These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
21
22 static bool dissector_uses_key(const struct flow_dissector *flow_dissector,
23                                enum flow_dissector_key_id key_id)
24 {
25         return flow_dissector->used_keys & (1 << key_id);
26 }
27
28 static void dissector_set_key(struct flow_dissector *flow_dissector,
29                               enum flow_dissector_key_id key_id)
30 {
31         flow_dissector->used_keys |= (1 << key_id);
32 }
33
34 static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
35                                        enum flow_dissector_key_id key_id,
36                                        void *target_container)
37 {
38         return ((char *) target_container) + flow_dissector->offset[key_id];
39 }
40
41 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
42                              const struct flow_dissector_key *key,
43                              unsigned int key_count)
44 {
45         unsigned int i;
46
47         memset(flow_dissector, 0, sizeof(*flow_dissector));
48
49         for (i = 0; i < key_count; i++, key++) {
50                 /* User should make sure that every key target offset is withing
51                  * boundaries of unsigned short.
52                  */
53                 BUG_ON(key->offset > USHRT_MAX);
54                 BUG_ON(dissector_uses_key(flow_dissector,
55                                           key->key_id));
56
57                 dissector_set_key(flow_dissector, key->key_id);
58                 flow_dissector->offset[key->key_id] = key->offset;
59         }
60
61         /* Ensure that the dissector always includes control and basic key.
62          * That way we are able to avoid handling lack of these in fast path.
63          */
64         BUG_ON(!dissector_uses_key(flow_dissector,
65                                    FLOW_DISSECTOR_KEY_CONTROL));
66         BUG_ON(!dissector_uses_key(flow_dissector,
67                                    FLOW_DISSECTOR_KEY_BASIC));
68 }
69 EXPORT_SYMBOL(skb_flow_dissector_init);
70
71 /**
72  * __skb_flow_get_ports - extract the upper layer ports and return them
73  * @skb: sk_buff to extract the ports from
74  * @thoff: transport header offset
75  * @ip_proto: protocol for which to get port offset
76  * @data: raw buffer pointer to the packet, if NULL use skb->data
77  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
78  *
79  * The function will try to retrieve the ports at offset thoff + poff where poff
80  * is the protocol port offset returned from proto_ports_offset
81  */
82 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
83                             void *data, int hlen)
84 {
85         int poff = proto_ports_offset(ip_proto);
86
87         if (!data) {
88                 data = skb->data;
89                 hlen = skb_headlen(skb);
90         }
91
92         if (poff >= 0) {
93                 __be32 *ports, _ports;
94
95                 ports = __skb_header_pointer(skb, thoff + poff,
96                                              sizeof(_ports), data, hlen, &_ports);
97                 if (ports)
98                         return *ports;
99         }
100
101         return 0;
102 }
103 EXPORT_SYMBOL(__skb_flow_get_ports);
104
105 /**
106  * __skb_flow_dissect - extract the flow_keys struct and return it
107  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
108  * @flow_dissector: list of keys to dissect
109  * @target_container: target structure to put dissected values into
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
112  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
113  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
114  *
115  * The function will try to retrieve individual keys into target specified
116  * by flow_dissector from either the skbuff or a raw buffer specified by the
117  * rest parameters.
118  *
119  * Caller must take care of zeroing target container memory.
120  */
121 bool __skb_flow_dissect(const struct sk_buff *skb,
122                         struct flow_dissector *flow_dissector,
123                         void *target_container,
124                         void *data, __be16 proto, int nhoff, int hlen,
125                         unsigned int flags)
126 {
127         struct flow_dissector_key_control *key_control;
128         struct flow_dissector_key_basic *key_basic;
129         struct flow_dissector_key_addrs *key_addrs;
130         struct flow_dissector_key_ports *key_ports;
131         struct flow_dissector_key_tags *key_tags;
132         struct flow_dissector_key_keyid *key_keyid;
133         u8 ip_proto = 0;
134         bool ret = false;
135
136         if (!data) {
137                 data = skb->data;
138                 proto = skb->protocol;
139                 nhoff = skb_network_offset(skb);
140                 hlen = skb_headlen(skb);
141         }
142
143         /* It is ensured by skb_flow_dissector_init() that control key will
144          * be always present.
