Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;       /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155                                          struct net_device *dev,
156                                          struct netdev_notifier_info *info);
157
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187 static DEFINE_MUTEX(devnet_rename_mutex);
188
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191         while (++net->dev_base_seq == 0);
192 }
193
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
198         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209         raw_spin_lock(&sd->input_pkt_queue.raw_lock);
210 #endif
211 }
212
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216         raw_spin_unlock(&sd->input_pkt_queue.raw_lock);
217 #endif
218 }
219
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223         struct net *net = dev_net(dev);
224
225         ASSERT_RTNL();
226
227         write_lock_bh(&dev_base_lock);
228         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230         hlist_add_head_rcu(&dev->index_hlist,
231                            dev_index_hash(net, dev->ifindex));
232         write_unlock_bh(&dev_base_lock);
233
234         dev_base_seq_inc(net);
235 }
236
237 /* Device list removal
238  * caller must respect a RCU grace period before freeing/reusing dev
239  */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242         ASSERT_RTNL();
243
244         /* Unlink dev from the device chain */
245         write_lock_bh(&dev_base_lock);
246         list_del_rcu(&dev->dev_list);
247         hlist_del_rcu(&dev->name_hlist);
248         hlist_del_rcu(&dev->index_hlist);
249         write_unlock_bh(&dev_base_lock);
250
251         dev_base_seq_inc(dev_net(dev));
252 }
253
254 /*
255  *      Our notifier list
256  */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261  *      Device drivers call our routines to queue packets here. We empty the
262  *      queue in the local softnet handler.
263  */
264
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289
290 static const char *const netdev_lock_name[] =
291         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312         int i;
313
314         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315                 if (netdev_lock_type[i] == dev_type)
316                         return i;
317         /* the last key is used by default */
318         return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322                                                  unsigned short dev_type)
323 {
324         int i;
325
326         i = netdev_lock_pos(dev_type);
327         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328                                    netdev_lock_name[i]);
329 }
330
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333         int i;
334
335         i = netdev_lock_pos(dev->type);
336         lockdep_set_class_and_name(&dev->addr_list_lock,
337                                    &netdev_addr_lock_key[i],
338                                    netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342                                                  unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349
350 /*******************************************************************************
351
352                 Protocol management and registration routines
353
354 *******************************************************************************/
355
356 /*
357  *      Add a protocol ID to the list. Now that the input handler is
358  *      smarter we can dispense with all the messy stuff that used to be
359  *      here.
360  *
361  *      BEWARE!!! Protocol handlers, mangling input packets,
362  *      MUST BE last in hash buckets and checking protocol handlers
363  *      MUST start from promiscuous ptype_all chain in net_bh.
364  *      It is true now, do not change it.
365  *      Explanation follows: if protocol handler, mangling packet, will
366  *      be the first on list, it is not able to sense, that packet
367  *      is cloned and should be copied-on-write, so that it will
368  *      change it and subsequent readers will get broken packet.
369  *                                                      --ANK (980803)
370  */
371
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374         if (pt->type == htons(ETH_P_ALL))
375                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376         else
377                 return pt->dev ? &pt->dev->ptype_specific :
378                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380
381 /**
382  *      dev_add_pack - add packet handler
383  *      @pt: packet type declaration
384  *
385  *      Add a protocol handler to the networking stack. The passed &packet_type
386  *      is linked into kernel lists and may not be freed until it has been
387  *      removed from the kernel lists.
388  *
389  *      This call does not sleep therefore it can not
390  *      guarantee all CPU's that are in middle of receiving packets
391  *      will see the new packet type (until the next received packet).
392  */
393
394 void dev_add_pack(struct packet_type *pt)
395 {
396         struct list_head *head = ptype_head(pt);
397
398         spin_lock(&ptype_lock);
399         list_add_rcu(&pt->list, head);
400         spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405  *      __dev_remove_pack        - remove packet handler
406  *      @pt: packet type declaration
407  *
408  *      Remove a protocol handler that was previously added to the kernel
409  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *      from the kernel lists and can be freed or reused once this function
411  *      returns.
412  *
413  *      The packet type might still be in use by receivers
414  *      and must not be freed until after all the CPU's have gone
415  *      through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419         struct list_head *head = ptype_head(pt);
420         struct packet_type *pt1;
421
422         spin_lock(&ptype_lock);
423
424         list_for_each_entry(pt1, head, list) {
425                 if (pt == pt1) {
426                         list_del_rcu(&pt->list);
427                         goto out;
428                 }
429         }
430
431         pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433         spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436
437 /**
438  *      dev_remove_pack  - remove packet handler
439  *      @pt: packet type declaration
440  *
441  *      Remove a protocol handler that was previously added to the kernel
442  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *      from the kernel lists and can be freed or reused once this function
444  *      returns.
445  *
446  *      This call sleeps to guarantee that no CPU is looking at the packet
447  *      type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451         __dev_remove_pack(pt);
452
453         synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456
457
458 /**
459  *      dev_add_offload - register offload handlers
460  *      @po: protocol offload declaration
461  *
462  *      Add protocol offload handlers to the networking stack. The passed
463  *      &proto_offload is linked into kernel lists and may not be freed until
464  *      it has been removed from the kernel lists.
465  *
466  *      This call does not sleep therefore it can not
467  *      guarantee all CPU's that are in middle of receiving packets
468  *      will see the new offload handlers (until the next received packet).
469  */
470 void dev_add_offload(struct packet_offload *po)
471 {
472         struct list_head *head = &offload_base;
473
474         spin_lock(&offload_lock);
475         list_add_rcu(&po->list, head);
476         spin_unlock(&offload_lock);
477 }
478 EXPORT_SYMBOL(dev_add_offload);
479
480 /**
481  *      __dev_remove_offload     - remove offload handler
482  *      @po: packet offload declaration
483  *
484  *      Remove a protocol offload handler that was previously added to the
485  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
486  *      is removed from the kernel lists and can be freed or reused once this
487  *      function returns.
488  *
489  *      The packet type might still be in use by receivers
490  *      and must not be freed until after all the CPU's have gone
491  *      through a quiescent state.
492  */
493 static void __dev_remove_offload(struct packet_offload *po)
494 {
495         struct list_head *head = &offload_base;
496         struct packet_offload *po1;
497
498         spin_lock(&offload_lock);
499
500         list_for_each_entry(po1, head, list) {
501                 if (po == po1) {
502                         list_del_rcu(&po->list);
503                         goto out;
504                 }
505         }
506
507         pr_warn("dev_remove_offload: %p not found\n", po);
508 out:
509         spin_unlock(&offload_lock);
510 }
511
512 /**
513  *      dev_remove_offload       - remove packet offload handler
514  *      @po: packet offload declaration
515  *
516  *      Remove a packet offload handler that was previously added to the kernel
517  *      offload handlers by dev_add_offload(). The passed &offload_type is
518  *      removed from the kernel lists and can be freed or reused once this
519  *      function returns.
520  *
521  *      This call sleeps to guarantee that no CPU is looking at the packet
522  *      type after return.
523  */
524 void dev_remove_offload(struct packet_offload *po)
525 {
526         __dev_remove_offload(po);
527
528         synchronize_net();
529 }
530 EXPORT_SYMBOL(dev_remove_offload);
531
532 /******************************************************************************
533
534                       Device Boot-time Settings Routines
535
536 *******************************************************************************/
537
538 /* Boot time configuration table */
539 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
540
541 /**
542  *      netdev_boot_setup_add   - add new setup entry
543  *      @name: name of the device
544  *      @map: configured settings for the device
545  *
546  *      Adds new setup entry to the dev_boot_setup list.  The function
547  *      returns 0 on error and 1 on success.  This is a generic routine to
548  *      all netdevices.
549  */
550 static int netdev_boot_setup_add(char *name, struct ifmap *map)
551 {
552         struct netdev_boot_setup *s;
553         int i;
554
555         s = dev_boot_setup;
556         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
557                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
558                         memset(s[i].name, 0, sizeof(s[i].name));
559                         strlcpy(s[i].name, name, IFNAMSIZ);
560                         memcpy(&s[i].map, map, sizeof(s[i].map));
561                         break;
562                 }
563         }
564
565         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
566 }
567
568 /**
569  *      netdev_boot_setup_check - check boot time settings
570  *      @dev: the netdevice
571  *
572  *      Check boot time settings for the device.
573  *      The found settings are set for the device to be used
574  *      later in the device probing.
575  *      Returns 0 if no settings found, 1 if they are.
576  */
577 int netdev_boot_setup_check(struct net_device *dev)
578 {
579         struct netdev_boot_setup *s = dev_boot_setup;
580         int i;
581
582         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
583                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
584                     !strcmp(dev->name, s[i].name)) {
585                         dev->irq        = s[i].map.irq;
586                         dev->base_addr  = s[i].map.base_addr;
587                         dev->mem_start  = s[i].map.mem_start;
588                         dev->mem_end    = s[i].map.mem_end;
589                         return 1;
590                 }
591         }
592         return 0;
593 }
594 EXPORT_SYMBOL(netdev_boot_setup_check);
595
596
597 /**
598  *      netdev_boot_base        - get address from boot time settings
599  *      @prefix: prefix for network device
600  *      @unit: id for network device
601  *
602  *      Check boot time settings for the base address of device.
603  *      The found settings are set for the device to be used
604  *      later in the device probing.
605  *      Returns 0 if no settings found.
606  */
607 unsigned long netdev_boot_base(const char *prefix, int unit)
608 {
609         const struct netdev_boot_setup *s = dev_boot_setup;
610         char name[IFNAMSIZ];
611         int i;
612
613         sprintf(name, "%s%d", prefix, unit);
614
615         /*
616          * If device already registered then return base of 1
617          * to indicate not to probe for this interface
618          */
619         if (__dev_get_by_name(&init_net, name))
620                 return 1;
621
622         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
623                 if (!strcmp(name, s[i].name))
624                         return s[i].map.base_addr;
625         return 0;
626 }
627
628 /*
629  * Saves at boot time configured settings for any netdevice.
630  */
631 int __init netdev_boot_setup(char *str)
632 {
633         int ints[5];
634         struct ifmap map;
635
636         str = get_options(str, ARRAY_SIZE(ints), ints);
637         if (!str || !*str)
638                 return 0;
639
640         /* Save settings */
641         memset(&map, 0, sizeof(map));
642         if (ints[0] > 0)
643                 map.irq = ints[1];
644         if (ints[0] > 1)
645                 map.base_addr = ints[2];
646         if (ints[0] > 2)
647                 map.mem_start = ints[3];
648         if (ints[0] > 3)
649                 map.mem_end = ints[4];
650
651         /* Add new entry to the list */
652         return netdev_boot_setup_add(str, &map);
653 }
654
655 __setup("netdev=", netdev_boot_setup);
656
657 /*******************************************************************************
658
659                             Device Interface Subroutines
660
661 *******************************************************************************/
662
663 /**
664  *      dev_get_iflink  - get 'iflink' value of a interface
665  *      @dev: targeted interface
666  *
667  *      Indicates the ifindex the interface is linked to.
668  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670
671 int dev_get_iflink(const struct net_device *dev)
672 {
673         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674                 return dev->netdev_ops->ndo_get_iflink(dev);
675
676         /* If dev->rtnl_link_ops is set, it's a virtual interface. */
677         if (dev->rtnl_link_ops)
678                 return 0;
679
680         return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683
684 /**
685  *      __dev_get_by_name       - find a device by its name
686  *      @net: the applicable net namespace
687  *      @name: name to find
688  *
689  *      Find an interface by name. Must be called under RTNL semaphore
690  *      or @dev_base_lock. If the name is found a pointer to the device
691  *      is returned. If the name is not found then %NULL is returned. The
692  *      reference counters are not incremented so the caller must be
693  *      careful with locks.
694  */
695
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698         struct net_device *dev;
699         struct hlist_head *head = dev_name_hash(net, name);
700
701         hlist_for_each_entry(dev, head, name_hlist)
702                 if (!strncmp(dev->name, name, IFNAMSIZ))
703                         return dev;
704
705         return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708
709 /**
710  *      dev_get_by_name_rcu     - find a device by its name
711  *      @net: the applicable net namespace
712  *      @name: name to find
713  *
714  *      Find an interface by name.
715  *      If the name is found a pointer to the device is returned.
716  *      If the name is not found then %NULL is returned.
717  *      The reference counters are not incremented so the caller must be
718  *      careful with locks. The caller must hold RCU lock.
719  */
720
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723         struct net_device *dev;
724         struct hlist_head *head = dev_name_hash(net, name);
725
726         hlist_for_each_entry_rcu(dev, head, name_hlist)
727                 if (!strncmp(dev->name, name, IFNAMSIZ))
728                         return dev;
729
730         return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734 /**
735  *      dev_get_by_name         - find a device by its name
736  *      @net: the applicable net namespace
737  *      @name: name to find
738  *
739  *      Find an interface by name. This can be called from any
740  *      context and does its own locking. The returned handle has
741  *      the usage count incremented and the caller must use dev_put() to
742  *      release it when it is no longer needed. %NULL is returned if no
743  *      matching device is found.
744  */
745
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748         struct net_device *dev;
749
750         rcu_read_lock();
751         dev = dev_get_by_name_rcu(net, name);
752         if (dev)
753                 dev_hold(dev);
754         rcu_read_unlock();
755         return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758
759 /**
760  *      __dev_get_by_index - find a device by its ifindex
761  *      @net: the applicable net namespace
762  *      @ifindex: index of device
763  *
764  *      Search for an interface by index. Returns %NULL if the device
765  *      is not found or a pointer to the device. The device has not
766  *      had its reference counter increased so the caller must be careful
767  *      about locking. The caller must hold either the RTNL semaphore
768  *      or @dev_base_lock.
769  */
770
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773         struct net_device *dev;
774         struct hlist_head *head = dev_index_hash(net, ifindex);
775
776         hlist_for_each_entry(dev, head, index_hlist)
777                 if (dev->ifindex == ifindex)
778                         return dev;
779
780         return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783
784 /**
785  *      dev_get_by_index_rcu - find a device by its ifindex
786  *      @net: the applicable net namespace
787  *      @ifindex: index of device
788  *
789  *      Search for an interface by index. Returns %NULL if the device
790  *      is not found or a pointer to the device. The device has not
791  *      had its reference counter increased so the caller must be careful
792  *      about locking. The caller must hold RCU lock.
793  */
794
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797         struct net_device *dev;
798         struct hlist_head *head = dev_index_hash(net, ifindex);
799
800         hlist_for_each_entry_rcu(dev, head, index_hlist)
801                 if (dev->ifindex == ifindex)
802                         return dev;
803
804         return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807
808
809 /**
810  *      dev_get_by_index - find a device by its ifindex
811  *      @net: the applicable net namespace
812  *      @ifindex: index of device
813  *
814  *      Search for an interface by index. Returns NULL if the device
815  *      is not found or a pointer to the device. The device returned has
816  *      had a reference added and the pointer is safe until the user calls
817  *      dev_put to indicate they have finished with it.
