Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
21
22 static bool dissector_uses_key(const struct flow_dissector *flow_dissector,
23                                enum flow_dissector_key_id key_id)
24 {
25         return flow_dissector->used_keys & (1 << key_id);
26 }
27
28 static void dissector_set_key(struct flow_dissector *flow_dissector,
29                               enum flow_dissector_key_id key_id)
30 {
31         flow_dissector->used_keys |= (1 << key_id);
32 }
33
34 static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
35                                        enum flow_dissector_key_id key_id,
36                                        void *target_container)
37 {
38         return ((char *) target_container) + flow_dissector->offset[key_id];
39 }
40
41 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
42                              const struct flow_dissector_key *key,
43                              unsigned int key_count)
44 {
45         unsigned int i;
46
47         memset(flow_dissector, 0, sizeof(*flow_dissector));
48
49         for (i = 0; i < key_count; i++, key++) {
50                 /* User should make sure that every key target offset is withing
51                  * boundaries of unsigned short.
52                  */
53                 BUG_ON(key->offset > USHRT_MAX);
54                 BUG_ON(dissector_uses_key(flow_dissector,
55                                           key->key_id));
56
57                 dissector_set_key(flow_dissector, key->key_id);
58                 flow_dissector->offset[key->key_id] = key->offset;
59         }
60
61         /* Ensure that the dissector always includes control and basic key.
62          * That way we are able to avoid handling lack of these in fast path.
63          */
64         BUG_ON(!dissector_uses_key(flow_dissector,
65                                    FLOW_DISSECTOR_KEY_CONTROL));
66         BUG_ON(!dissector_uses_key(flow_dissector,
67                                    FLOW_DISSECTOR_KEY_BASIC));
68 }
69 EXPORT_SYMBOL(skb_flow_dissector_init);
70
71 /**
72  * __skb_flow_get_ports - extract the upper layer ports and return them
73  * @skb: sk_buff to extract the ports from
74  * @thoff: transport header offset
75  * @ip_proto: protocol for which to get port offset
76  * @data: raw buffer pointer to the packet, if NULL use skb->data
77  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
78  *
79  * The function will try to retrieve the ports at offset thoff + poff where poff
80  * is the protocol port offset returned from proto_ports_offset
81  */
82 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
83                             void *data, int hlen)
84 {
85         int poff = proto_ports_offset(ip_proto);
86
87         if (!data) {
88                 data = skb->data;
89                 hlen = skb_headlen(skb);
90         }
91
92         if (poff >= 0) {
93                 __be32 *ports, _ports;
94
95                 ports = __skb_header_pointer(skb, thoff + poff,
96                                              sizeof(_ports), data, hlen, &_ports);
97                 if (ports)
98                         return *ports;
99         }
100
101         return 0;
102 }
103 EXPORT_SYMBOL(__skb_flow_get_ports);
104
105 /**
106  * __skb_flow_dissect - extract the flow_keys struct and return it
107  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
108  * @flow_dissector: list of keys to dissect
109  * @target_container: target structure to put dissected values into
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
112  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
113  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
114  *
115  * The function will try to retrieve individual keys into target specified
116  * by flow_dissector from either the skbuff or a raw buffer specified by the
117  * rest parameters.
118  *
119  * Caller must take care of zeroing target container memory.
120  */
121 bool __skb_flow_dissect(const struct sk_buff *skb,
122                         struct flow_dissector *flow_dissector,
123                         void *target_container,
124                         void *data, __be16 proto, int nhoff, int hlen,
125                         unsigned int flags)
126 {
127         struct flow_dissector_key_control *key_control;
128         struct flow_dissector_key_basic *key_basic;
129         struct flow_dissector_key_addrs *key_addrs;
130         struct flow_dissector_key_ports *key_ports;
131         struct flow_dissector_key_tags *key_tags;
132         struct flow_dissector_key_keyid *key_keyid;
133         u8 ip_proto = 0;
134         bool ret;
135
136         if (!data) {
137                 data = skb->data;
138                 proto = skb->protocol;
139                 nhoff = skb_network_offset(skb);
140                 hlen = skb_headlen(skb);
141         }
142
143         /* It is ensured by skb_flow_dissector_init() that control key will
144          * be always present.
145          */
146         key_control = skb_flow_dissector_target(flow_dissector,
147                                                 FLOW_DISSECTOR_KEY_CONTROL,
148                                                 target_container);
149
150         /* It is ensured by skb_flow_dissector_init() that basic key will
151          * be always present.