145          */
146         key_control = skb_flow_dissector_target(flow_dissector,
147                                                 FLOW_DISSECTOR_KEY_CONTROL,
148                                                 target_container);
149
150         /* It is ensured by skb_flow_dissector_init() that basic key will
151          * be always present.
152          */
153         key_basic = skb_flow_dissector_target(flow_dissector,
154                                               FLOW_DISSECTOR_KEY_BASIC,
155                                               target_container);
156
157         if (dissector_uses_key(flow_dissector,
158                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
159                 struct ethhdr *eth = eth_hdr(skb);
160                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
161
162                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
163                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
164                                                           target_container);
165                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
166         }
167
168 again:
169         switch (proto) {
170         case htons(ETH_P_IP): {
171                 const struct iphdr *iph;
172                 struct iphdr _iph;
173 ip:
174                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
175                 if (!iph || iph->ihl < 5)
176                         goto out_bad;
177                 nhoff += iph->ihl * 4;
178
179                 ip_proto = iph->protocol;
180
181                 if (!dissector_uses_key(flow_dissector,
182                                         FLOW_DISSECTOR_KEY_IPV4_ADDRS))
183                         break;
184
185                 key_addrs = skb_flow_dissector_target(flow_dissector,
186                               FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container);
187                 memcpy(&key_addrs->v4addrs, &iph->saddr,
188                        sizeof(key_addrs->v4addrs));
189                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
190
191                 if (ip_is_fragment(iph)) {
192                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
193
194                         if (iph->frag_off & htons(IP_OFFSET)) {
195                                 goto out_good;
196                         } else {
197                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
198                                 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
199                                         goto out_good;
200                         }
201                 }
202
203                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
204                         goto out_good;
205
206                 break;
207         }
208         case htons(ETH_P_IPV6): {
209                 const struct ipv6hdr *iph;
210                 struct ipv6hdr _iph;
211
212 ipv6:
213                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
214                 if (!iph)
215                         goto out_bad;
216
217                 ip_proto = iph->nexthdr;
218                 nhoff += sizeof(struct ipv6hdr);
219
220                 if (dissector_uses_key(flow_dissector,
221                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
222                         struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
223
224                         key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
225                                                                    FLOW_DISSECTOR_KEY_IPV6_ADDRS,
226                                                                    target_container);
227
228                         memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
229                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
230                 }
231
232                 if ((dissector_uses_key(flow_dissector,
233                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
234                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
235                     ip6_flowlabel(iph)) {
236                         __be32 flow_label = ip6_flowlabel(iph);
237
238                         if (dissector_uses_key(flow_dissector,
239                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
240                                 key_tags = skb_flow_dissector_target(flow_dissector,
241                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
242                                                                      target_container);
243                                 key_tags->flow_label = ntohl(flow_label);
244                         }
245                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
246                                 goto out_good;
247                 }
248
249                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
250                         goto out_good;
251
252                 break;
253         }
254         case htons(ETH_P_8021AD):
255         case htons(ETH_P_8021Q): {
256                 const struct vlan_hdr *vlan;
257                 struct vlan_hdr _vlan;
258
259                 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
260                 if (!vlan)
261                         goto out_bad;
262
263                 if (dissector_uses_key(flow_dissector,
264                                        FLOW_DISSECTOR_KEY_VLANID)) {
265                         key_tags = skb_flow_dissector_target(flow_dissector,
266                                                              FLOW_DISSECTOR_KEY_VLANID,
267                                                              target_container);
268
269                         key_tags->vlan_id = skb_vlan_tag_get_id(skb);
270                 }
271
272                 proto = vlan->h_vlan_encapsulated_proto;