818  */
819
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822         struct net_device *dev;
823
824         rcu_read_lock();
825         dev = dev_get_by_index_rcu(net, ifindex);
826         if (dev)
827                 dev_hold(dev);
828         rcu_read_unlock();
829         return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832
833 /**
834  *      netdev_get_name - get a netdevice name, knowing its ifindex.
835  *      @net: network namespace
836  *      @name: a pointer to the buffer where the name will be stored.
837  *      @ifindex: the ifindex of the interface to get the name from.
838  *
839  *      The use of raw_seqcount_begin() and cond_resched() before
840  *      retrying is required as we want to give the writers a chance
841  *      to complete when CONFIG_PREEMPT is not set.
842  */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845         struct net_device *dev;
846         unsigned int seq;
847
848 retry:
849         seq = raw_seqcount_begin(&devnet_rename_seq);
850         rcu_read_lock();
851         dev = dev_get_by_index_rcu(net, ifindex);
852         if (!dev) {
853                 rcu_read_unlock();
854                 return -ENODEV;
855         }
856
857         strcpy(name, dev->name);
858         rcu_read_unlock();
859         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860                 mutex_lock(&devnet_rename_mutex);
861                 mutex_unlock(&devnet_rename_mutex);
862                 goto retry;
863         }
864
865         return 0;
866 }
867
868 /**
869  *      dev_getbyhwaddr_rcu - find a device by its hardware address
870  *      @net: the applicable net namespace
871  *      @type: media type of device
872  *      @ha: hardware address
873  *
874  *      Search for an interface by MAC address. Returns NULL if the device
875  *      is not found or a pointer to the device.
876  *      The caller must hold RCU or RTNL.
877  *      The returned device has not had its ref count increased
878  *      and the caller must therefore be careful about locking
879  *
880  */
881
882 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
883                                        const char *ha)
884 {
885         struct net_device *dev;
886
887         for_each_netdev_rcu(net, dev)
888                 if (dev->type == type &&
889                     !memcmp(dev->dev_addr, ha, dev->addr_len))
890                         return dev;
891
892         return NULL;
893 }
894 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
895
896 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
897 {
898         struct net_device *dev;
899
900         ASSERT_RTNL();
901         for_each_netdev(net, dev)
902                 if (dev->type == type)
903                         return dev;
904
905         return NULL;
906 }
907 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
908
909 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
910 {
911         struct net_device *dev, *ret = NULL;
912
913         rcu_read_lock();
914         for_each_netdev_rcu(net, dev)
915                 if (dev->type == type) {
916                         dev_hold(dev);
917                         ret = dev;
918                         break;
919                 }
920         rcu_read_unlock();
921         return ret;
922 }
923 EXPORT_SYMBOL(dev_getfirstbyhwtype);
924
925 /**
926  *      __dev_get_by_flags - find any device with given flags
927  *      @net: the applicable net namespace
928  *      @if_flags: IFF_* values
929  *      @mask: bitmask of bits in if_flags to check
930  *
931  *      Search for any interface with the given flags. Returns NULL if a device
932  *      is not found or a pointer to the device. Must be called inside
933  *      rtnl_lock(), and result refcount is unchanged.
934  */
935
936 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
937                                       unsigned short mask)
938 {
939         struct net_device *dev, *ret;
940
941         ASSERT_RTNL();
942
943         ret = NULL;
944         for_each_netdev(net, dev) {
945                 if (((dev->flags ^ if_flags) & mask) == 0) {
946                         ret = dev;
947                         break;
948                 }
949         }
950         return ret;
951 }
952 EXPORT_SYMBOL(__dev_get_by_flags);
953
954 /**
955  *      dev_valid_name - check if name is okay for network device
956  *      @name: name string
957  *
958  *      Network device names need to be valid file names to
959  *      to allow sysfs to work.  We also disallow any kind of
960  *      whitespace.
961  */
962 bool dev_valid_name(const char *name)
963 {
964         if (*name == '\0')
965                 return false;
966         if (strlen(name) >= IFNAMSIZ)
967                 return false;
968         if (!strcmp(name, ".") || !strcmp(name, ".."))
969                 return false;
970
971         while (*name) {
972                 if (*name == '/' || *name == ':' || isspace(*name))
973                         return false;
974                 name++;
975         }
976         return true;
977 }
978 EXPORT_SYMBOL(dev_valid_name);
979
980 /**
981  *      __dev_alloc_name - allocate a name for a device
982  *      @net: network namespace to allocate the device name in
983  *      @name: name format string
984  *      @buf:  scratch buffer and result name string
985  *
986  *      Passed a format string - eg "lt%d" it will try and find a suitable
987  *      id. It scans list of devices to build up a free map, then chooses
988  *      the first empty slot. The caller must hold the dev_base or rtnl lock
989  *      while allocating the name and adding the device in order to avoid
990  *      duplicates.
991  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
992  *      Returns the number of the unit assigned or a negative errno code.
993  */
994
995 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
996 {
997         int i = 0;
998         const char *p;
999         const int max_netdevices = 8*PAGE_SIZE;
1000         unsigned long *inuse;
1001         struct net_device *d;
1002
1003         p = strnchr(name, IFNAMSIZ-1, '%');
1004         if (p) {
1005                 /*
1006                  * Verify the string as this thing may have come from
1007                  * the user.  There must be either one "%d" and no other "%"
1008                  * characters.
1009                  */
1010                 if (p[1] != 'd' || strchr(p + 2, '%'))
1011                         return -EINVAL;
1012
1013                 /* Use one page as a bit array of possible slots */
1014                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1015                 if (!inuse)
1016                         return -ENOMEM;
1017
1018                 for_each_netdev(net, d) {
1019                         if (!sscanf(d->name, name, &i))
1020                                 continue;
1021                         if (i < 0 || i >= max_netdevices)
1022                                 continue;
1023
1024                         /*  avoid cases where sscanf is not exact inverse of printf */
1025                         snprintf(buf, IFNAMSIZ, name, i);
1026                         if (!strncmp(buf, d->name, IFNAMSIZ))
1027                                 set_bit(i, inuse);
1028                 }
1029
1030                 i = find_first_zero_bit(inuse, max_netdevices);
1031                 free_page((unsigned long) inuse);
1032         }
1033
1034         if (buf != name)
1035                 snprintf(buf, IFNAMSIZ, name, i);
1036         if (!__dev_get_by_name(net, buf))
1037                 return i;
1038
1039         /* It is possible to run out of possible slots
1040          * when the name is long and there isn't enough space left
1041          * for the digits, or if all bits are used.
1042          */
1043         return -ENFILE;
1044 }
1045
1046 /**
1047  *      dev_alloc_name - allocate a name for a device
1048  *      @dev: device
1049  *      @name: name format string
1050  *
1051  *      Passed a format string - eg "lt%d" it will try and find a suitable
1052  *      id. It scans list of devices to build up a free map, then chooses
1053  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1054  *      while allocating the name and adding the device in order to avoid
1055  *      duplicates.
1056  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1057  *      Returns the number of the unit assigned or a negative errno code.
1058  */
1059
1060 int dev_alloc_name(struct net_device *dev, const char *name)
1061 {
1062         char buf[IFNAMSIZ];
1063         struct net *net;
1064         int ret;
1065
1066         BUG_ON(!dev_net(dev));
1067         net = dev_net(dev);
1068         ret = __dev_alloc_name(net, name, buf);
1069         if (ret >= 0)
1070                 strlcpy(dev->name, buf, IFNAMSIZ);
1071         return ret;
1072 }
1073 EXPORT_SYMBOL(dev_alloc_name);
1074
1075 static int dev_alloc_name_ns(struct net *net,
1076                              struct net_device *dev,
1077                              const char *name)
1078 {
1079         char buf[IFNAMSIZ];
1080         int ret;
1081
1082         ret = __dev_alloc_name(net, name, buf);
1083         if (ret >= 0)
1084                 strlcpy(dev->name, buf, IFNAMSIZ);
1085         return ret;
1086 }
1087
1088 static int dev_get_valid_name(struct net *net,
1089                               struct net_device *dev,
1090                               const char *name)
1091 {
1092         BUG_ON(!net);
1093
1094         if (!dev_valid_name(name))
1095                 return -EINVAL;
1096
1097         if (strchr(name, '%'))
1098                 return dev_alloc_name_ns(net, dev, name);
1099         else if (__dev_get_by_name(net, name))
1100                 return -EEXIST;
1101         else if (dev->name != name)
1102                 strlcpy(dev->name, name, IFNAMSIZ);
1103
1104         return 0;
1105 }
1106
1107 /**
1108  *      dev_change_name - change name of a device
1109  *      @dev: device
1110  *      @newname: name (or format string) must be at least IFNAMSIZ
1111  *
1112  *      Change name of a device, can pass format strings "eth%d".
1113  *      for wildcarding.
1114  */
1115 int dev_change_name(struct net_device *dev, const char *newname)
1116 {
1117         unsigned char old_assign_type;
1118         char oldname[IFNAMSIZ];
1119         int err = 0;
1120         int ret;
1121         struct net *net;
1122
1123         ASSERT_RTNL();
1124         BUG_ON(!dev_net(dev));
1125
1126         net = dev_net(dev);
1127         if (dev->flags & IFF_UP)
1128                 return -EBUSY;
1129
1130         mutex_lock(&devnet_rename_mutex);
1131         __raw_write_seqcount_begin(&devnet_rename_seq);
1132
1133         if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1134                 goto outunlock;
1135
1136         memcpy(oldname, dev->name, IFNAMSIZ);
1137
1138         err = dev_get_valid_name(net, dev, newname);
1139         if (err < 0)
1140                 goto outunlock;
1141
1142         if (oldname[0] && !strchr(oldname, '%'))
1143                 netdev_info(dev, "renamed from %s\n", oldname);
1144
1145         old_assign_type = dev->name_assign_type;
1146         dev->name_assign_type = NET_NAME_RENAMED;
1147
1148 rollback:
1149         ret = device_rename(&dev->dev, dev->name);
1150         if (ret) {
1151                 memcpy(dev->name, oldname, IFNAMSIZ);
1152                 dev->name_assign_type = old_assign_type;
1153                 err = ret;
1154                 goto outunlock;
1155         }
1156
1157         __raw_write_seqcount_end(&devnet_rename_seq);
1158         mutex_unlock(&devnet_rename_mutex);
1159
1160         netdev_adjacent_rename_links(dev, oldname);
1161
1162         write_lock_bh(&dev_base_lock);
1163         hlist_del_rcu(&dev->name_hlist);
1164         write_unlock_bh(&dev_base_lock);
1165
1166         synchronize_rcu();
1167
1168         write_lock_bh(&dev_base_lock);
1169         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1170         write_unlock_bh(&dev_base_lock);
1171
1172         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1173         ret = notifier_to_errno(ret);
1174
1175         if (ret) {
1176                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1177                 if (err >= 0) {
1178                         err = ret;
1179                         mutex_lock(&devnet_rename_mutex);
1180                         __raw_write_seqcount_begin(&devnet_rename_seq);
1181                         memcpy(dev->name, oldname, IFNAMSIZ);
1182                         memcpy(oldname, newname, IFNAMSIZ);
1183                         dev->name_assign_type = old_assign_type;
1184                         old_assign_type = NET_NAME_RENAMED;
1185                         goto rollback;
1186                 } else {
1187                         pr_err("%s: name change rollback failed: %d\n",
1188                                dev->name, ret);
1189                 }
1190         }
1191
1192         return err;
1193
1194 outunlock:
1195         __raw_write_seqcount_end(&devnet_rename_seq);
1196         mutex_unlock(&devnet_rename_mutex);
1197         return err;
1198 }
1199
1200 /**
1201  *      dev_set_alias - change ifalias of a device
1202  *      @dev: device
1203  *      @alias: name up to IFALIASZ
1204  *      @len: limit of bytes to copy from info
1205  *
1206  *      Set ifalias for a device,
1207  */
1208 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1209 {
1210         char *new_ifalias;
1211
1212         ASSERT_RTNL();
1213
1214         if (len >= IFALIASZ)
1215                 return -EINVAL;
1216
1217         if (!len) {
1218                 kfree(dev->ifalias);
1219                 dev->ifalias = NULL;
1220                 return 0;
1221         }
1222
1223         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1224         if (!new_ifalias)
1225                 return -ENOMEM;
1226         dev->ifalias = new_ifalias;
1227
1228         strlcpy(dev->ifalias, alias, len+1);
1229         return len;
1230 }
1231
1232
1233 /**
1234  *      netdev_features_change - device changes features
1235  *      @dev: device to cause notification
1236  *
1237  *      Called to indicate a device has changed features.
1238  */
1239 void netdev_features_change(struct net_device *dev)
1240 {
1241         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1242 }
1243 EXPORT_SYMBOL(netdev_features_change);
1244
1245 /**
1246  *      netdev_state_change - device changes state
1247  *      @dev: device to cause notification
1248  *
1249  *      Called to indicate a device has changed state. This function calls
1250  *      the notifier chains for netdev_chain and sends a NEWLINK message
1251  *      to the routing socket.
1252  */
1253 void netdev_state_change(struct net_device *dev)
1254 {
1255         if (dev->flags & IFF_UP) {
1256                 struct netdev_notifier_change_info change_info;
1257
1258                 change_info.flags_changed = 0;
1259                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1260                                               &change_info.info);
1261                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1262         }
1263 }
1264 EXPORT_SYMBOL(netdev_state_change);
1265
1266 /**
1267  *      netdev_notify_peers - notify network peers about existence of @dev
1268  *      @dev: network device
1269  *
1270  * Generate traffic such that interested network peers are aware of
1271  * @dev, such as by generating a gratuitous ARP. This may be used when
1272  * a device wants to inform the rest of the network about some sort of
1273  * reconfiguration such as a failover event or virtual machine
1274  * migration.
1275  */
1276 void netdev_notify_peers(struct net_device *dev)
1277 {
1278         rtnl_lock();
1279         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1280         rtnl_unlock();
1281 }
1282 EXPORT_SYMBOL(netdev_notify_peers);
1283
1284 static int __dev_open(struct net_device *dev)
1285 {
1286         const struct net_device_ops *ops = dev->netdev_ops;
1287         int ret;
1288
1289         ASSERT_RTNL();
1290
1291         if (!netif_device_present(dev))
1292                 return -ENODEV;
1293
1294         /* Block netpoll from trying to do any rx path servicing.