152          */
153         key_basic = skb_flow_dissector_target(flow_dissector,
154                                               FLOW_DISSECTOR_KEY_BASIC,
155                                               target_container);
156
157         if (dissector_uses_key(flow_dissector,
158                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
159                 struct ethhdr *eth = eth_hdr(skb);
160                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
161
162                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
163                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
164                                                           target_container);
165                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
166         }
167
168 again:
169         switch (proto) {
170         case htons(ETH_P_IP): {
171                 const struct iphdr *iph;
172                 struct iphdr _iph;
173 ip:
174                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
175                 if (!iph || iph->ihl < 5)
176                         goto out_bad;
177                 nhoff += iph->ihl * 4;
178
179                 ip_proto = iph->protocol;
180
181                 if (!dissector_uses_key(flow_dissector,
182                                         FLOW_DISSECTOR_KEY_IPV4_ADDRS))
183                         break;
184
185                 key_addrs = skb_flow_dissector_target(flow_dissector,
186                               FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container);
187                 memcpy(&key_addrs->v4addrs, &iph->saddr,
188                        sizeof(key_addrs->v4addrs));
189                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
190
191                 if (ip_is_fragment(iph)) {
192                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
193
194                         if (iph->frag_off & htons(IP_OFFSET)) {
195                                 goto out_good;
196                         } else {
197                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
198                                 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
199                                         goto out_good;
200                         }
201                 }
202
203                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
204                         goto out_good;
205
206                 break;
207         }
208         case htons(ETH_P_IPV6): {
209                 const struct ipv6hdr *iph;
210                 struct ipv6hdr _iph;
211
212 ipv6:
213                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
214                 if (!iph)
215                         goto out_bad;
216
217                 ip_proto = iph->nexthdr;
218                 nhoff += sizeof(struct ipv6hdr);
219
220                 if (dissector_uses_key(flow_dissector,
221                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
222                         struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
223
224                         key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
225                                                                    FLOW_DISSECTOR_KEY_IPV6_ADDRS,
226                                                                    target_container);
227
228                         memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
229                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
230                 }
231
232                 if ((dissector_uses_key(flow_dissector,
233                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
234                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
235                     ip6_flowlabel(iph)) {
236                         __be32 flow_label = ip6_flowlabel(iph);
237
238                         if (dissector_uses_key(flow_dissector,
239                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
240                                 key_tags = skb_flow_dissector_target(flow_dissector,
241                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
242                                                                      target_container);
243                                 key_tags->flow_label = ntohl(flow_label);
244                         }
245                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
246                                 goto out_good;
247                 }
248
249                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
250                         goto out_good;
251
252                 break;
253         }
254         case htons(ETH_P_8021AD):
255         case htons(ETH_P_8021Q): {
256                 const struct vlan_hdr *vlan;
257                 struct vlan_hdr _vlan;
258
259                 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
260                 if (!vlan)
261                         goto out_bad;
262
263                 if (dissector_uses_key(flow_dissector,
264                                        FLOW_DISSECTOR_KEY_VLANID)) {
265                         key_tags = skb_flow_dissector_target(flow_dissector,
266                                                              FLOW_DISSECTOR_KEY_VLANID,
267                                                              target_container);
268
269                         key_tags->vlan_id = skb_vlan_tag_get_id(skb);
270                 }
271
272                 proto = vlan->h_vlan_encapsulated_proto;
273                 nhoff += sizeof(*vlan);
274                 goto again;
275         }
276         case htons(ETH_P_PPP_SES): {
277                 struct {
278                         struct pppoe_hdr hdr;
279                         __be16 proto;
280                 } *hdr, _hdr;
281                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
282                 if (!hdr)
283                         goto out_bad;
284                 proto = hdr->proto;
285                 nhoff += PPPOE_SES_HLEN;
286                 switch (proto) {
287                 case htons(PPP_IP):
288                         goto ip;
289                 case htons(PPP_IPV6):
290                         goto ipv6;
291                 default:
292                         goto out_bad;
293                 }
294         }
295         case htons(ETH_P_TIPC): {
296                 struct {
297                         __be32 pre[3];
298                         __be32 srcnode;
299                 } *hdr, _hdr;
300                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
301                 if (!hdr)
302                         goto out_bad;
303
304                 if (dissector_uses_key(flow_dissector,
305                                        FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
306                         key_addrs = skb_flow_dissector_target(flow_dissector,
307                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
308                                                               target_container);
309                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
310                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
311                 }
312                 goto out_good;
313         }
314
315         case htons(ETH_P_MPLS_UC):
316         case htons(ETH_P_MPLS_MC): {
317                 struct mpls_label *hdr, _hdr[2];
318 mpls:
319                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
320                                            hlen, &_hdr);
321                 if (!hdr)
322                         goto out_bad;
323
324                 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
325                      MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
326                         if (dissector_uses_key(flow_dissector,
327                                                FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
328                                 key_keyid = skb_flow_dissector_target(flow_dissector,
329                                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
330                                                                       target_container);
331                                 key_keyid->keyid = hdr[1].entry &
332                                         htonl(MPLS_LS_LABEL_MASK);
333                         }
334
335                         goto out_good;
336                 }
337
338                 goto out_good;
339         }
340
341         case htons(ETH_P_FCOE):
342                 key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
343                 /* fall through */
344         default:
345                 goto out_bad;
346         }
347
348 ip_proto_again:
349         switch (ip_proto) {
350         case IPPROTO_GRE: {
351                 struct gre_hdr {
352                         __be16 flags;
353                         __be16 proto;
354                 } *hdr, _hdr;
355
356                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
357                 if (!hdr)
358                         goto out_bad;
359                 /*
360                  * Only look inside GRE if version zero and no
361                  * routing
362                  */
363                 if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
364                         break;
365
366                 proto = hdr->proto;
367                 nhoff += 4;
368                 if (hdr->flags & GRE_CSUM)
369                         nhoff += 4;
370                 if (hdr->flags & GRE_KEY) {
371                         const __be32 *keyid;
372                         __be32 _keyid;
373
374                         keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
375                                                      data, hlen, &_keyid);
376
377                         if (!keyid)
378                                 goto out_bad;
379
380                         if (dissector_uses_key(flow_dissector,
381                                                FLOW_DISSECTOR_KEY_GRE_KEYID)) {
382                                 key_keyid = skb_flow_dissector_target(flow_dissector,
383                                                                       FLOW_DISSECTOR_KEY_GRE_KEYID,
384                                                                       target_container);
385                                 key_keyid->keyid = *keyid;
386                         }
387                         nhoff += 4;
388                 }
389                 if (hdr->flags & GRE_SEQ)
390                         nhoff += 4;
391                 if (proto == htons(ETH_P_TEB)) {
392                         const struct ethhdr *eth;
393                         struct ethhdr _eth;
394
395                         eth = __skb_header_pointer(skb, nhoff,
396                                                    sizeof(_eth),
397                                                    data, hlen, &_eth);
398                         if (!eth)
399                                 goto out_bad;
400                         proto = eth->h_proto;
401                         nhoff += sizeof(*eth);
402
403                         /* Cap headers that we access via pointers at the
404                          * end of the Ethernet header as our maximum alignment
405                          * at that point is only 2 bytes.
406                          */
407                         if (NET_IP_ALIGN)
408                                 hlen = nhoff;
409                 }
410
411                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
412                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
413                         goto out_good;
414
415                 goto again;
416         }
417         case NEXTHDR_HOP:
418         case NEXTHDR_ROUTING:
419         case NEXTHDR_DEST: {
420                 u8 _opthdr[2], *opthdr;
421
422                 if (proto != htons(ETH_P_IPV6))
423                         break;
424
425                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
426                                               data, hlen, &_opthdr);
427                 if (!opthdr)
428                         goto out_bad;
429
430                 ip_proto = opthdr[0];
431                 nhoff += (opthdr[1] + 1) << 3;
432
433                 goto ip_proto_again;
434         }
435         case NEXTHDR_FRAGMENT: {
436                 struct frag_hdr _fh, *fh;
437
438                 if (proto != htons(ETH_P_IPV6))