273                 nhoff += sizeof(*vlan);
274                 goto again;
275         }
276         case htons(ETH_P_PPP_SES): {
277                 struct {
278                         struct pppoe_hdr hdr;
279                         __be16 proto;
280                 } *hdr, _hdr;
281                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
282                 if (!hdr)
283                         goto out_bad;
284                 proto = hdr->proto;
285                 nhoff += PPPOE_SES_HLEN;
286                 switch (proto) {
287                 case htons(PPP_IP):
288                         goto ip;
289                 case htons(PPP_IPV6):
290                         goto ipv6;
291                 default:
292                         goto out_bad;
293                 }
294         }
295         case htons(ETH_P_TIPC): {
296                 struct {
297                         __be32 pre[3];
298                         __be32 srcnode;
299                 } *hdr, _hdr;
300                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
301                 if (!hdr)
302                         goto out_bad;
303
304                 if (dissector_uses_key(flow_dissector,
305                                        FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
306                         key_addrs = skb_flow_dissector_target(flow_dissector,
307                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
308                                                               target_container);
309                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
310                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
311                 }
312                 goto out_good;
313         }
314
315         case htons(ETH_P_MPLS_UC):
316         case htons(ETH_P_MPLS_MC): {
317                 struct mpls_label *hdr, _hdr[2];
318 mpls:
319                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
320                                            hlen, &_hdr);
321                 if (!hdr)
322                         goto out_bad;
323
324                 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
325                      MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
326                         if (dissector_uses_key(flow_dissector,
327                                                FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
328                                 key_keyid = skb_flow_dissector_target(flow_dissector,
329                                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
330                                                                       target_container);
331                                 key_keyid->keyid = hdr[1].entry &
332                                         htonl(MPLS_LS_LABEL_MASK);
333                         }
334
335                         goto out_good;
336                 }
337
338                 goto out_good;
339         }
340
341         case htons(ETH_P_FCOE):
342                 key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
343                 /* fall through */
344         default:
345                 goto out_bad;
346         }
347
348 ip_proto_again:
349         switch (ip_proto) {
350         case IPPROTO_GRE: {
351                 struct gre_hdr {
352                         __be16 flags;
353                         __be16 proto;
354                 } *hdr, _hdr;
355
356                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
357                 if (!hdr)
358                         goto out_bad;
359                 /*
360                  * Only look inside GRE if version zero and no
361                  * routing
362                  */
363                 if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
364                         break;
365
366                 proto = hdr->proto;
367                 nhoff += 4;
368                 if (hdr->flags & GRE_CSUM)
369                         nhoff += 4;
370                 if (hdr->flags & GRE_KEY) {
371                         const __be32 *keyid;
372                         __be32 _keyid;
373
374                         keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
375                                                      data, hlen, &_keyid);
376
377                         if (!keyid)
378                                 goto out_bad;
379
380                         if (dissector_uses_key(flow_dissector,
381                                                FLOW_DISSECTOR_KEY_GRE_KEYID)) {
382                                 key_keyid = skb_flow_dissector_target(flow_dissector,
383                                                                       FLOW_DISSECTOR_KEY_GRE_KEYID,
384                                                                       target_container);
385                                 key_keyid->keyid = *keyid;
386                         }
387                         nhoff += 4;
388                 }
389                 if (hdr->flags & GRE_SEQ)
390                         nhoff += 4;
391                 if (proto == htons(ETH_P_TEB)) {
392                         const struct ethhdr *eth;
393                         struct ethhdr _eth;
394
395                         eth = __skb_header_pointer(skb, nhoff,
396                                                    sizeof(_eth),
397                                                    data, hlen, &_eth);
398                         if (!eth)
399                                 goto out_bad;
400                         proto = eth->h_proto;
401                         nhoff += sizeof(*eth);
402
403                         /* Cap headers that we access via pointers at the
404                          * end of the Ethernet header as our maximum alignment
405                          * at that point is only 2 bytes.