1295          * If we don't do this there is a chance ndo_poll_controller
1296          * or ndo_poll may be running while we open the device
1297          */
1298         netpoll_poll_disable(dev);
1299
1300         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1301         ret = notifier_to_errno(ret);
1302         if (ret)
1303                 return ret;
1304
1305         set_bit(__LINK_STATE_START, &dev->state);
1306
1307         if (ops->ndo_validate_addr)
1308                 ret = ops->ndo_validate_addr(dev);
1309
1310         if (!ret && ops->ndo_open)
1311                 ret = ops->ndo_open(dev);
1312
1313         netpoll_poll_enable(dev);
1314
1315         if (ret)
1316                 clear_bit(__LINK_STATE_START, &dev->state);
1317         else {
1318                 dev->flags |= IFF_UP;
1319                 dev_set_rx_mode(dev);
1320                 dev_activate(dev);
1321                 add_device_randomness(dev->dev_addr, dev->addr_len);
1322         }
1323
1324         return ret;
1325 }
1326
1327 /**
1328  *      dev_open        - prepare an interface for use.
1329  *      @dev:   device to open
1330  *
1331  *      Takes a device from down to up state. The device's private open
1332  *      function is invoked and then the multicast lists are loaded. Finally
1333  *      the device is moved into the up state and a %NETDEV_UP message is
1334  *      sent to the netdev notifier chain.
1335  *
1336  *      Calling this function on an active interface is a nop. On a failure
1337  *      a negative errno code is returned.
1338  */
1339 int dev_open(struct net_device *dev)
1340 {
1341         int ret;
1342
1343         if (dev->flags & IFF_UP)
1344                 return 0;
1345
1346         ret = __dev_open(dev);
1347         if (ret < 0)
1348                 return ret;
1349
1350         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1351         call_netdevice_notifiers(NETDEV_UP, dev);
1352
1353         return ret;
1354 }
1355 EXPORT_SYMBOL(dev_open);
1356
1357 static int __dev_close_many(struct list_head *head)
1358 {
1359         struct net_device *dev;
1360
1361         ASSERT_RTNL();
1362         might_sleep();
1363
1364         list_for_each_entry(dev, head, close_list) {
1365                 /* Temporarily disable netpoll until the interface is down */
1366                 netpoll_poll_disable(dev);
1367
1368                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1369
1370                 clear_bit(__LINK_STATE_START, &dev->state);
1371
1372                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1373                  * can be even on different cpu. So just clear netif_running().
1374                  *
1375                  * dev->stop() will invoke napi_disable() on all of it's
1376                  * napi_struct instances on this device.
1377                  */
1378                 smp_mb__after_atomic(); /* Commit netif_running(). */
1379         }
1380
1381         dev_deactivate_many(head);
1382
1383         list_for_each_entry(dev, head, close_list) {
1384                 const struct net_device_ops *ops = dev->netdev_ops;
1385
1386                 /*
1387                  *      Call the device specific close. This cannot fail.
1388                  *      Only if device is UP
1389                  *
1390                  *      We allow it to be called even after a DETACH hot-plug
1391                  *      event.
1392                  */
1393                 if (ops->ndo_stop)
1394                         ops->ndo_stop(dev);
1395
1396                 dev->flags &= ~IFF_UP;
1397                 netpoll_poll_enable(dev);
1398         }
1399
1400         return 0;
1401 }
1402
1403 static int __dev_close(struct net_device *dev)
1404 {
1405         int retval;
1406         LIST_HEAD(single);
1407
1408         list_add(&dev->close_list, &single);
1409         retval = __dev_close_many(&single);
1410         list_del(&single);
1411
1412         return retval;
1413 }
1414
1415 int dev_close_many(struct list_head *head, bool unlink)
1416 {
1417         struct net_device *dev, *tmp;
1418
1419         /* Remove the devices that don't need to be closed */
1420         list_for_each_entry_safe(dev, tmp, head, close_list)
1421                 if (!(dev->flags & IFF_UP))
1422                         list_del_init(&dev->close_list);
1423
1424         __dev_close_many(head);
1425
1426         list_for_each_entry_safe(dev, tmp, head, close_list) {
1427                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1428                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1429                 if (unlink)
1430                         list_del_init(&dev->close_list);
1431         }
1432
1433         return 0;
1434 }
1435 EXPORT_SYMBOL(dev_close_many);
1436
1437 /**
1438  *      dev_close - shutdown an interface.
1439  *      @dev: device to shutdown
1440  *
1441  *      This function moves an active device into down state. A
1442  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1443  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1444  *      chain.
1445  */
1446 int dev_close(struct net_device *dev)
1447 {
1448         if (dev->flags & IFF_UP) {
1449                 LIST_HEAD(single);
1450
1451                 list_add(&dev->close_list, &single);
1452                 dev_close_many(&single, true);
1453                 list_del(&single);
1454         }
1455         return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close);
1458
1459
1460 /**
1461  *      dev_disable_lro - disable Large Receive Offload on a device
1462  *      @dev: device
1463  *
1464  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1465  *      called under RTNL.  This is needed if received packets may be
1466  *      forwarded to another interface.
1467  */
1468 void dev_disable_lro(struct net_device *dev)
1469 {
1470         struct net_device *lower_dev;
1471         struct list_head *iter;
1472
1473         dev->wanted_features &= ~NETIF_F_LRO;
1474         netdev_update_features(dev);
1475
1476         if (unlikely(dev->features & NETIF_F_LRO))
1477                 netdev_WARN(dev, "failed to disable LRO!\n");
1478
1479         netdev_for_each_lower_dev(dev, lower_dev, iter)
1480                 dev_disable_lro(lower_dev);
1481 }
1482 EXPORT_SYMBOL(dev_disable_lro);
1483
1484 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1485                                    struct net_device *dev)
1486 {
1487         struct netdev_notifier_info info;
1488
1489         netdev_notifier_info_init(&info, dev);
1490         return nb->notifier_call(nb, val, &info);
1491 }
1492
1493 static int dev_boot_phase = 1;
1494
1495 /**
1496  *      register_netdevice_notifier - register a network notifier block
1497  *      @nb: notifier
1498  *
1499  *      Register a notifier to be called when network device events occur.
1500  *      The notifier passed is linked into the kernel structures and must
1501  *      not be reused until it has been unregistered. A negative errno code
1502  *      is returned on a failure.
1503  *
1504  *      When registered all registration and up events are replayed
1505  *      to the new notifier to allow device to have a race free
1506  *      view of the network device list.
1507  */
1508
1509 int register_netdevice_notifier(struct notifier_block *nb)
1510 {
1511         struct net_device *dev;
1512         struct net_device *last;
1513         struct net *net;
1514         int err;
1515
1516         rtnl_lock();
1517         err = raw_notifier_chain_register(&netdev_chain, nb);
1518         if (err)
1519                 goto unlock;
1520         if (dev_boot_phase)
1521                 goto unlock;
1522         for_each_net(net) {
1523                 for_each_netdev(net, dev) {
1524                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1525                         err = notifier_to_errno(err);
1526                         if (err)
1527                                 goto rollback;
1528
1529                         if (!(dev->flags & IFF_UP))
1530                                 continue;
1531
1532                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1533                 }
1534         }
1535
1536 unlock:
1537         rtnl_unlock();
1538         return err;
1539
1540 rollback:
1541         last = dev;
1542         for_each_net(net) {
1543                 for_each_netdev(net, dev) {
1544                         if (dev == last)
1545                                 goto outroll;
1546
1547                         if (dev->flags & IFF_UP) {
1548                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1549                                                         dev);
1550                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1551                         }
1552                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1553                 }
1554         }
1555
1556 outroll:
1557         raw_notifier_chain_unregister(&netdev_chain, nb);
1558         goto unlock;
1559 }
1560 EXPORT_SYMBOL(register_netdevice_notifier);
1561
1562 /**
1563  *      unregister_netdevice_notifier - unregister a network notifier block
1564  *      @nb: notifier
1565  *
1566  *      Unregister a notifier previously registered by
1567  *      register_netdevice_notifier(). The notifier is unlinked into the
1568  *      kernel structures and may then be reused. A negative errno code
1569  *      is returned on a failure.
1570  *
1571  *      After unregistering unregister and down device events are synthesized
1572  *      for all devices on the device list to the removed notifier to remove
1573  *      the need for special case cleanup code.
1574  */
1575
1576 int unregister_netdevice_notifier(struct notifier_block *nb)
1577 {
1578         struct net_device *dev;
1579         struct net *net;
1580         int err;
1581
1582         rtnl_lock();
1583         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1584         if (err)
1585                 goto unlock;
1586
1587         for_each_net(net) {
1588                 for_each_netdev(net, dev) {
1589                         if (dev->flags & IFF_UP) {
1590                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1591                                                         dev);
1592                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1593                         }
1594                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1595                 }
1596         }
1597 unlock:
1598         rtnl_unlock();
1599         return err;
1600 }
1601 EXPORT_SYMBOL(unregister_netdevice_notifier);
1602
1603 /**
1604  *      call_netdevice_notifiers_info - call all network notifier blocks
1605  *      @val: value passed unmodified to notifier function
1606  *      @dev: net_device pointer passed unmodified to notifier function
1607  *      @info: notifier information data
1608  *
1609  *      Call all network notifier blocks.  Parameters and return value
1610  *      are as for raw_notifier_call_chain().
1611  */
1612
1613 static int call_netdevice_notifiers_info(unsigned long val,
1614                                          struct net_device *dev,
1615                                          struct netdev_notifier_info *info)
1616 {
1617         ASSERT_RTNL();
1618         netdev_notifier_info_init(info, dev);
1619         return raw_notifier_call_chain(&netdev_chain, val, info);
1620 }
1621
1622 /**
1623  *      call_netdevice_notifiers - call all network notifier blocks
1624  *      @val: value passed unmodified to notifier function
1625  *      @dev: net_device pointer passed unmodified to notifier function
1626  *
1627  *      Call all network notifier blocks.  Parameters and return value
1628  *      are as for raw_notifier_call_chain().
1629  */
1630
1631 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1632 {
1633         struct netdev_notifier_info info;
1634
1635         return call_netdevice_notifiers_info(val, dev, &info);
1636 }
1637 EXPORT_SYMBOL(call_netdevice_notifiers);
1638
1639 #ifdef CONFIG_NET_CLS_ACT
1640 static struct static_key ingress_needed __read_mostly;
1641
1642 void net_inc_ingress_queue(void)
1643 {
1644         static_key_slow_inc(&ingress_needed);
1645 }
1646 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1647
1648 void net_dec_ingress_queue(void)
1649 {
1650         static_key_slow_dec(&ingress_needed);
1651 }
1652 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1653 #endif
1654
1655 static struct static_key netstamp_needed __read_mostly;
1656 #ifdef HAVE_JUMP_LABEL
1657 /* We are not allowed to call static_key_slow_dec() from irq context
1658  * If net_disable_timestamp() is called from irq context, defer the
1659  * static_key_slow_dec() calls.
1660  */
1661 static atomic_t netstamp_needed_deferred;
1662 #endif
1663
1664 void net_enable_timestamp(void)
1665 {
1666 #ifdef HAVE_JUMP_LABEL
1667         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1668
1669         if (deferred) {
1670                 while (--deferred)
1671                         static_key_slow_dec(&netstamp_needed);
1672                 return;
1673         }
1674 #endif
1675         static_key_slow_inc(&netstamp_needed);
1676 }
1677 EXPORT_SYMBOL(net_enable_timestamp);
1678
1679 void net_disable_timestamp(void)
1680 {
1681 #ifdef HAVE_JUMP_LABEL
1682         if (in_interrupt()) {
1683                 atomic_inc(&netstamp_needed_deferred);
1684                 return;
1685         }
1686 #endif
1687         static_key_slow_dec(&netstamp_needed);
1688 }
1689 EXPORT_SYMBOL(net_disable_timestamp);
1690
1691 static inline void net_timestamp_set(struct sk_buff *skb)
1692 {
1693         skb->tstamp.tv64 = 0;
1694         if (static_key_false(&netstamp_needed))
1695                 __net_timestamp(skb);
1696 }
1697
1698 #define net_timestamp_check(COND, SKB)                  \
1699         if (static_key_false(&netstamp_needed)) {               \
1700                 if ((COND) && !(SKB)->tstamp.tv64)      \
1701                         __net_timestamp(SKB);           \
1702         }                                               \
1703
1704 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1705 {
1706         unsigned int len;
1707
1708         if (!(dev->flags & IFF_UP))
1709                 return false;
1710
1711         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1712         if (skb->len <= len)
1713                 return true;
1714
1715         /* if TSO is enabled, we don't care about the length as the packet
1716          * could be forwarded without being segmented before
1717          */
1718         if (skb_is_gso(skb))
1719                 return true;
1720
1721         return false;
1722 }
1723 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1724
1725 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1726 {
1727         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1728             unlikely(!is_skb_forwardable(dev, skb))) {
1729                 atomic_long_inc(&dev->rx_dropped);
1730                 kfree_skb(skb);
1731                 return NET_RX_DROP;
1732         }
1733
1734         skb_scrub_packet(skb, true);
1735         skb->priority = 0;
1736         skb->protocol = eth_type_trans(skb, dev);
1737         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1738
1739         return 0;
1740 }
1741 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1742
1743 /**
1744  * dev_forward_skb - loopback an skb to another netif
1745  *
1746  * @dev: destination network device
1747  * @skb: buffer to forward
1748  *
1749  * return values:
1750  *      NET_RX_SUCCESS  (no congestion)
1751  *      NET_RX_DROP     (packet was dropped, but freed)
1752  *
1753  * dev_forward_skb can be used for injecting an skb from the
1754  * start_xmit function of one device into the receive queue
1755  * of another device.
1756  *
1757  * The receiving device may be in another namespace, so
1758  * we have to clear all information in the skb that could
1759  * impact namespace isolation.
1760  */
1761 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1762 {
1763         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1764 }
1765 EXPORT_SYMBOL_GPL(dev_forward_skb);
1766
1767 static inline int deliver_skb(struct sk_buff *skb,
1768                               struct packet_type *pt_prev,
1769                               struct net_device *orig_dev)
1770 {
1771         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1772                 return -ENOMEM;
1773         atomic_inc(&skb->users);
1774         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1775 }
1776
1777 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1778                                           struct packet_type **pt,
1779                                           struct net_device *orig_dev,
1780                                           __be16 type,
1781                                           struct list_head *ptype_list)
1782 {
1783         struct packet_type *ptype, *pt_prev = *pt;
1784
1785         list_for_each_entry_rcu(ptype, ptype_list, list) {
1786                 if (ptype->type != type)
1787                         continue;
1788                 if (pt_prev)
1789                         deliver_skb(skb, pt_prev, orig_dev);
1790                 pt_prev = ptype;
1791         }
1792         *pt = pt_prev;
1793 }
1794
1795 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1796 {
1797         if (!ptype->af_packet_priv || !skb->sk)
1798                 return false;
1799
1800         if (ptype->id_match)
1801                 return ptype->id_match(ptype, skb->sk);
1802         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1803                 return true;
1804
1805         return false;
1806 }
1807
1808 /*
1809  *      Support routine. Sends outgoing frames to any network
1810  *      taps currently in use.