439                         break;
440
441                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
442                                           data, hlen, &_fh);
443
444                 if (!fh)
445                         goto out_bad;
446
447                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
448
449                 nhoff += sizeof(_fh);
450
451                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
452                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
453                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
454                                 ip_proto = fh->nexthdr;
455                                 goto ip_proto_again;
456                         }
457                 }
458                 goto out_good;
459         }
460         case IPPROTO_IPIP:
461                 proto = htons(ETH_P_IP);
462
463                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
464                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
465                         goto out_good;
466
467                 goto ip;
468         case IPPROTO_IPV6:
469                 proto = htons(ETH_P_IPV6);
470
471                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
472                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
473                         goto out_good;
474
475                 goto ipv6;
476         case IPPROTO_MPLS:
477                 proto = htons(ETH_P_MPLS_UC);
478                 goto mpls;
479         default:
480                 break;
481         }
482
483         if (dissector_uses_key(flow_dissector,
484                                FLOW_DISSECTOR_KEY_PORTS)) {
485                 key_ports = skb_flow_dissector_target(flow_dissector,
486                                                       FLOW_DISSECTOR_KEY_PORTS,
487                                                       target_container);
488                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
489                                                         data, hlen);
490         }
491
492 out_good:
493         ret = true;
494
495         key_control->thoff = (u16)nhoff;
496 out:
497         key_basic->n_proto = proto;
498         key_basic->ip_proto = ip_proto;
499
500         return ret;
501
502 out_bad:
503         ret = false;
504         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
505         goto out;
506 }
507 EXPORT_SYMBOL(__skb_flow_dissect);
508
509 static u32 hashrnd __read_mostly;
510 static __always_inline void __flow_hash_secret_init(void)
511 {
512         net_get_random_once(&hashrnd, sizeof(hashrnd));
513 }
514
515 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
516                                              u32 keyval)
517 {
518         return jhash2(words, length, keyval);
519 }
520
521 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
522 {
523         const void *p = flow;
524
525         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
526         return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
527 }
528
529 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
530 {
531         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
532         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
533         BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
534                      sizeof(*flow) - sizeof(flow->addrs));
535
536         switch (flow->control.addr_type) {
537         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
538                 diff -= sizeof(flow->addrs.v4addrs);
539                 break;
540         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
541                 diff -= sizeof(flow->addrs.v6addrs);
542                 break;
543         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
544                 diff -= sizeof(flow->addrs.tipcaddrs);
545                 break;
546         }
547         return (sizeof(*flow) - diff) / sizeof(u32);
548 }
549
550 __be32 flow_get_u32_src(const struct flow_keys *flow)
551 {
552         switch (flow->control.addr_type) {
553         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
554                 return flow->addrs.v4addrs.src;
555         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
556                 return (__force __be32)ipv6_addr_hash(
557                         &flow->addrs.v6addrs.src);
558         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
559                 return flow->addrs.tipcaddrs.srcnode;
560         default:
561                 return 0;
562         }
563 }
564 EXPORT_SYMBOL(flow_get_u32_src);
565
566 __be32 flow_get_u32_dst(const struct flow_keys *flow)
567 {
568         switch (flow->control.addr_type) {
569         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
570                 return flow->addrs.v4addrs.dst;
571         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
572                 return (__force __be32)ipv6_addr_hash(
573                         &flow->addrs.v6addrs.dst);
574         default:
575                 return 0;
576         }
577 }
578 EXPORT_SYMBOL(flow_get_u32_dst);
579
580 static inline void __flow_hash_consistentify(struct flow_keys *keys)
581 {
582         int addr_diff, i;
583
584         switch (keys->control.addr_type) {
585         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
586                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
587                             (__force u32)keys->addrs.v4addrs.src;
588                 if ((addr_diff < 0) ||
589                     (addr_diff == 0 &&
590                      ((__force u16)keys->ports.dst <
591                       (__force u16)keys->ports.src))) {
592                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
593                         swap(keys->ports.src, keys->ports.dst);
594                 }
595                 break;
596         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
597                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
598                                    &keys->addrs.v6addrs.src,
599                                    sizeof(keys->addrs.v6addrs.dst));
600                 if ((addr_diff < 0) ||
601                     (addr_diff == 0 &&