406                          */
407                         if (NET_IP_ALIGN)
408                                 hlen = nhoff;
409                 }
410
411                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
412                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
413                         goto out_good;
414
415                 goto again;
416         }
417         case NEXTHDR_HOP:
418         case NEXTHDR_ROUTING:
419         case NEXTHDR_DEST: {
420                 u8 _opthdr[2], *opthdr;
421
422                 if (proto != htons(ETH_P_IPV6))
423                         break;
424
425                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
426                                               data, hlen, &_opthdr);
427                 if (!opthdr)
428                         goto out_bad;
429
430                 ip_proto = opthdr[0];
431                 nhoff += (opthdr[1] + 1) << 3;
432
433                 goto ip_proto_again;
434         }
435         case NEXTHDR_FRAGMENT: {
436                 struct frag_hdr _fh, *fh;
437
438                 if (proto != htons(ETH_P_IPV6))
439                         break;
440
441                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
442                                           data, hlen, &_fh);
443
444                 if (!fh)
445                         goto out_bad;
446
447                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
448
449                 nhoff += sizeof(_fh);
450
451                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
452                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
453                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
454                                 ip_proto = fh->nexthdr;
455                                 goto ip_proto_again;
456                         }
457                 }
458                 goto out_good;
459         }
460         case IPPROTO_IPIP:
461                 proto = htons(ETH_P_IP);
462
463                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
464                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
465                         goto out_good;
466
467                 goto ip;
468         case IPPROTO_IPV6:
469                 proto = htons(ETH_P_IPV6);
470
471                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
472                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
473                         goto out_good;
474
475                 goto ipv6;
476         case IPPROTO_MPLS:
477                 proto = htons(ETH_P_MPLS_UC);
478                 goto mpls;
479         default:
480                 break;
481         }
482
483         if (dissector_uses_key(flow_dissector,
484                                FLOW_DISSECTOR_KEY_PORTS)) {
485                 key_ports = skb_flow_dissector_target(flow_dissector,
486                                                       FLOW_DISSECTOR_KEY_PORTS,
487                                                       target_container);
488                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
489                                                         data, hlen);
490         }
491
492 out_good:
493         ret = true;
494
495 out_bad:
496         key_basic->n_proto = proto;
497         key_basic->ip_proto = ip_proto;
498         key_control->thoff = (u16)nhoff;
499
500         return ret;
501 }
502 EXPORT_SYMBOL(__skb_flow_dissect);
503
504 static u32 hashrnd __read_mostly;
505 static __always_inline void __flow_hash_secret_init(void)
506 {
507         net_get_random_once(&hashrnd, sizeof(hashrnd));
508 }
509
510 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
511                                              u32 keyval)
512 {
513         return jhash2(words, length, keyval);
514 }
515
516 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
517 {
518         const void *p = flow;
519
520         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
521         return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
522 }
523
524 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
525 {
526         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
527         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
528         BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
529                      sizeof(*flow) - sizeof(flow->addrs));
530
531         switch (flow->control.addr_type) {
532         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
533                 diff -= sizeof(flow->addrs.v4addrs);
534                 break;
535         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
536                 diff -= sizeof(flow->addrs.v6addrs);
537                 break;
538         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
539                 diff -= sizeof(flow->addrs.tipcaddrs);
540                 break;
541         }
542         return (sizeof(*flow) - diff) / sizeof(u32);
543 }
544
545 __be32 flow_get_u32_src(const struct flow_keys *flow)
546 {
547         switch (flow->control.addr_type) {
548         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
549                 return flow->addrs.v4addrs.src;
550         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
551                 return (__force __be32)ipv6_addr_hash(
552                         &flow->addrs.v6addrs.src);
553         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
554                 return flow->addrs.tipcaddrs.srcnode;
555         default:
556                 return 0;
557         }
558 }
559 EXPORT_SYMBOL(flow_get_u32_src);
560
561 __be32 flow_get_u32_dst(const struct flow_keys *flow)
562 {
563         switch (flow->control.addr_type) {
564         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
565                 return flow->addrs.v4addrs.dst;
566         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
567                 return (__force __be32)ipv6_addr_hash(
568                         &flow->addrs.v6addrs.dst);
569         default:
570                 return 0;
571         }
572 }
573 EXPORT_SYMBOL(flow_get_u32_dst);
574
575 static inline void __flow_hash_consistentify(struct flow_keys *keys)
576 {
577         int addr_diff, i;
578
579         switch (keys->control.addr_type) {
580         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
581                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
582                             (__force u32)keys->addrs.v4addrs.src;
