 fib6_walker_unlink(&iter->w);
2092
2093         rcu_read_unlock_bh();
2094 }
2095
2096 static const struct seq_operations ipv6_route_seq_ops = {
2097         .start  = ipv6_route_seq_start,
2098         .next   = ipv6_route_seq_next,
2099         .stop   = ipv6_route_seq_stop,
2100         .show   = ipv6_route_seq_show
2101 };
2102
2103 int ipv6_route_open(struct inode *inode, struct file *file)
2104 {
2105         return seq_open_net(inode, file, &ipv6_route_seq_ops,
2106                             sizeof(struct ipv6_route_iter));
2107 }
2108
2109 #endif /* CONFIG_PROC_FS */