602                      ((__force u16)keys->ports.dst <
603                       (__force u16)keys->ports.src))) {
604                         for (i = 0; i < 4; i++)
605                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
606                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
607                         swap(keys->ports.src, keys->ports.dst);
608                 }
609                 break;
610         }
611 }
612
613 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
614 {
615         u32 hash;
616
617         __flow_hash_consistentify(keys);
618
619         hash = __flow_hash_words(flow_keys_hash_start(keys),
620                                  flow_keys_hash_length(keys), keyval);
621         if (!hash)
622                 hash = 1;
623
624         return hash;
625 }
626
627 u32 flow_hash_from_keys(struct flow_keys *keys)
628 {
629         __flow_hash_secret_init();
630         return __flow_hash_from_keys(keys, hashrnd);
631 }
632 EXPORT_SYMBOL(flow_hash_from_keys);
633
634 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
635                                   struct flow_keys *keys, u32 keyval)
636 {
637         skb_flow_dissect_flow_keys(skb, keys,
638                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
639
640         return __flow_hash_from_keys(keys, keyval);
641 }
642
643 struct _flow_keys_digest_data {
644         __be16  n_proto;
645         u8      ip_proto;
646         u8      padding;
647         __be32  ports;
648         __be32  src;
649         __be32  dst;
650 };
651
652 void make_flow_keys_digest(struct flow_keys_digest *digest,
653                            const struct flow_keys *flow)
654 {
655         struct _flow_keys_digest_data *data =
656             (struct _flow_keys_digest_data *)digest;
657
658         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
659
660         memset(digest, 0, sizeof(*digest));
661
662         data->n_proto = flow->basic.n_proto;
663         data->ip_proto = flow->basic.ip_proto;
664         data->ports = flow->ports.ports;
665         data->src = flow->addrs.v4addrs.src;
666         data->dst = flow->addrs.v4addrs.dst;
667 }
668 EXPORT_SYMBOL(make_flow_keys_digest);
669
670 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
671
672 u32 __skb_get_hash_symmetric(struct sk_buff *skb)
673 {
674         struct flow_keys keys;
675
676         __flow_hash_secret_init();
677
678         memset(&keys, 0, sizeof(keys));
679         __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
680                            NULL, 0, 0, 0,
681                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
682
683         return __flow_hash_from_keys(&keys, hashrnd);
684 }
685 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
686
687 /**
688  * __skb_get_hash: calculate a flow hash
689  * @skb: sk_buff to calculate flow hash from
690  *
691  * This function calculates a flow hash based on src/dst addresses
692  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
693  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
694  * if hash is a canonical 4-tuple hash over transport ports.
695  */
696 void __skb_get_hash(struct sk_buff *skb)
697 {
698         struct flow_keys keys;
699
700         __flow_hash_secret_init();
701
702         __skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, hashrnd),
703                           flow_keys_have_l4(&keys));
704 }
705 EXPORT_SYMBOL(__skb_get_hash);
706
707 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
708 {
709         struct flow_keys keys;
710
711         return ___skb_get_hash(skb, &keys, perturb);
712 }
713 EXPORT_SYMBOL(skb_get_hash_perturb);
714
715 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
716 {
717         struct flow_keys keys;
718
719         memset(&keys, 0, sizeof(keys));
720
721         memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
722                sizeof(keys.addrs.v6addrs.src));
723         memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
724                sizeof(keys.addrs.v6addrs.dst));
725         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
726         keys.ports.src = fl6->fl6_sport;
727         keys.ports.dst = fl6->fl6_dport;
728         keys.keyid.keyid = fl6->fl6_gre_key;
729         keys.tags.flow_label = (__force u32)fl6->flowlabel;
730         keys.basic.ip_proto = fl6->flowi6_proto;
731
732         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
733                           flow_keys_have_l4(&keys));
734
735         return skb->hash;
736 }
737 EXPORT_SYMBOL(__skb_get_hash_flowi6);
738
739 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
740 {
741         struct flow_keys keys;
742
743         memset(&keys, 0, sizeof(keys));
744
745         keys.addrs.v4addrs.src = fl4->saddr;
746         keys.addrs.v4addrs.dst = fl4->daddr;
747         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
748         keys.ports.src = fl4->fl4_sport;
749         keys.ports.dst = fl4->fl4_dport;
750         keys.keyid.keyid = fl4->fl4_gre_key;
751         keys.basic.ip_proto = fl4->flowi4_proto;
752
753         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
754                           flow_keys_have_l4(&keys));
755
756         return skb->hash;
757 }
758 EXPORT_SYMBOL(__skb_get_hash_flowi4);
759
760 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
761                    const struct flow_keys *keys, int hlen)
762 {
763         u32 poff = keys->control.thoff;
764
765         switch (keys->basic.ip_proto) {
766         case IPPROTO_TCP: {
767                 /* access doff as u8 to avoid unaligned access */
768                 const u8 *doff;
769                 u8 _doff;
770
771                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
772                                             data, hlen, &_doff);
773                 if (!doff)
774                         return poff;
775
776                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
777                 break;
778         }
779         case IPPROTO_UDP:
780         case IPPROTO_UDPLITE:
781                 poff += sizeof(struct udphdr);
782                 break;
783         /* For the rest, we do not really care about header
784          * extensions at this point for now.