1811  */
1812
1813 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1814 {
1815         struct packet_type *ptype;
1816         struct sk_buff *skb2 = NULL;
1817         struct packet_type *pt_prev = NULL;
1818         struct list_head *ptype_list = &ptype_all;
1819
1820         rcu_read_lock();
1821 again:
1822         list_for_each_entry_rcu(ptype, ptype_list, list) {
1823                 /* Never send packets back to the socket
1824                  * they originated from - MvS (miquels@drinkel.ow.org)
1825                  */
1826                 if (skb_loop_sk(ptype, skb))
1827                         continue;
1828
1829                 if (pt_prev) {
1830                         deliver_skb(skb2, pt_prev, skb->dev);
1831                         pt_prev = ptype;
1832                         continue;
1833                 }
1834
1835                 /* need to clone skb, done only once */
1836                 skb2 = skb_clone(skb, GFP_ATOMIC);
1837                 if (!skb2)
1838                         goto out_unlock;
1839
1840                 net_timestamp_set(skb2);
1841
1842                 /* skb->nh should be correctly
1843                  * set by sender, so that the second statement is
1844                  * just protection against buggy protocols.
1845                  */
1846                 skb_reset_mac_header(skb2);
1847
1848                 if (skb_network_header(skb2) < skb2->data ||
1849                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1850                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1851                                              ntohs(skb2->protocol),
1852                                              dev->name);
1853                         skb_reset_network_header(skb2);
1854                 }
1855
1856                 skb2->transport_header = skb2->network_header;
1857                 skb2->pkt_type = PACKET_OUTGOING;
1858                 pt_prev = ptype;
1859         }
1860
1861         if (ptype_list == &ptype_all) {
1862                 ptype_list = &dev->ptype_all;
1863                 goto again;
1864         }
1865 out_unlock:
1866         if (pt_prev)
1867                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1868         rcu_read_unlock();
1869 }
1870
1871 /**
1872  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1873  * @dev: Network device
1874  * @txq: number of queues available
1875  *
1876  * If real_num_tx_queues is changed the tc mappings may no longer be
1877  * valid. To resolve this verify the tc mapping remains valid and if
1878  * not NULL the mapping. With no priorities mapping to this
1879  * offset/count pair it will no longer be used. In the worst case TC0
1880  * is invalid nothing can be done so disable priority mappings. If is
1881  * expected that drivers will fix this mapping if they can before
1882  * calling netif_set_real_num_tx_queues.
1883  */
1884 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1885 {
1886         int i;
1887         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1888
1889         /* If TC0 is invalidated disable TC mapping */
1890         if (tc->offset + tc->count > txq) {
1891                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1892                 dev->num_tc = 0;
1893                 return;
1894         }
1895
1896         /* Invalidated prio to tc mappings set to TC0 */
1897         for (i = 1; i < TC_BITMASK + 1; i++) {
1898                 int q = netdev_get_prio_tc_map(dev, i);
1899
1900                 tc = &dev->tc_to_txq[q];
1901                 if (tc->offset + tc->count > txq) {
1902                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1903                                 i, q);
1904                         netdev_set_prio_tc_map(dev, i, 0);
1905                 }
1906         }
1907 }
1908
1909 #ifdef CONFIG_XPS
1910 static DEFINE_MUTEX(xps_map_mutex);
1911 #define xmap_dereference(P)             \
1912         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1913
1914 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1915                                         int cpu, u16 index)
1916 {
1917         struct xps_map *map = NULL;
1918         int pos;
1919
1920         if (dev_maps)
1921                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1922
1923         for (pos = 0; map && pos < map->len; pos++) {
1924                 if (map->queues[pos] == index) {
1925                         if (map->len > 1) {
1926                                 map->queues[pos] = map->queues[--map->len];
1927                         } else {
1928                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1929                                 kfree_rcu(map, rcu);
1930                                 map = NULL;
1931                         }
1932                         break;
1933                 }
1934         }
1935
1936         return map;
1937 }
1938
1939 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1940 {
1941         struct xps_dev_maps *dev_maps;
1942         int cpu, i;
1943         bool active = false;
1944
1945         mutex_lock(&xps_map_mutex);
1946         dev_maps = xmap_dereference(dev->xps_maps);
1947
1948         if (!dev_maps)
1949                 goto out_no_maps;
1950
1951         for_each_possible_cpu(cpu) {
1952                 for (i = index; i < dev->num_tx_queues; i++) {
1953                         if (!remove_xps_queue(dev_maps, cpu, i))
1954                                 break;
1955                 }
1956                 if (i == dev->num_tx_queues)
1957                         active = true;
1958         }
1959
1960         if (!active) {
1961                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1962                 kfree_rcu(dev_maps, rcu);
1963         }
1964
1965         for (i = index; i < dev->num_tx_queues; i++)
1966                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1967                                              NUMA_NO_NODE);
1968
1969 out_no_maps:
1970         mutex_unlock(&xps_map_mutex);
1971 }
1972
1973 static struct xps_map *expand_xps_map(struct xps_map *map,
1974                                       int cpu, u16 index)
1975 {
1976         struct xps_map *new_map;
1977         int alloc_len = XPS_MIN_MAP_ALLOC;
1978         int i, pos;
1979
1980         for (pos = 0; map && pos < map->len; pos++) {
1981                 if (map->queues[pos] != index)
1982                         continue;
1983                 return map;
1984         }
1985
1986         /* Need to add queue to this CPU's existing map */
1987         if (map) {
1988                 if (pos < map->alloc_len)
1989                         return map;
1990
1991                 alloc_len = map->alloc_len * 2;
1992         }
1993
1994         /* Need to allocate new map to store queue on this CPU's map */
1995         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1996                                cpu_to_node(cpu));
1997         if (!new_map)
1998                 return NULL;
1999
2000         for (i = 0; i < pos; i++)
2001                 new_map->queues[i] = map->queues[i];
2002         new_map->alloc_len = alloc_len;
2003         new_map->len = pos;
2004
2005         return new_map;
2006 }
2007
2008 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2009                         u16 index)
2010 {
2011         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2012         struct xps_map *map, *new_map;
2013         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2014         int cpu, numa_node_id = -2;
2015         bool active = false;
2016
2017         mutex_lock(&xps_map_mutex);
2018
2019         dev_maps = xmap_dereference(dev->xps_maps);
2020
2021         /* allocate memory for queue storage */
2022         for_each_online_cpu(cpu) {
2023                 if (!cpumask_test_cpu(cpu, mask))
2024                         continue;
2025
2026                 if (!new_dev_maps)
2027                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2028                 if (!new_dev_maps) {
2029                         mutex_unlock(&xps_map_mutex);
2030                         return -ENOMEM;
2031                 }
2032
2033                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2034                                  NULL;
2035
2036                 map = expand_xps_map(map, cpu, index);
2037                 if (!map)
2038                         goto error;
2039
2040                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2041         }
2042
2043         if (!new_dev_maps)
2044                 goto out_no_new_maps;
2045
2046         for_each_possible_cpu(cpu) {
2047                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2048                         /* add queue to CPU maps */
2049                         int pos = 0;
2050
2051                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2052                         while ((pos < map->len) && (map->queues[pos] != index))
2053                                 pos++;
2054
2055                         if (pos == map->len)
2056                                 map->queues[map->len++] = index;
2057 #ifdef CONFIG_NUMA
2058                         if (numa_node_id == -2)
2059                                 numa_node_id = cpu_to_node(cpu);
2060                         else if (numa_node_id != cpu_to_node(cpu))
2061                                 numa_node_id = -1;
2062 #endif
2063                 } else if (dev_maps) {
2064                         /* fill in the new device map from the old device map */
2065                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2066                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2067                 }
2068
2069         }
2070
2071         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2072
2073         /* Cleanup old maps */
2074         if (dev_maps) {
2075                 for_each_possible_cpu(cpu) {
2076                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2077                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2078                         if (map && map != new_map)
2079                                 kfree_rcu(map, rcu);
2080                 }
2081
2082                 kfree_rcu(dev_maps, rcu);
2083         }
2084
2085         dev_maps = new_dev_maps;
2086         active = true;
2087
2088 out_no_new_maps:
2089         /* update Tx queue numa node */
2090         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2091                                      (numa_node_id >= 0) ? numa_node_id :
2092                                      NUMA_NO_NODE);
2093
2094         if (!dev_maps)
2095                 goto out_no_maps;
2096
2097         /* removes queue from unused CPUs */
2098         for_each_possible_cpu(cpu) {
2099                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2100                         continue;
2101
2102                 if (remove_xps_queue(dev_maps, cpu, index))
2103                         active = true;
2104         }
2105
2106         /* free map if not active */
2107         if (!active) {
2108                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2109                 kfree_rcu(dev_maps, rcu);
2110         }
2111
2112 out_no_maps:
2113         mutex_unlock(&xps_map_mutex);
2114
2115         return 0;
2116 error:
2117         /* remove any maps that we added */
2118         for_each_possible_cpu(cpu) {
2119                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2121                                  NULL;
2122                 if (new_map && new_map != map)
2123                         kfree(new_map);
2124         }
2125
2126         mutex_unlock(&xps_map_mutex);
2127
2128         kfree(new_dev_maps);
2129         return -ENOMEM;
2130 }
2131 EXPORT_SYMBOL(netif_set_xps_queue);
2132
2133 #endif
2134 /*
2135  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2136  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2137  */
2138 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2139 {
2140         int rc;
2141
2142         if (txq < 1 || txq > dev->num_tx_queues)
2143                 return -EINVAL;
2144
2145         if (dev->reg_state == NETREG_REGISTERED ||
2146             dev->reg_state == NETREG_UNREGISTERING) {
2147                 ASSERT_RTNL();
2148
2149                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2150                                                   txq);
2151                 if (rc)
2152                         return rc;
2153
2154                 if (dev->num_tc)
2155                         netif_setup_tc(dev, txq);
2156
2157                 if (txq < dev->real_num_tx_queues) {
2158                         qdisc_reset_all_tx_gt(dev, txq);
2159 #ifdef CONFIG_XPS
2160                         netif_reset_xps_queues_gt(dev, txq);
2161 #endif
2162                 }
2163         }
2164
2165         dev->real_num_tx_queues = txq;
2166         return 0;
2167 }
2168 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2169
2170 #ifdef CONFIG_SYSFS
2171 /**
2172  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2173  *      @dev: Network device
2174  *      @rxq: Actual number of RX queues
2175  *
2176  *      This must be called either with the rtnl_lock held or before
2177  *      registration of the net device.  Returns 0 on success, or a
2178  *      negative error code.  If called before registration, it always
2179  *      succeeds.
2180  */
2181 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2182 {
2183         int rc;
2184
2185         if (rxq < 1 || rxq > dev->num_rx_queues)
2186                 return -EINVAL;
2187
2188         if (dev->reg_state == NETREG_REGISTERED) {
2189                 ASSERT_RTNL();
2190
2191                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2192                                                   rxq);
2193                 if (rc)
2194                         return rc;
2195         }
2196
2197         dev->real_num_rx_queues = rxq;
2198         return 0;
2199 }
2200 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2201 #endif
2202
2203 /**
2204  * netif_get_num_default_rss_queues - default number of RSS queues
2205  *
2206  * This routine should set an upper limit on the number of RSS queues
2207  * used by default by multiqueue devices.
2208  */
2209 int netif_get_num_default_rss_queues(void)
2210 {
2211         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2212 }
2213 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2214
2215 static inline void __netif_reschedule(struct Qdisc *q)
2216 {
2217         struct softnet_data *sd;
2218         unsigned long flags;
2219
2220         local_irq_save(flags);
2221         sd = this_cpu_ptr(&softnet_data);
2222         q->next_sched = NULL;
2223         *sd->output_queue_tailp = q;
2224         sd->output_queue_tailp = &q->next_sched;
2225         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2226         local_irq_restore(flags);
2227         preempt_check_resched_rt();
2228 }
2229
2230 void __netif_schedule(struct Qdisc *q)
2231 {
2232         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2233                 __netif_reschedule(q);
2234 }
2235 EXPORT_SYMBOL(__netif_schedule);
2236
2237 struct dev_kfree_skb_cb {
2238         enum skb_free_reason reason;
2239 };
2240
2241 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2242 {
2243         return (struct dev_kfree_skb_cb *)skb->cb;
2244 }
2245
2246 void netif_schedule_queue(struct netdev_queue *txq)
2247 {
2248         rcu_read_lock();
2249         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2250                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2251
2252                 __netif_schedule(q);
2253         }
2254         rcu_read_unlock();
2255 }
2256 EXPORT_SYMBOL(netif_schedule_queue);
2257
2258 /**
2259  *      netif_wake_subqueue - allow sending packets on subqueue
2260  *      @dev: network device
2261  *      @queue_index: sub queue index
2262  *
2263  * Resume individual transmit queue of a device with multiple transmit queues.
2264  */
2265 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2266 {
2267         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2268
2269         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2270                 struct Qdisc *q;
2271
2272                 rcu_read_lock();
2273                 q = rcu_dereference(txq->qdisc);
2274                 __netif_schedule(q);
2275                 rcu_read_unlock();
2276         }
2277 }
2278 EXPORT_SYMBOL(netif_wake_subqueue);
2279
2280 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2281 {
2282         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2283                 struct Qdisc *q;
2284
2285                 rcu_read_lock();
2286                 q = rcu_dereference(dev_queue->qdisc);
2287                 __netif_schedule(q);
2288                 rcu_read_unlock();
2289         }
2290 }
2291 EXPORT_SYMBOL(netif_tx_wake_queue);
2292
2293 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2294 {
2295         unsigned long flags;
2296
2297         if (likely(atomic_read(&skb->users) == 1)) {
2298                 smp_rmb();
2299                 atomic_set(&skb->users, 0);
2300         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2301                 return;
2302         }
2303         get_kfree_skb_cb(skb)->reason = reason;
2304         local_irq_save(flags);
2305         skb->next = __this_cpu_read(softnet_data.completion_queue);
2306         __this_cpu_write(softnet_data.completion_queue, skb);
2307         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2308         local_irq_restore(flags);
2309         preempt_check_resched_rt();
2310 }
2311 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2312
2313 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2314 {
2315         if (in_irq() || irqs_disabled())
2316                 __dev_kfree_skb_irq(skb, reason);
2317         else
2318                 dev_kfree_skb(skb);
2319 }
2320 EXPORT_SYMBOL(__dev_kfree_skb_any);
2321
2322
2323 /**
2324  * netif_device_detach - mark device as removed
2325  * @dev: network device
2326  *
2327  * Mark device as removed from system and therefore no longer available.
2328  */
2329 void netif_device_detach(struct net_device *dev)
2330 {
2331         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2332             netif_running(dev)) {
2333                 netif_tx_stop_all_queues(dev);
2334         }
2335 }
2336 EXPORT_SYMBOL(netif_device_detach);
2337
2338 /**
2339  * netif_device_attach - mark device as attached
2340  * @dev: network device
2341  *
2342  * Mark device as attached from system and restart if needed.