583                 if ((addr_diff < 0) ||
584                     (addr_diff == 0 &&
585                      ((__force u16)keys->ports.dst <
586                       (__force u16)keys->ports.src))) {
587                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
588                         swap(keys->ports.src, keys->ports.dst);
589                 }
590                 break;
591         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
592                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
593                                    &keys->addrs.v6addrs.src,
594                                    sizeof(keys->addrs.v6addrs.dst));
595                 if ((addr_diff < 0) ||
596                     (addr_diff == 0 &&
597                      ((__force u16)keys->ports.dst <
598                       (__force u16)keys->ports.src))) {
599                         for (i = 0; i < 4; i++)
600                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
601                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
602                         swap(keys->ports.src, keys->ports.dst);
603                 }
604                 break;
605         }
606 }
607
608 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
609 {
610         u32 hash;
611
612         __flow_hash_consistentify(keys);
613
614         hash = __flow_hash_words(flow_keys_hash_start(keys),
615                                  flow_keys_hash_length(keys), keyval);
616         if (!hash)
617                 hash = 1;
618
619         return hash;
620 }
621
622 u32 flow_hash_from_keys(struct flow_keys *keys)
623 {
624         __flow_hash_secret_init();
625         return __flow_hash_from_keys(keys, hashrnd);
626 }
627 EXPORT_SYMBOL(flow_hash_from_keys);
628
629 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
630                                   struct flow_keys *keys, u32 keyval)
631 {
632         skb_flow_dissect_flow_keys(skb, keys,
633                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
634
635         return __flow_hash_from_keys(keys, keyval);
636 }
637
638 struct _flow_keys_digest_data {
639         __be16  n_proto;
640         u8      ip_proto;
641         u8      padding;
642         __be32  ports;
643         __be32  src;
644         __be32  dst;
645 };
646
647 void make_flow_keys_digest(struct flow_keys_digest *digest,
648                            const struct flow_keys *flow)
649 {
650         struct _flow_keys_digest_data *data =
651             (struct _flow_keys_digest_data *)digest;
652
653         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
654
655         memset(digest, 0, sizeof(*digest));
656
657         data->n_proto = flow->basic.n_proto;
658         data->ip_proto = flow->basic.ip_proto;
659         data->ports = flow->ports.ports;
660         data->src = flow->addrs.v4addrs.src;
661         data->dst = flow->addrs.v4addrs.dst;
662 }
663 EXPORT_SYMBOL(make_flow_keys_digest);
664
665 /**
666  * __skb_get_hash: calculate a flow hash
667  * @skb: sk_buff to calculate flow hash from
668  *
669  * This function calculates a flow hash based on src/dst addresses
670  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
671  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
672  * if hash is a canonical 4-tuple hash over transport ports.
673  */
674 void __skb_get_hash(struct sk_buff *skb)
675 {
676         struct flow_keys keys;
677
678         __flow_hash_secret_init();
679
680         __skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, hashrnd),
681                           flow_keys_have_l4(&keys));
682 }
683 EXPORT_SYMBOL(__skb_get_hash);
684
685 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
686 {
687         struct flow_keys keys;
688
689         return ___skb_get_hash(skb, &keys, perturb);
690 }
691 EXPORT_SYMBOL(skb_get_hash_perturb);
692
693 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
694 {
695         struct flow_keys keys;
696
697         memset(&keys, 0, sizeof(keys));
698
699         memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
700                sizeof(keys.addrs.v6addrs.src));
701         memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
702                sizeof(keys.addrs.v6addrs.dst));
703         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
704         keys.ports.src = fl6->fl6_sport;
705         keys.ports.dst = fl6->fl6_dport;
706         keys.keyid.keyid = fl6->fl6_gre_key;
707         keys.tags.flow_label = (__force u32)fl6->flowlabel;
708         keys.basic.ip_proto = fl6->flowi6_proto;
709
710         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
711                           flow_keys_have_l4(&keys));
712
713         return skb->hash;
714 }
715 EXPORT_SYMBOL(__skb_get_hash_flowi6);
716
717 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
718 {
719         struct flow_keys keys;
720
721         memset(&keys, 0, sizeof(keys));
722
723         keys.addrs.v4addrs.src = fl4->saddr;
724         keys.addrs.v4addrs.dst = fl4->daddr;
725         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
726         keys.ports.src = fl4->fl4_sport;
727         keys.ports.dst = fl4->fl4_dport;
728         keys.keyid.keyid = fl4->fl4_gre_key;
729         keys.basic.ip_proto = fl4->flowi4_proto;
730
731         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
732                           flow_keys_have_l4(&keys));
733
734         return skb->hash;
735 }
736 EXPORT_SYMBOL(__skb_get_hash_flowi4);
737
738 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
739                    const struct flow_keys *keys, int hlen)
740 {
741         u32 poff = keys->control.thoff;
742
743         switch (keys->basic.ip_proto) {
744         case IPPROTO_TCP: {
745                 /* access doff as u8 to avoid unaligned access */
746                 const u8 *doff;
747                 u8 _doff;
748
749                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
750                                             data, hlen, &_doff);
751                 if (!doff)
752                         return poff;
753
754                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
755                 break;
756         }
757         case IPPROTO_UDP:
758         case IPPROTO_UDPLITE:
759                 poff += sizeof(struct udphdr);
760                 break;
761         /* For the rest, we do not really care about header
762          * extensions at this point for now.