785          */
786         case IPPROTO_ICMP:
787                 poff += sizeof(struct icmphdr);
788                 break;
789         case IPPROTO_ICMPV6:
790                 poff += sizeof(struct icmp6hdr);
791                 break;
792         case IPPROTO_IGMP:
793                 poff += sizeof(struct igmphdr);
794                 break;
795         case IPPROTO_DCCP:
796                 poff += sizeof(struct dccp_hdr);
797                 break;
798         case IPPROTO_SCTP:
799                 poff += sizeof(struct sctphdr);
800                 break;
801         }
802
803         return poff;
804 }
805
806 /**
807  * skb_get_poff - get the offset to the payload
808  * @skb: sk_buff to get the payload offset from
809  *
810  * The function will get the offset to the payload as far as it could
811  * be dissected.  The main user is currently BPF, so that we can dynamically
812  * truncate packets without needing to push actual payload to the user
813  * space and can analyze headers only, instead.
814  */
815 u32 skb_get_poff(const struct sk_buff *skb)
816 {
817         struct flow_keys keys;
818
819         if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
820                 return 0;
821
822         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
823 }
824
825 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
826 {
827         memset(keys, 0, sizeof(*keys));
828
829         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
830             sizeof(keys->addrs.v6addrs.src));
831         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
832             sizeof(keys->addrs.v6addrs.dst));
833         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
834         keys->ports.src = fl6->fl6_sport;
835         keys->ports.dst = fl6->fl6_dport;
836         keys->keyid.keyid = fl6->fl6_gre_key;
837         keys->tags.flow_label = (__force u32)fl6->flowlabel;
838         keys->basic.ip_proto = fl6->flowi6_proto;
839
840         return flow_hash_from_keys(keys);
841 }
842 EXPORT_SYMBOL(__get_hash_from_flowi6);
843
844 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
845 {
846         memset(keys, 0, sizeof(*keys));
847
848         keys->addrs.v4addrs.src = fl4->saddr;
849         keys->addrs.v4addrs.dst = fl4->daddr;
850         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
851         keys->ports.src = fl4->fl4_sport;
852         keys->ports.dst = fl4->fl4_dport;
853         keys->keyid.keyid = fl4->fl4_gre_key;
854         keys->basic.ip_proto = fl4->flowi4_proto;
855
856         return flow_hash_from_keys(keys);
857 }
858 EXPORT_SYMBOL(__get_hash_from_flowi4);
859
860 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
861         {
862                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
863                 .offset = offsetof(struct flow_keys, control),
864         },
865         {
866                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
867                 .offset = offsetof(struct flow_keys, basic),
868         },
869         {
870                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
871                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
872         },
873         {
874                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
875                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
876         },
877         {
878                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
879                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
880         },
881         {
882                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
883                 .offset = offsetof(struct flow_keys, ports),
884         },
885         {
886                 .key_id = FLOW_DISSECTOR_KEY_VLANID,
887                 .offset = offsetof(struct flow_keys, tags),
888         },
889         {
890                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
891                 .offset = offsetof(struct flow_keys, tags),
892         },
893         {
894                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
895                 .offset = offsetof(struct flow_keys, keyid),
896         },
897 };
898
899 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
900         {
901                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
902                 .offset = offsetof(struct flow_keys, control),
903         },
904         {
905                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
906                 .offset = offsetof(struct flow_keys, basic),
907         },
908         {
909                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
910                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
911         },
912         {
913                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
914                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
915         },
916         {
917                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
918                 .offset = offsetof(struct flow_keys, ports),
919         },
920 };
921
922 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
923         {
924                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
925                 .offset = offsetof(struct flow_keys, control),
926         },
927         {
928                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
929                 .offset = offsetof(struct flow_keys, basic),
930         },
931 };
932
933 struct flow_dissector flow_keys_dissector __read_mostly;
934 EXPORT_SYMBOL(flow_keys_dissector);
935
936 struct flow_dissector flow_keys_buf_dissector __read_mostly;
937
938 static int __init init_default_flow_dissectors(void)
939 {
940         skb_flow_dissector_init(&flow_keys_dissector,
941                                 flow_keys_dissector_keys,
942                                 ARRAY_SIZE(flow_keys_dissector_keys));
943         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
944                                 flow_keys_dissector_symmetric_keys,
945                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
946         skb_flow_dissector_init(&flow_keys_buf_dissector,
947                                 flow_keys_buf_dissector_keys,
948                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
949         return 0;
950 }
951
952 core_initcall(init_default_flow_dissectors);