2343  */
2344 void netif_device_attach(struct net_device *dev)
2345 {
2346         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2347             netif_running(dev)) {
2348                 netif_tx_wake_all_queues(dev);
2349                 __netdev_watchdog_up(dev);
2350         }
2351 }
2352 EXPORT_SYMBOL(netif_device_attach);
2353
2354 static void skb_warn_bad_offload(const struct sk_buff *skb)
2355 {
2356         static const netdev_features_t null_features = 0;
2357         struct net_device *dev = skb->dev;
2358         const char *driver = "";
2359
2360         if (!net_ratelimit())
2361                 return;
2362
2363         if (dev && dev->dev.parent)
2364                 driver = dev_driver_string(dev->dev.parent);
2365
2366         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2367              "gso_type=%d ip_summed=%d\n",
2368              driver, dev ? &dev->features : &null_features,
2369              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2370              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2371              skb_shinfo(skb)->gso_type, skb->ip_summed);
2372 }
2373
2374 /*
2375  * Invalidate hardware checksum when packet is to be mangled, and
2376  * complete checksum manually on outgoing path.
2377  */
2378 int skb_checksum_help(struct sk_buff *skb)
2379 {
2380         __wsum csum;
2381         int ret = 0, offset;
2382
2383         if (skb->ip_summed == CHECKSUM_COMPLETE)
2384                 goto out_set_summed;
2385
2386         if (unlikely(skb_shinfo(skb)->gso_size)) {
2387                 skb_warn_bad_offload(skb);
2388                 return -EINVAL;
2389         }
2390
2391         /* Before computing a checksum, we should make sure no frag could
2392          * be modified by an external entity : checksum could be wrong.
2393          */
2394         if (skb_has_shared_frag(skb)) {
2395                 ret = __skb_linearize(skb);
2396                 if (ret)
2397                         goto out;
2398         }
2399
2400         offset = skb_checksum_start_offset(skb);
2401         BUG_ON(offset >= skb_headlen(skb));
2402         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2403
2404         offset += skb->csum_offset;
2405         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2406
2407         if (skb_cloned(skb) &&
2408             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2409                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2410                 if (ret)
2411                         goto out;
2412         }
2413
2414         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2415 out_set_summed:
2416         skb->ip_summed = CHECKSUM_NONE;
2417 out:
2418         return ret;
2419 }
2420 EXPORT_SYMBOL(skb_checksum_help);
2421
2422 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2423 {
2424         __be16 type = skb->protocol;
2425
2426         /* Tunnel gso handlers can set protocol to ethernet. */
2427         if (type == htons(ETH_P_TEB)) {
2428                 struct ethhdr *eth;
2429
2430                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2431                         return 0;
2432
2433                 eth = (struct ethhdr *)skb_mac_header(skb);
2434                 type = eth->h_proto;
2435         }
2436
2437         return __vlan_get_protocol(skb, type, depth);
2438 }
2439
2440 /**
2441  *      skb_mac_gso_segment - mac layer segmentation handler.
2442  *      @skb: buffer to segment
2443  *      @features: features for the output path (see dev->features)
2444  */
2445 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2446                                     netdev_features_t features)
2447 {
2448         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2449         struct packet_offload *ptype;
2450         int vlan_depth = skb->mac_len;
2451         __be16 type = skb_network_protocol(skb, &vlan_depth);
2452
2453         if (unlikely(!type))
2454                 return ERR_PTR(-EINVAL);
2455
2456         __skb_pull(skb, vlan_depth);
2457
2458         rcu_read_lock();
2459         list_for_each_entry_rcu(ptype, &offload_base, list) {
2460                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2461                         segs = ptype->callbacks.gso_segment(skb, features);
2462                         break;
2463                 }
2464         }
2465         rcu_read_unlock();
2466
2467         __skb_push(skb, skb->data - skb_mac_header(skb));
2468
2469         return segs;
2470 }
2471 EXPORT_SYMBOL(skb_mac_gso_segment);
2472
2473
2474 /* openvswitch calls this on rx path, so we need a different check.
2475  */
2476 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2477 {
2478         if (tx_path)
2479                 return skb->ip_summed != CHECKSUM_PARTIAL;
2480         else
2481                 return skb->ip_summed == CHECKSUM_NONE;
2482 }
2483
2484 /**
2485  *      __skb_gso_segment - Perform segmentation on skb.
2486  *      @skb: buffer to segment
2487  *      @features: features for the output path (see dev->features)
2488  *      @tx_path: whether it is called in TX path
2489  *
2490  *      This function segments the given skb and returns a list of segments.
2491  *
2492  *      It may return NULL if the skb requires no segmentation.  This is
2493  *      only possible when GSO is used for verifying header integrity.
2494  */
2495 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2496                                   netdev_features_t features, bool tx_path)
2497 {
2498         if (unlikely(skb_needs_check(skb, tx_path))) {
2499                 int err;
2500
2501                 skb_warn_bad_offload(skb);
2502
2503                 err = skb_cow_head(skb, 0);
2504                 if (err < 0)
2505                         return ERR_PTR(err);
2506         }
2507
2508         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2509         SKB_GSO_CB(skb)->encap_level = 0;
2510
2511         skb_reset_mac_header(skb);
2512         skb_reset_mac_len(skb);
2513
2514         return skb_mac_gso_segment(skb, features);
2515 }
2516 EXPORT_SYMBOL(__skb_gso_segment);
2517
2518 /* Take action when hardware reception checksum errors are detected. */
2519 #ifdef CONFIG_BUG
2520 void netdev_rx_csum_fault(struct net_device *dev)
2521 {
2522         if (net_ratelimit()) {
2523                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2524                 dump_stack();
2525         }
2526 }
2527 EXPORT_SYMBOL(netdev_rx_csum_fault);
2528 #endif
2529
2530 /* Actually, we should eliminate this check as soon as we know, that:
2531  * 1. IOMMU is present and allows to map all the memory.
2532  * 2. No high memory really exists on this machine.
2533  */
2534
2535 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2536 {
2537 #ifdef CONFIG_HIGHMEM
2538         int i;
2539         if (!(dev->features & NETIF_F_HIGHDMA)) {
2540                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2541                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2542                         if (PageHighMem(skb_frag_page(frag)))
2543                                 return 1;
2544                 }
2545         }
2546
2547         if (PCI_DMA_BUS_IS_PHYS) {
2548                 struct device *pdev = dev->dev.parent;
2549
2550                 if (!pdev)
2551                         return 0;
2552                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2553                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2554                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2555                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2556                                 return 1;
2557                 }
2558         }
2559 #endif
2560         return 0;
2561 }
2562
2563 /* If MPLS offload request, verify we are testing hardware MPLS features
2564  * instead of standard features for the netdev.
2565  */
2566 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2567 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2568                                            netdev_features_t features,
2569                                            __be16 type)
2570 {
2571         if (eth_p_mpls(type))
2572                 features &= skb->dev->mpls_features;
2573
2574         return features;
2575 }
2576 #else
2577 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2578                                            netdev_features_t features,
2579                                            __be16 type)
2580 {
2581         return features;
2582 }
2583 #endif
2584
2585 static netdev_features_t harmonize_features(struct sk_buff *skb,
2586         netdev_features_t features)
2587 {
2588         int tmp;
2589         __be16 type;
2590
2591         type = skb_network_protocol(skb, &tmp);
2592         features = net_mpls_features(skb, features, type);
2593
2594         if (skb->ip_summed != CHECKSUM_NONE &&
2595             !can_checksum_protocol(features, type)) {
2596                 features &= ~NETIF_F_ALL_CSUM;
2597         } else if (illegal_highdma(skb->dev, skb)) {
2598                 features &= ~NETIF_F_SG;
2599         }
2600
2601         return features;
2602 }
2603
2604 netdev_features_t passthru_features_check(struct sk_buff *skb,
2605                                           struct net_device *dev,
2606                                           netdev_features_t features)
2607 {
2608         return features;
2609 }
2610 EXPORT_SYMBOL(passthru_features_check);
2611
2612 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2613                                              struct net_device *dev,
2614                                              netdev_features_t features)
2615 {
2616         return vlan_features_check(skb, features);
2617 }
2618
2619 netdev_features_t netif_skb_features(struct sk_buff *skb)
2620 {
2621         struct net_device *dev = skb->dev;
2622         netdev_features_t features = dev->features;
2623         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2624
2625         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2626                 features &= ~NETIF_F_GSO_MASK;
2627
2628         /* If encapsulation offload request, verify we are testing
2629          * hardware encapsulation features instead of standard
2630          * features for the netdev
2631          */
2632         if (skb->encapsulation)
2633                 features &= dev->hw_enc_features;
2634
2635         if (skb_vlan_tagged(skb))
2636                 features = netdev_intersect_features(features,
2637                                                      dev->vlan_features |
2638                                                      NETIF_F_HW_VLAN_CTAG_TX |
2639                                                      NETIF_F_HW_VLAN_STAG_TX);
2640
2641         if (dev->netdev_ops->ndo_features_check)
2642                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2643                                                                 features);
2644         else
2645                 features &= dflt_features_check(skb, dev, features);
2646
2647         return harmonize_features(skb, features);
2648 }
2649 EXPORT_SYMBOL(netif_skb_features);
2650
2651 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2652                     struct netdev_queue *txq, bool more)
2653 {
2654         unsigned int len;
2655         int rc;
2656
2657         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2658                 dev_queue_xmit_nit(skb, dev);
2659
2660         len = skb->len;
2661         trace_net_dev_start_xmit(skb, dev);
2662         rc = netdev_start_xmit(skb, dev, txq, more);
2663         trace_net_dev_xmit(skb, rc, dev, len);
2664
2665         return rc;
2666 }
2667
2668 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2669                                     struct netdev_queue *txq, int *ret)
2670 {
2671         struct sk_buff *skb = first;
2672         int rc = NETDEV_TX_OK;
2673
2674         while (skb) {
2675                 struct sk_buff *next = skb->next;
2676
2677                 skb->next = NULL;
2678                 rc = xmit_one(skb, dev, txq, next != NULL);
2679                 if (unlikely(!dev_xmit_complete(rc))) {
2680                         skb->next = next;
2681                         goto out;
2682                 }
2683
2684                 skb = next;
2685                 if (netif_xmit_stopped(txq) && skb) {
2686                         rc = NETDEV_TX_BUSY;
2687                         break;
2688                 }
2689         }
2690
2691 out:
2692         *ret = rc;
2693         return skb;
2694 }
2695
2696 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2697                                           netdev_features_t features)
2698 {
2699         if (skb_vlan_tag_present(skb) &&
2700             !vlan_hw_offload_capable(features, skb->vlan_proto))
2701                 skb = __vlan_hwaccel_push_inside(skb);
2702         return skb;
2703 }
2704
2705 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2706 {
2707         netdev_features_t features;
2708
2709         if (skb->next)
2710                 return skb;
2711
2712         features = netif_skb_features(skb);
2713         skb = validate_xmit_vlan(skb, features);
2714         if (unlikely(!skb))
2715                 goto out_null;
2716
2717         if (netif_needs_gso(skb, features)) {
2718                 struct sk_buff *segs;
2719
2720                 segs = skb_gso_segment(skb, features);
2721                 if (IS_ERR(segs)) {
2722                         goto out_kfree_skb;
2723                 } else if (segs) {
2724                         consume_skb(skb);
2725                         skb = segs;
2726                 }
2727         } else {
2728                 if (skb_needs_linearize(skb, features) &&
2729                     __skb_linearize(skb))
2730                         goto out_kfree_skb;
2731
2732                 /* If packet is not checksummed and device does not
2733                  * support checksumming for this protocol, complete
2734                  * checksumming here.
2735                  */
2736                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2737                         if (skb->encapsulation)
2738                                 skb_set_inner_transport_header(skb,
2739                                                                skb_checksum_start_offset(skb));
2740                         else
2741                                 skb_set_transport_header(skb,
2742                                                          skb_checksum_start_offset(skb));
2743                         if (!(features & NETIF_F_ALL_CSUM) &&
2744                             skb_checksum_help(skb))
2745                                 goto out_kfree_skb;
2746                 }
2747         }
2748
2749         return skb;
2750
2751 out_kfree_skb:
2752         kfree_skb(skb);
2753 out_null:
2754         return NULL;
2755 }
2756
2757 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2758 {
2759         struct sk_buff *next, *head = NULL, *tail;
2760
2761         for (; skb != NULL; skb = next) {
2762                 next = skb->next;
2763                 skb->next = NULL;
2764
2765                 /* in case skb wont be segmented, point to itself */
2766                 skb->prev = skb;
2767
2768                 skb = validate_xmit_skb(skb, dev);
2769                 if (!skb)
2770                         continue;
2771
2772                 if (!head)
2773                         head = skb;
2774                 else
2775                         tail->next = skb;
2776                 /* If skb was segmented, skb->prev points to
2777                  * the last segment. If not, it still contains skb.
2778                  */
2779                 tail = skb->prev;
2780         }
2781         return head;
2782 }
2783
2784 static void qdisc_pkt_len_init(struct sk_buff *skb)
2785 {
2786         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2787
2788         qdisc_skb_cb(skb)->pkt_len = skb->len;
2789
2790         /* To get more precise estimation of bytes sent on wire,
2791          * we add to pkt_len the headers size of all segments
2792          */
2793         if (shinfo->gso_size)  {
2794                 unsigned int hdr_len;
2795                 u16 gso_segs = shinfo->gso_segs;
2796
2797                 /* mac layer + network layer */
2798                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2799
2800                 /* + transport layer */
2801                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2802                         hdr_len += tcp_hdrlen(skb);
2803                 else
2804                         hdr_len += sizeof(struct udphdr);
2805
2806                 if (shinfo->gso_type & SKB_GSO_DODGY)
2807                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2808                                                 shinfo->gso_size);
2809
2810                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2811         }
2812 }
2813
2814 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2815                                  struct net_device *dev,
2816                                  struct netdev_queue *txq)
2817 {
2818         spinlock_t *root_lock = qdisc_lock(q);
2819         bool contended;
2820         int rc;
2821
2822         qdisc_pkt_len_init(skb);
2823         qdisc_calculate_pkt_len(skb, q);
2824         /*
2825          * Heuristic to force contended enqueues to serialize on a
2826          * separate lock before trying to get qdisc main lock.
2827          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2828          * often and dequeue packets faster.
2829          */
2830         contended = qdisc_is_running(q);
2831         if (unlikely(contended))
2832                 spin_lock(&q->busylock);
2833
2834         spin_lock(root_lock);
2835         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2836                 kfree_skb(skb);
2837                 rc = NET_XMIT_DROP;
2838         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2839                    qdisc_run_begin(q)) {
2840                 /*
2841                  * This is a work-conserving queue; there are no old skbs
2842                  * waiting to be sent out; and the qdisc is not running -
2843                  * xmit the skb directly.