763          */
764         case IPPROTO_ICMP:
765                 poff += sizeof(struct icmphdr);
766                 break;
767         case IPPROTO_ICMPV6:
768                 poff += sizeof(struct icmp6hdr);
769                 break;
770         case IPPROTO_IGMP:
771                 poff += sizeof(struct igmphdr);
772                 break;
773         case IPPROTO_DCCP:
774                 poff += sizeof(struct dccp_hdr);
775                 break;
776         case IPPROTO_SCTP:
777                 poff += sizeof(struct sctphdr);
778                 break;
779         }
780
781         return poff;
782 }
783
784 /**
785  * skb_get_poff - get the offset to the payload
786  * @skb: sk_buff to get the payload offset from
787  *
788  * The function will get the offset to the payload as far as it could
789  * be dissected.  The main user is currently BPF, so that we can dynamically
790  * truncate packets without needing to push actual payload to the user
791  * space and can analyze headers only, instead.
792  */
793 u32 skb_get_poff(const struct sk_buff *skb)
794 {
795         struct flow_keys keys;
796
797         if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
798                 return 0;
799
800         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
801 }
802
803 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
804 {
805         memset(keys, 0, sizeof(*keys));
806
807         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
808             sizeof(keys->addrs.v6addrs.src));
809         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
810             sizeof(keys->addrs.v6addrs.dst));
811         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
812         keys->ports.src = fl6->fl6_sport;
813         keys->ports.dst = fl6->fl6_dport;
814         keys->keyid.keyid = fl6->fl6_gre_key;
815         keys->tags.flow_label = (__force u32)fl6->flowlabel;
816         keys->basic.ip_proto = fl6->flowi6_proto;
817
818         return flow_hash_from_keys(keys);
819 }
820 EXPORT_SYMBOL(__get_hash_from_flowi6);
821
822 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
823 {
824         memset(keys, 0, sizeof(*keys));
825
826         keys->addrs.v4addrs.src = fl4->saddr;
827         keys->addrs.v4addrs.dst = fl4->daddr;
828         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
829         keys->ports.src = fl4->fl4_sport;
830         keys->ports.dst = fl4->fl4_dport;
831         keys->keyid.keyid = fl4->fl4_gre_key;
832         keys->basic.ip_proto = fl4->flowi4_proto;
833
834         return flow_hash_from_keys(keys);
835 }
836 EXPORT_SYMBOL(__get_hash_from_flowi4);
837
838 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
839         {
840                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
841                 .offset = offsetof(struct flow_keys, control),
842         },
843         {
844                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
845                 .offset = offsetof(struct flow_keys, basic),
846         },
847         {
848                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
849                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
850         },
851         {
852                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
853                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
854         },
855         {
856                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
857                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
858         },
859         {
860                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
861                 .offset = offsetof(struct flow_keys, ports),
862         },
863         {
864                 .key_id = FLOW_DISSECTOR_KEY_VLANID,
865                 .offset = offsetof(struct flow_keys, tags),
866         },
867         {
868                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
869                 .offset = offsetof(struct flow_keys, tags),
870         },
871         {
872                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
873                 .offset = offsetof(struct flow_keys, keyid),
874         },
875 };
876
877 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
878         {
879                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
880                 .offset = offsetof(struct flow_keys, control),
881         },
882         {
883                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
884                 .offset = offsetof(struct flow_keys, basic),
885         },
886 };
887
888 struct flow_dissector flow_keys_dissector __read_mostly;
889 EXPORT_SYMBOL(flow_keys_dissector);
890
891 struct flow_dissector flow_keys_buf_dissector __read_mostly;
892
893 static int __init init_default_flow_dissectors(void)
894 {
895         skb_flow_dissector_init(&flow_keys_dissector,
896                                 flow_keys_dissector_keys,
897                                 ARRAY_SIZE(flow_keys_dissector_keys));
898         skb_flow_dissector_init(&flow_keys_buf_dissector,
899                                 flow_keys_buf_dissector_keys,
900                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
901         return 0;
902 }
903
904 late_initcall_sync(init_default_flow_dissectors);