2844                  */
2845
2846                 qdisc_bstats_update(q, skb);
2847
2848                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2849                         if (unlikely(contended)) {
2850                                 spin_unlock(&q->busylock);
2851                                 contended = false;
2852                         }
2853                         __qdisc_run(q);
2854                 } else
2855                         qdisc_run_end(q);
2856
2857                 rc = NET_XMIT_SUCCESS;
2858         } else {
2859                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2860                 if (qdisc_run_begin(q)) {
2861                         if (unlikely(contended)) {
2862                                 spin_unlock(&q->busylock);
2863                                 contended = false;
2864                         }
2865                         __qdisc_run(q);
2866                 }
2867         }
2868         spin_unlock(root_lock);
2869         if (unlikely(contended))
2870                 spin_unlock(&q->busylock);
2871         return rc;
2872 }
2873
2874 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2875 static void skb_update_prio(struct sk_buff *skb)
2876 {
2877         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2878
2879         if (!skb->priority && skb->sk && map) {
2880                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2881
2882                 if (prioidx < map->priomap_len)
2883                         skb->priority = map->priomap[prioidx];
2884         }
2885 }
2886 #else
2887 #define skb_update_prio(skb)
2888 #endif
2889
2890 DEFINE_PER_CPU(int, xmit_recursion);
2891 EXPORT_SYMBOL(xmit_recursion);
2892
2893 #define RECURSION_LIMIT 10
2894
2895 /**
2896  *      dev_loopback_xmit - loop back @skb
2897  *      @skb: buffer to transmit
2898  */
2899 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2900 {
2901         skb_reset_mac_header(skb);
2902         __skb_pull(skb, skb_network_offset(skb));
2903         skb->pkt_type = PACKET_LOOPBACK;
2904         skb->ip_summed = CHECKSUM_UNNECESSARY;
2905         WARN_ON(!skb_dst(skb));
2906         skb_dst_force(skb);
2907         netif_rx_ni(skb);
2908         return 0;
2909 }
2910 EXPORT_SYMBOL(dev_loopback_xmit);
2911
2912 /**
2913  *      __dev_queue_xmit - transmit a buffer
2914  *      @skb: buffer to transmit
2915  *      @accel_priv: private data used for L2 forwarding offload
2916  *
2917  *      Queue a buffer for transmission to a network device. The caller must
2918  *      have set the device and priority and built the buffer before calling
2919  *      this function. The function can be called from an interrupt.
2920  *
2921  *      A negative errno code is returned on a failure. A success does not
2922  *      guarantee the frame will be transmitted as it may be dropped due
2923  *      to congestion or traffic shaping.
2924  *
2925  * -----------------------------------------------------------------------------------
2926  *      I notice this method can also return errors from the queue disciplines,
2927  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2928  *      be positive.
2929  *
2930  *      Regardless of the return value, the skb is consumed, so it is currently
2931  *      difficult to retry a send to this method.  (You can bump the ref count
2932  *      before sending to hold a reference for retry if you are careful.)
2933  *
2934  *      When calling this method, interrupts MUST be enabled.  This is because
2935  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2936  *          --BLG
2937  */
2938 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2939 {
2940         struct net_device *dev = skb->dev;
2941         struct netdev_queue *txq;
2942         struct Qdisc *q;
2943         int rc = -ENOMEM;
2944
2945         skb_reset_mac_header(skb);
2946
2947         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2948                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2949
2950         /* Disable soft irqs for various locks below. Also
2951          * stops preemption for RCU.
2952          */
2953         rcu_read_lock_bh();
2954
2955         skb_update_prio(skb);
2956
2957         /* If device/qdisc don't need skb->dst, release it right now while
2958          * its hot in this cpu cache.
2959          */
2960         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2961                 skb_dst_drop(skb);
2962         else
2963                 skb_dst_force(skb);
2964
2965         txq = netdev_pick_tx(dev, skb, accel_priv);
2966         q = rcu_dereference_bh(txq->qdisc);
2967
2968 #ifdef CONFIG_NET_CLS_ACT
2969         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2970 #endif
2971         trace_net_dev_queue(skb);
2972         if (q->enqueue) {
2973                 rc = __dev_xmit_skb(skb, q, dev, txq);
2974                 goto out;
2975         }
2976
2977         /* The device has no queue. Common case for software devices:
2978            loopback, all the sorts of tunnels...
2979
2980            Really, it is unlikely that netif_tx_lock protection is necessary
2981            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2982            counters.)
2983            However, it is possible, that they rely on protection
2984            made by us here.
2985
2986            Check this and shot the lock. It is not prone from deadlocks.
2987            Either shot noqueue qdisc, it is even simpler 8)
2988          */
2989         if (dev->flags & IFF_UP) {
2990                 int cpu = smp_processor_id(); /* ok because BHs are off */
2991
2992                 if (txq->xmit_lock_owner != cpu) {
2993
2994                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2995                                 goto recursion_alert;
2996
2997                         skb = validate_xmit_skb(skb, dev);
2998                         if (!skb)
2999                                 goto drop;
3000
3001                         HARD_TX_LOCK(dev, txq, cpu);
3002
3003                         if (!netif_xmit_stopped(txq)) {
3004                                 __this_cpu_inc(xmit_recursion);
3005                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3006                                 __this_cpu_dec(xmit_recursion);
3007                                 if (dev_xmit_complete(rc)) {
3008                                         HARD_TX_UNLOCK(dev, txq);
3009                                         goto out;
3010                                 }
3011                         }
3012                         HARD_TX_UNLOCK(dev, txq);
3013                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3014                                              dev->name);
3015                 } else {
3016                         /* Recursion is detected! It is possible,
3017                          * unfortunately
3018                          */
3019 recursion_alert:
3020                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3021                                              dev->name);
3022                 }
3023         }
3024
3025         rc = -ENETDOWN;
3026 drop:
3027         rcu_read_unlock_bh();
3028
3029         atomic_long_inc(&dev->tx_dropped);
3030         kfree_skb_list(skb);
3031         return rc;
3032 out:
3033         rcu_read_unlock_bh();
3034         return rc;
3035 }
3036
3037 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3038 {
3039         return __dev_queue_xmit(skb, NULL);
3040 }
3041 EXPORT_SYMBOL(dev_queue_xmit_sk);
3042
3043 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3044 {
3045         return __dev_queue_xmit(skb, accel_priv);
3046 }
3047 EXPORT_SYMBOL(dev_queue_xmit_accel);
3048
3049
3050 /*=======================================================================
3051                         Receiver routines
3052   =======================================================================*/
3053
3054 int netdev_max_backlog __read_mostly = 1000;
3055 EXPORT_SYMBOL(netdev_max_backlog);
3056
3057 int netdev_tstamp_prequeue __read_mostly = 1;
3058 int netdev_budget __read_mostly = 300;
3059 int weight_p __read_mostly = 64;            /* old backlog weight */
3060
3061 /* Called with irq disabled */
3062 static inline void ____napi_schedule(struct softnet_data *sd,
3063                                      struct napi_struct *napi)
3064 {
3065         list_add_tail(&napi->poll_list, &sd->poll_list);
3066         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3067 }
3068
3069 #ifdef CONFIG_RPS
3070
3071 /* One global table that all flow-based protocols share. */
3072 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3073 EXPORT_SYMBOL(rps_sock_flow_table);
3074 u32 rps_cpu_mask __read_mostly;
3075 EXPORT_SYMBOL(rps_cpu_mask);
3076
3077 struct static_key rps_needed __read_mostly;
3078
3079 static struct rps_dev_flow *
3080 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3081             struct rps_dev_flow *rflow, u16 next_cpu)
3082 {
3083         if (next_cpu < nr_cpu_ids) {
3084 #ifdef CONFIG_RFS_ACCEL
3085                 struct netdev_rx_queue *rxqueue;
3086                 struct rps_dev_flow_table *flow_table;
3087                 struct rps_dev_flow *old_rflow;
3088                 u32 flow_id;
3089                 u16 rxq_index;
3090                 int rc;
3091
3092                 /* Should we steer this flow to a different hardware queue? */
3093                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3094                     !(dev->features & NETIF_F_NTUPLE))
3095                         goto out;
3096                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3097                 if (rxq_index == skb_get_rx_queue(skb))
3098                         goto out;
3099
3100                 rxqueue = dev->_rx + rxq_index;
3101                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3102                 if (!flow_table)
3103                         goto out;
3104                 flow_id = skb_get_hash(skb) & flow_table->mask;
3105                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3106                                                         rxq_index, flow_id);
3107                 if (rc < 0)
3108                         goto out;
3109                 old_rflow = rflow;
3110                 rflow = &flow_table->flows[flow_id];
3111                 rflow->filter = rc;
3112                 if (old_rflow->filter == rflow->filter)
3113                         old_rflow->filter = RPS_NO_FILTER;
3114         out:
3115 #endif
3116                 rflow->last_qtail =
3117                         per_cpu(softnet_data, next_cpu).input_queue_head;
3118         }
3119
3120         rflow->cpu = next_cpu;
3121         return rflow;
3122 }
3123
3124 /*
3125  * get_rps_cpu is called from netif_receive_skb and returns the target
3126  * CPU from the RPS map of the receiving queue for a given skb.
3127  * rcu_read_lock must be held on entry.
3128  */
3129 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3130                        struct rps_dev_flow **rflowp)
3131 {
3132         const struct rps_sock_flow_table *sock_flow_table;
3133         struct netdev_rx_queue *rxqueue = dev->_rx;
3134         struct rps_dev_flow_table *flow_table;
3135         struct rps_map *map;
3136         int cpu = -1;
3137         u32 tcpu;
3138         u32 hash;
3139
3140         if (skb_rx_queue_recorded(skb)) {
3141                 u16 index = skb_get_rx_queue(skb);
3142
3143                 if (unlikely(index >= dev->real_num_rx_queues)) {
3144                         WARN_ONCE(dev->real_num_rx_queues > 1,
3145                                   "%s received packet on queue %u, but number "
3146                                   "of RX queues is %u\n",
3147                                   dev->name, index, dev->real_num_rx_queues);
3148                         goto done;
3149                 }
3150                 rxqueue += index;
3151         }
3152
3153         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3154
3155         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3156         map = rcu_dereference(rxqueue->rps_map);
3157         if (!flow_table && !map)
3158                 goto done;
3159
3160         skb_reset_network_header(skb);
3161         hash = skb_get_hash(skb);
3162         if (!hash)
3163                 goto done;
3164
3165         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3166         if (flow_table && sock_flow_table) {
3167                 struct rps_dev_flow *rflow;
3168                 u32 next_cpu;
3169                 u32 ident;
3170
3171                 /* First check into global flow table if there is a match */
3172                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3173                 if ((ident ^ hash) & ~rps_cpu_mask)
3174                         goto try_rps;
3175
3176                 next_cpu = ident & rps_cpu_mask;
3177
3178                 /* OK, now we know there is a match,
3179                  * we can look at the local (per receive queue) flow table
3180                  */
3181                 rflow = &flow_table->flows[hash & flow_table->mask];
3182                 tcpu = rflow->cpu;
3183
3184                 /*
3185                  * If the desired CPU (where last recvmsg was done) is
3186                  * different from current CPU (one in the rx-queue flow
3187                  * table entry), switch if one of the following holds:
3188                  *   - Current CPU is unset (>= nr_cpu_ids).
3189                  *   - Current CPU is offline.
3190                  *   - The current CPU's queue tail has advanced beyond the
3191                  *     last packet that was enqueued using this table entry.
3192                  *     This guarantees that all previous packets for the flow
3193                  *     have been dequeued, thus preserving in order delivery.
3194                  */
3195                 if (unlikely(tcpu != next_cpu) &&
3196                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3197                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3198                       rflow->last_qtail)) >= 0)) {
3199                         tcpu = next_cpu;
3200                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3201                 }
3202
3203                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3204                         *rflowp = rflow;
3205                         cpu = tcpu;
3206                         goto done;
3207                 }
3208         }
3209
3210 try_rps:
3211
3212         if (map) {
3213                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3214                 if (cpu_online(tcpu)) {
3215                         cpu = tcpu;
3216                         goto done;
3217                 }
3218         }
3219
3220 done:
3221         return cpu;
3222 }
3223
3224 #ifdef CONFIG_RFS_ACCEL
3225
3226 /**
3227  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3228  * @dev: Device on which the filter was set
3229  * @rxq_index: RX queue index
3230  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3231  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3232  *
3233  * Drivers that implement ndo_rx_flow_steer() should periodically call
3234  * this function for each installed filter and remove the filters for
3235  * which it returns %true.
3236  */
3237 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3238                          u32 flow_id, u16 filter_id)
3239 {
3240         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3241         struct rps_dev_flow_table *flow_table;
3242         struct rps_dev_flow *rflow;
3243         bool expire = true;
3244         unsigned int cpu;
3245
3246         rcu_read_lock();
3247         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3248         if (flow_table && flow_id <= flow_table->mask) {
3249                 rflow = &flow_table->flows[flow_id];
3250                 cpu = ACCESS_ONCE(rflow->cpu);
3251                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3252                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3253                            rflow->last_qtail) <
3254                      (int)(10 * flow_table->mask)))
3255                         expire = false;
3256         }
3257         rcu_read_unlock();
3258         return expire;
3259 }
3260 EXPORT_SYMBOL(rps_may_expire_flow);
3261
3262 #endif /* CONFIG_RFS_ACCEL */
3263
3264 /* Called from hardirq (IPI) context */
3265 static void rps_trigger_softirq(void *data)
3266 {
3267         struct softnet_data *sd = data;
3268
3269         ____napi_schedule(sd, &sd->backlog);
3270         sd->received_rps++;
3271 }
3272
3273 #endif /* CONFIG_RPS */
3274
3275 /*
3276  * Check if this softnet_data structure is another cpu one
3277  * If yes, queue it to our IPI list and return 1
3278  * If no, return 0
3279  */
3280 static int rps_ipi_queued(struct softnet_data *sd)
3281 {
3282 #ifdef CONFIG_RPS
3283         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3284
3285         if (sd != mysd) {
3286                 sd->rps_ipi_next = mysd->rps_ipi_list;
3287                 mysd->rps_ipi_list = sd;
3288
3289                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3290                 return 1;
3291         }
3292 #endif /* CONFIG_RPS */
3293         return 0;
3294 }
3295
3296 #ifdef CONFIG_NET_FLOW_LIMIT
3297 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3298 #endif
3299
3300 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3301 {
3302 #ifdef CONFIG_NET_FLOW_LIMIT
3303         struct sd_flow_limit *fl;
3304         struct softnet_data *sd;
3305         unsigned int old_flow, new_flow;
3306
3307         if (qlen < (netdev_max_backlog >> 1))
3308                 return false;
3309
3310         sd = this_cpu_ptr(&softnet_data);
3311
3312         rcu_read_lock();
3313         fl = rcu_dereference(sd->flow_limit);
3314         if (fl) {
3315                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3316                 old_flow = fl->history[fl->history_head];
3317                 fl->history[fl->history_head] = new_flow;
3318
3319                 fl->history_head++;
3320                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3321
3322                 if (likely(fl->buckets[old_flow]))
3323                         fl->buckets[old_flow]--;
3324
3325                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3326                         fl->count++;
3327                         rcu_read_unlock();
3328                         return true;
3329                 }
3330         }
3331         rcu_read_unlock();
3332 #endif
3333         return false;
3334 }
3335
3336 /*
3337  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3338  * queue (may be a remote CPU queue).
3339  */
3340 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3341                               unsigned int *qtail)
3342 {
3343         struct softnet_data *sd;
3344         unsigned long flags;
3345         unsigned int qlen;
3346
3347         sd = &per_cpu(softnet_data, cpu);
3348
3349         local_irq_save(flags);
3350
3351         rps_lock(sd);
3352         qlen = skb_queue_len(&sd->input_pkt_queue);
3353         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3354                 if (qlen) {
3355 enqueue:
3356                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3357                         input_queue_tail_incr_save(sd, qtail);
3358                         rps_unlock(sd);
3359                         local_irq_restore(flags);
3360                         return NET_RX_SUCCESS;
3361                 }
3362
3363                 /* Schedule NAPI for backlog device
3364                  * We can use non atomic operation since we own the queue lock
3365                  */
3366                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3367                         if (!rps_ipi_queued(sd))
3368                                 ____napi_schedule(sd, &sd->backlog);
3369                 }
3370                 goto enqueue;
3371         }
3372
3373         sd->dropped++;
3374         rps_unlock(sd);
3375
3376         local_irq_restore(flags);
3377         preempt_check_resched_rt();
3378
3379         atomic_long_inc(&skb->dev->rx_dropped);
3380         kfree_skb(skb);
3381         return NET_RX_DROP;
3382 }
3383
3384 static int netif_rx_internal(struct sk_buff *skb)
3385 {
3386         int ret;
3387
3388         net_timestamp_check(netdev_tstamp_prequeue, skb);
3389
3390         trace_netif_rx(skb);
3391 #ifdef CONFIG_RPS
3392         if (static_key_false(&rps_needed)) {
3393                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3394                 int cpu;
3395
3396                 migrate_disable();
3397                 rcu_read_lock();
3398
3399                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3400                 if (cpu < 0)
3401                         cpu = smp_processor_id();
3402
3403                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3404
3405                 rcu_read_unlock();
3406                 migrate_enable();
3407         } else
3408 #endif
3409         {
3410                 unsigned int qtail;
3411                 ret = enqueue_to_backlog(skb, get_cpu_light(), &qtail);
3412                 put_cpu_light();
3413         }
3414         return ret;
3415 }
3416
3417 /**
3418  *      netif_rx        -       post buffer to the network code
3419  *      @skb: buffer to post
3420  *
3421  *      This function receives a packet from a device driver and queues it for
3422  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3423  *      may be dropped during processing for congestion control or by the
3424  *      protocol layers.
3425  *
3426  *      return values:
3427  *      NET_RX_SUCCESS  (no congestion)
3428  *      NET_RX_DROP     (packet was dropped)
3429  *
3430  */
3431
3432 int netif_rx(struct sk_buff *skb)
3433 {
3434         trace_netif_rx_entry(skb);
3435
3436         return netif_rx_internal(skb);
3437 }
3438 EXPORT_SYMBOL(netif_rx);
3439
3440 int netif_rx_ni(struct sk_buff *skb)
3441 {
3442         int err;
3443
3444         trace_netif_rx_ni_entry(skb);
3445
3446         local_bh_disable();
3447         err = netif_rx_internal(skb);
3448         local_bh_enable();
3449
3450         return err;
3451 }
3452 EXPORT_SYMBOL(netif_rx_ni);
3453
3454 #ifdef CONFIG_PREEMPT_RT_FULL
3455 /*
3456  * RT runs ksoftirqd as a real time thread and the root_lock is a
3457  * "sleeping spinlock". If the trylock fails then we can go into an
3458  * infinite loop when ksoftirqd preempted the task which actually
3459  * holds the lock, because we requeue q and raise NET_TX softirq
3460  * causing ksoftirqd to loop forever.
3461  *
3462  * It's safe to use spin_lock on RT here as softirqs run in thread
3463  * context and cannot deadlock against the thread which is holding
3464  * root_lock.
3465  *
3466  * On !RT the trylock might fail, but there we bail out from the
3467  * softirq loop after 10 attempts which we can't do on RT. And the
3468  * task holding root_lock cannot be preempted, so the only downside of
3469  * that trylock is that we need 10 loops to decide that we should have
3470  * given up in the first one :)
3471  */
3472 static inline int take_root_lock(spinlock_t *lock)
3473 {
3474         spin_lock(lock);
3475         return 1;
3476 }
3477 #else
3478 static inline int take_root_lock(spinlock_t *lock)
3479 {
3480         return spin_trylock(lock);
3481 }
3482 #endif
3483
3484 static void net_tx_action(struct softirq_action *h)
3485 {
3486         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3487
3488         if (sd->completion_queue) {
3489                 struct sk_buff *clist;
3490
3491                 local_irq_disable();
3492                 clist = sd->completion_queue;
3493                 sd->completion_queue = NULL;
3494                 local_irq_enable();
3495
3496                 while (clist) {
3497                         struct sk_buff *skb = clist;
3498                         clist = clist->next;
3499
3500                         WARN_ON(atomic_read(&skb->users));
3501                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3502                                 trace_consume_skb(skb);
3503                         else
3504                                 trace_kfree_skb(skb, net_tx_action);
3505                         __kfree_skb(skb);
3506                 }
3507         }
3508
3509         if (sd->output_queue) {
3510                 struct Qdisc *head;
3511
3512                 local_irq_disable();
3513                 head = sd->output_queue;
3514                 sd->output_queue = NULL;
3515                 sd->output_queue_tailp = &sd->output_queue;
3516                 local_irq_enable();
3517
3518                 while (head) {
3519                         struct Qdisc *q = head;
3520                         spinlock_t *root_lock;
3521
3522                         head = head->next_sched;
3523
3524                         root_lock = qdisc_lock(q);
3525                         if (take_root_lock(root_lock)) {
3526                                 smp_mb__before_atomic();
3527                                 clear_bit(__QDISC_STATE_SCHED,
3528                                           &q->state);
3529                                 qdisc_run(q);
3530                                 spin_unlock(root_lock);
3531                         } else {
3532                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3533                                               &q->state)) {
3534                                         __netif_reschedule(q);
3535                                 } else {
3536                                         smp_mb__before_atomic();
3537                                         clear_bit(__QDISC_STATE_SCHED,
3538                                                   &q->state);
3539                                 }
3540                         }
3541                 }
3542         }
3543 }
3544
3545 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3546     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3547 /* This hook is defined here for ATM LANE */
3548 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3549                              unsigned char *addr) __read_mostly;
3550 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3551 #endif
3552
3553 #ifdef CONFIG_NET_CLS_ACT
3554 /* TODO: Maybe we should just force sch_ingress to be compiled in
3555  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3556  * a compare and 2 stores extra right now if we dont have it on
3557  * but have CONFIG_NET_CLS_ACT
3558  * NOTE: This doesn't stop any functionality; if you dont have
3559  * the ingress scheduler, you just can't add policies on ingress.
3560  *
3561  */
3562 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3563 {
3564         struct net_device *dev = skb->dev;
3565         u32 ttl = G_TC_RTTL(skb->tc_verd);
3566         int result = TC_ACT_OK;
3567         struct Qdisc *q;
3568
3569         if (unlikely(MAX_RED_LOOP < ttl++)) {
3570                 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3571                                      skb->skb_iif, dev->ifindex);
3572                 return TC_ACT_SHOT;
3573         }
3574
3575         skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3576         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3577
3578         q = rcu_dereference(rxq->qdisc);
3579         if (q != &noop_qdisc) {
3580                 spin_lock(qdisc_lock(q));
3581                 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3582                         result = qdisc_enqueue_root(skb, q);
3583                 spin_unlock(qdisc_lock(q));
3584         }
3585
3586         return result;
3587 }
3588
3589 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3590                                          struct packet_type **pt_prev,
3591                                          int *ret, struct net_device *orig_dev)
3592 {
3593         struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3594
3595         if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3596                 return skb;
3597
3598         if (*pt_prev) {
3599                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3600                 *pt_prev = NULL;
3601         }
3602
3603         switch (ing_filter(skb, rxq)) {
3604         case TC_ACT_SHOT:
3605         case TC_ACT_STOLEN:
3606                 kfree_skb(skb);
3607                 return NULL;
3608         }
3609
3610         return skb;
3611 }
3612 #endif
3613
3614 /**
3615  *      netdev_rx_handler_register - register receive handler
3616  *      @dev: device to register a handler for
3617  *      @rx_handler: receive handler to register
3618  *      @rx_handler_data: data pointer that is used by rx handler
3619  *
3620  *      Register a receive handler for a device. This handler will then be
3621  *      called from __netif_receive_skb. A negative errno code is returned
3622  *      on a failure.
3623  *
3624  *      The caller must hold the rtnl_mutex.
3625  *
3626  *      For a general description of rx_handler, see enum rx_handler_result.
3627  */
3628 int netdev_rx_handler_register(struct net_device *dev,
3629                                rx_handler_func_t *rx_handler,
3630                                void *rx_handler_data)
3631 {
3632         ASSERT_RTNL();
3633
3634         if (dev->rx_handler)
3635                 return -EBUSY;
3636
3637         /* Note: rx_handler_data must be set before rx_handler */
3638         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3639         rcu_assign_pointer(dev->rx_handler, rx_handler);
3640
3641         return 0;
3642 }
3643 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3644
3645 /**
3646  *      netdev_rx_handler_unregister - unregister receive handler
3647  *      @dev: device to unregister a handler from
3648  *
3649  *      Unregister a receive handler from a device.
3650  *
3651  *      The caller must hold the rtnl_mutex.
3652  */
3653 void netdev_rx_handler_unregister(struct net_device *dev)
3654 {
3655
3656         ASSERT_RTNL();
3657         RCU_INIT_POINTER(dev->rx_handler, NULL);
3658         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3659          * section has a guarantee to see a non NULL rx_handler_data
3660          * as well.
3661          */
3662         synchronize_net();
3663         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3664 }
3665 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3666
3667 /*
3668  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3669  * the special handling of PFMEMALLOC skbs.
3670  */
3671 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3672 {
3673         switch (skb->protocol) {
3674         case htons(ETH_P_ARP):
3675         case htons(ETH_P_IP):
3676         case htons(ETH_P_IPV6):
3677         case htons(ETH_P_8021Q):
3678         case htons(ETH_P_8021AD):
3679                 return true;
3680         default:
3681                 return false;
3682         }
3683 }
3684
3685 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3686 {
3687         struct packet_type *ptype, *pt_prev;
3688         rx_handler_func_t *rx_handler;
3689         struct net_device *orig_dev;
3690         bool deliver_exact = false;
3691         int ret = NET_RX_DROP;
3692         __be16 type;
3693
3694         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3695
3696         trace_netif_receive_skb(skb);
3697
3698         orig_dev = skb->dev;
3699
3700         skb_reset_network_header(skb);
3701         if (!skb_transport_header_was_set(skb))
3702                 skb_reset_transport_header(skb);
3703         skb_reset_mac_len(skb);
3704
3705         pt_prev = NULL;
3706
3707         rcu_read_lock();
3708
3709 another_round:
3710         skb->skb_iif = skb->dev->ifindex;
3711
3712         __this_cpu_inc(softnet_data.processed);
3713
3714         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3715             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3716                 skb = skb_vlan_untag(skb);
3717                 if (unlikely(!skb))
3718                         goto unlock;
3719         }
3720
3721 #ifdef CONFIG_NET_CLS_ACT
3722         if (skb->tc_verd & TC_NCLS) {
3723                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3724                 goto ncls;
3725         }
3726 #endif
3727
3728         if (pfmemalloc)
3729                 goto skip_taps;
3730
3731         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3732                 if (pt_prev)
3733                         ret = deliver_skb(skb, pt_prev, orig_dev);
3734                 pt_prev = ptype;
3735         }
3736
3737         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3738                 if (pt_prev)
3739                         ret = deliver_skb(skb, pt_prev, orig_dev);
3740                 pt_prev = ptype;
3741         }
3742
3743 skip_taps:
3744 #ifdef CONFIG_NET_CLS_ACT
3745         if (static_key_false(&ingress_needed)) {
3746                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3747                 if (!skb)
3748                         goto unlock;
3749         }
3750
3751         skb->tc_verd = 0;
3752 ncls:
3753 #endif
3754         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3755                 goto drop;
3756
3757         if (skb_vlan_tag_present(skb)) {
3758                 if (pt_prev) {
3759                         ret = deliver_skb(skb, pt_prev, orig_dev);
3760                         pt_prev = NULL;
3761                 }
3762                 if (vlan_do_receive(&skb))
3763                         goto another_round;
3764                 else if (unlikely(!skb))
3765                         goto unlock;
3766         }
3767
3768         rx_handler = rcu_dereference(skb->dev->rx_handler);
3769         if (rx_handler) {
3770                 if (pt_prev) {
3771                         ret = deliver_skb(skb, pt_prev, orig_dev);
3772                         pt_prev = NULL;
3773                 }
3774                 switch (rx_handler(&skb)) {
3775                 case RX_HANDLER_CONSUMED:
3776                         ret = NET_RX_SUCCESS;
3777                         goto unlock;
3778                 case RX_HANDLER_ANOTHER:
3779                         goto another_round;
3780                 case RX_HANDLER_EXACT:
3781                         deliver_exact = true;
3782                 case RX_HANDLER_PASS:
3783                         break;
3784                 default:
3785                         BUG();
3786                 }
3787         }
3788
3789         if (unlikely(skb_vlan_tag_present(skb))) {
3790                 if (skb_vlan_tag_get_id(skb))
3791                         skb->pkt_type = PACKET_OTHERHOST;
3792                 /* Note: we might in the future use prio bits
3793                  * and set skb->priority like in vlan_do_receive()
3794                  * For the time being, just ignore Priority Code Point
3795                  */
3796                 skb->vlan_tci = 0;
3797         }
3798
3799         type = skb->protocol;
3800
3801         /* deliver only exact match when indicated */
3802         if (likely(!deliver_exact)) {
3803                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3804                                        &ptype_base[ntohs(type) &
3805                                                    PTYPE_HASH_MASK]);
3806         }
3807
3808         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3809                                &orig_dev->ptype_specific);
3810
3811         if (unlikely(skb->dev != orig_dev)) {
3812                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3813                                        &skb->dev->ptype_specific);
3814         }
3815
3816         if (pt_prev) {
3817                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3818                         goto drop;
3819                 else
3820                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3821         } else {
3822 drop:
3823                 atomic_long_inc(&skb->dev->rx_dropped);
3824                 kfree_skb(skb);
3825                 /* Jamal, now you will not able to escape explaining
3826                  * me how you were going to use this. :-)
3827                  */
3828                 ret = NET_RX_DROP;
3829         }
3830
3831 unlock:
3832         rcu_read_unlock();
3833         return ret;
3834 }
3835
3836 static int __netif_receive_skb(struct sk_buff *skb)
3837 {
3838         int ret;
3839
3840         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3841                 unsigned long pflags = current->flags;
3842
3843                 /*
3844                  * PFMEMALLOC skbs are special, they should
3845                  * - be delivered to SOCK_MEMALLOC sockets only
3846                  * - stay away from userspace
3847                  * - have bounded memory usage
3848                  *
3849                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3850                  * context down to all allocation sites.
3851                  */
3852                 current->flags |= PF_MEMALLOC;
3853                 ret = __netif_receive_skb_core(skb, true);
3854                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3855         } else
3856                 ret = __netif_receive_skb_core(skb, false);
3857
3858         return ret;
3859 }
3860
3861 static int netif_receive_skb_internal(struct sk_buff *skb)
3862 {
3863         net_timestamp_check(netdev_tstamp_prequeue, skb);
3864
3865         if (skb_defer_rx_timestamp(skb))
3866                 return NET_RX_SUCCESS;
3867
3868 #ifdef CONFIG_RPS
3869         if (static_key_false(&rps_needed)) {
3870                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3871                 int cpu, ret;
3872
3873                 rcu_read_lock();
3874
3875                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3876
3877                 if (cpu >= 0) {
3878                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3879                         rcu_read_unlock();
3880                         return ret;
3881                 }
3882                 rcu_read_unlock();
3883         }
3884 #endif
3885         return __netif_receive_skb(skb);
3886 }
3887
3888 /**
3889  *      netif_receive_skb - process receive buffer from network
3890  *      @skb: buffer to process
3891  *
3892  *      netif_receive_skb() is the main receive data processing function.
3893  *      It always succeeds. The buffer may be dropped during processing
3894  *      for congestion control or by the protocol layers.
3895  *
3896  *      This function may only be called from softirq context and interrupts
3897  *      should be enabled.
3898  *
3899  *      Return values (usually ignored):
3900  *      NET_RX_SUCCESS: no congestion
3901  *      NET_RX_DROP: packet was dropped
3902  */
3903 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3904 {
3905         trace_netif_receive_skb_entry(skb);
3906
3907         return netif_receive_skb_internal(skb);
3908 }
3909 EXPORT_SYMBOL(netif_receive_skb_sk);
3910
3911 /* Network device is going away, flush any packets still pending
3912  * Called with irqs disabled.
3913  */
3914 static void flush_backlog(void *arg)
3915 {
3916         struct net_device *dev = arg;
3917         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3918         struct sk_buff *skb, *tmp;
3919
3920         rps_lock(sd);
3921         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3922                 if (skb->dev == dev) {
3923                         __skb_unlink(skb, &sd->input_pkt_queue);
3924                         __skb_queue_tail(&sd->tofree_queue, skb);
3925                         input_queue_head_incr(sd);
3926                 }
3927         }
3928         rps_unlock(sd);
3929
3930         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3931                 if (skb->dev == dev) {
3932                         __skb_unlink(skb, &sd->process_queue);
3933                         __skb_queue_tail(&sd->tofree_queue, skb);
3934                         input_queue_head_incr(sd);
3935                 }
3936         }
3937
3938         if (!skb_queue_empty(&sd->tofree_queue))
3939                 raise_softirq_irqoff(NET_RX_SOFTIRQ);
3940 }
3941
3942 static int napi_gro_complete(struct sk_buff *skb)
3943 {
3944         struct packet_offload *ptype;
3945         __be16 type = skb->protocol;
3946         struct list_head *head = &offload_base;
3947         int err = -ENOENT;
3948
3949         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3950
3951         if (NAPI_GRO_CB(skb)->count == 1) {
3952                 skb_shinfo(skb)->gso_size = 0;
3953                 goto out;
3954         }
3955
3956         rcu_read_lock();
3957         list_for_each_entry_rcu(ptype, head, list) {
3958                 if (ptype->type != type || !ptype->callbacks.gro_complete)
3959                         continue;
3960
3961                 err = ptype->callbacks.gro_complete(skb, 0);
3962                 break;
3963         }
3964         rcu_read_unlock();
3965
3966         if (err) {
3967                 WARN_ON(&ptype->list == head);
3968                 kfree_skb(skb);
3969                 return NET_RX_SUCCESS;
3970         }
3971
3972 out:
3973         return netif_receive_skb_internal(skb);
3974 }
3975
3976 /* napi->gro_list contains packets ordered by age.
3977  * youngest packets at the head of it.
3978  * Complete skbs in reverse order to reduce latencies.
3979  */
3980 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3981 {
3982         struct sk_buff *skb, *prev = NULL;
3983
3984         /* scan list and build reverse chain */
3985         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3986                 skb->prev = prev;
3987                 prev = skb;
3988         }
3989
3990         for (skb = prev; skb; skb = prev) {
3991                 skb->next = NULL;
3992
3993                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3994                         return;
3995
3996                 prev = skb->prev;
3997                 napi_gro_complete(skb);
3998                 napi->gro_count--;
3999         }
4000
4001         napi->gro_list = NULL;
4002 }
4003 EXPORT_SYMBOL(napi_gro_flush);
4004
4005 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4006 {
4007         struct sk_buff *p;
4008         unsigned int maclen = skb->dev->hard_header_len;
4009         u32 hash = skb_get_hash_raw(skb);
4010
4011         for (p = napi->gro_list; p; p = p->next) {
4012                 unsigned long diffs;
4013
4014                 NAPI_GRO_CB(p)->flush = 0;
4015
4016                 if (hash != skb_get_hash_raw(p)) {
4017                         NAPI_GRO_CB(p)->same_flow = 0;
4018                         continue;
4019                 }
4020
4021                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4022                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4023                 if (maclen == ETH_HLEN)
4024                         diffs |= compare_ether_header(skb_mac_header(p),
4025                                                       skb_mac_header(skb));
4026                 else if (!diffs)
4027                         diffs = memcmp(skb_mac_header(p),
4028                                        skb_mac_header(skb),
4029                                        maclen);
4030                 NAPI_GRO_CB(p)->same_flow = !diffs;
4031         }
4032 }
4033
4034 static void skb_gro_reset_offset(struct sk_buff *skb)
4035 {
4036         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4037         const skb_frag_t *frag0 = &pinfo->frags[0];
4038
4039         NAPI_GRO_CB(skb)->data_offset = 0;
4040         NAPI_GRO_CB(skb)->frag0 = NULL;
4041         NAPI_GRO_CB(skb)->frag0_len = 0;
4042
4043         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4044             pinfo->nr_frags &&
4045             !PageHighMem(skb_frag_page(frag0))) {
4046                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4047                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4048         }
4049 }
4050
4051 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4052 {
4053         struct skb_shared_info *pinfo = skb_shinfo(skb);
4054
4055         BUG_ON(skb->end - skb->tail < grow);
4056
4057         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4058
4059         skb->data_len -= grow;
4060         skb->tail += grow;
4061
4062         pinfo->frags[0].page_offset += grow;
4063         skb_frag_size_sub(&pinfo->frags[0], grow);
4064
4065         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4066                 skb_frag_unref(skb, 0);
4067                 memmove(pinfo->frags, pinfo->frags + 1,
4068                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4069         }
4070 }
4071
4072 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4073 {
4074         struct sk_buff **pp = NULL;
4075         struct packet_offload *ptype;
4076         __be16 type = skb->protocol;
4077         struct list_head *head = &offload_base;
4078         int same_flow;
4079         enum gro_result ret;
4080         int grow;
4081
4082         if (!(skb->dev->features & NETIF_F_GRO))
4083                 goto normal;
4084
4085         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4086                 goto normal;
4087
4088         gro_list_prepare(napi, skb);
4089
4090         rcu_read_lock();
4091         list_for_each_entry_rcu(ptype, head, list) {
4092                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4093                         continue;
4094
4095                 skb_set_network_header(skb, skb_gro_offset(skb));
4096                 skb_reset_mac_len(skb);
4097                 NAPI_GRO_CB(skb)->same_flow = 0;
4098                 NAPI_GRO_CB(skb)->flush = 0;
4099                 NAPI_GRO_CB(skb)->free = 0;
4100                 NAPI_GRO_CB(skb)->udp_mark = 0;
4101                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4102
4103                 /* Setup for GRO checksum validation */
4104                 switch (skb->ip_summed) {
4105                 case CHECKSUM_COMPLETE:
4106                         NAPI_GRO_CB(skb)->csum = skb->csum;
4107                         NAPI_GRO_CB(skb)->csum_valid = 1;
4108                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4109                         break;
4110                 case CHECKSUM_UNNECESSARY:
4111                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4112                         NAPI_GRO_CB(skb)->csum_valid = 0;
4113                         break;
4114                 default:
4115                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4116                         NAPI_GRO_CB(skb)->csum_valid = 0;
4117                 }
4118
4119                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4120                 break;
4121         }
4122         rcu_read_unlock();
4123
4124         if (&ptype->list == head)
4125                 goto normal;
4126
4127         same_flow = NAPI_GRO_CB(skb)->same_flow;
4128         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4129
4130         if (pp) {
4131                 struct sk_buff *nskb = *pp;
4132
4133                 *pp = nskb->next;
4134                 nskb->next = NULL;
4135                 napi_gro_complete(nskb);
4136                 napi->gro_count--;
4137         }
4138
4139         if (same_flow)
4140                 goto ok;
4141
4142         if (NAPI_GRO_CB(skb)->flush)
4143                 goto normal;
4144
4145         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4146                 struct sk_buff *nskb = napi->gro_list;
4147
4148                 /* locate the end of the list to select the 'oldest' flow */
4149                 while (nskb->next) {
4150                         pp = &nskb->next;
4151                         nskb = *pp;
4152                 }
4153                 *pp = NULL;
4154                 nskb->next = NULL;
4155                 napi_gro_complete(nskb);
4156         } else {
4157                 napi->gro_count++;
4158         }
4159         NAPI_GRO_CB(skb)->count = 1;
4160         NAPI_GRO_CB(skb)->age = jiffies;
4161         NAPI_GRO_CB(skb)->last = skb;
4162         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4163         skb->next = napi->gro_list;
4164         napi->gro_list = skb;
4165         ret = GRO_HELD;
4166
4167 pull:
4168         grow = skb_gro_offset(skb) - skb_headlen(skb);
4169         if (grow > 0)
4170                 gro_pull_from_frag0(skb, grow);
4171 ok:
4172         return ret;
4173
4174 normal:
4175         ret = GRO_NORMAL;
4176         goto pull;
4177 }
4178
4179 struct packet_offload *gro_find_receive_by_type(__be16 type)
4180 {
4181         struct list_head *offload_head = &offload_base;
4182         struct packet_offload *ptype;
4183
4184         list_for_each_entry_rcu(ptype, offload_head, list) {
4185                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4186                         continue;
4187                 return ptype;
4188         }
4189         return NULL;
4190 }
4191 EXPORT_SYMBOL(gro_find_receive_by_type);
4192
4193 struct packet_offload *gro_find_complete_by_type(__be16 type)
4194 {
4195         struct list_head *offload_head = &offload_base;
4196         struct packet_offload *ptype;
4197
4198         list_for_each_entry_rcu(ptype, offload_head, list) {
4199                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4200                         continue;
4201                 return ptype;
4202         }
4203         return NULL;
4204 }
4205 EXPORT_SYMBOL(gro_find_complete_by_type);
4206
4207 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4208 {
4209         switch (ret) {
4210         case GRO_NORMAL:
4211                 if (netif_receive_skb_internal(skb))
4212                         ret = GRO_DROP;
4213                 break;
4214
4215         case GRO_DROP:
4216                 kfree_skb(skb);
4217                 break;
4218
4219         case GRO_MERGED_FREE:
4220                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4221                         kmem_cache_free(skbuff_head_cache, skb);
4222                 else
4223                         __kfree_skb(skb);
4224                 break;
4225
4226         case GRO_HELD:
4227         case GRO_MERGED:
4228                 break;
4229         }
4230
4231         return ret;
4232 }
4233
4234 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4235 {
4236         trace_napi_gro_receive_entry(skb);
4237
4238         skb_gro_reset_offset(skb);
4239
4240         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4241 }
4242 EXPORT_SYMBOL(napi_gro_receive);
4243
4244 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4245 {
4246         if (unlikely(skb->pfmemalloc)) {
4247                 consume_skb(skb);
4248                 return;
4249         }
4250         __skb_pull(skb, skb_headlen(skb));
4251         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4252         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4253         skb->vlan_tci = 0;
4254         skb->dev = napi->dev;
4255         skb->skb_iif = 0;
4256         skb->encapsulation = 0;
4257         skb_shinfo(skb)->gso_type = 0;
4258         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4259
4260         napi->skb = skb;
4261 }
4262
4263 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4264 {
4265         struct sk_buff *skb = napi->skb;
4266
4267         if (!skb) {
4268                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4269                 napi->skb = skb;
4270         }
4271         return skb;
4272 }
4273 EXPORT_SYMBOL(napi_get_frags);
4274
4275 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4276                                       struct sk_buff *skb,
4277                                       gro_result_t ret)
4278 {
4279         switch (ret) {
4280         case GRO_NORMAL:
4281         case GRO_HELD:
4282                 __skb_push(skb, ETH_HLEN);
4283                 skb->protocol = eth_type_trans(skb, skb->dev);
4284                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4285                         ret = GRO_DROP;
4286                 break;
4287
4288         case GRO_DROP:
4289         case GRO_MERGED_FREE:
4290                 napi_reuse_skb(napi, skb);
4291                 break;
4292
4293         case GRO_MERGED:
4294                 break;
4295         }
4296
4297         return ret;
4298 }
4299
4300 /* Upper GRO stack assumes network header starts at gro_offset=0
4301  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4302  * We copy ethernet header into skb->data to have a common layout.
4303  */
4304 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4305 {
4306         struct sk_buff *skb = napi->skb;
4307         const struct ethhdr *eth;
4308         unsigned int hlen = sizeof(*eth);
4309
4310         napi->skb = NULL;
4311
4312         skb_reset_mac_header(skb);
4313         skb_gro_reset_offset(skb);
4314
4315         eth = skb_gro_header_fast(skb, 0);
4316         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4317                 eth = skb_gro_header_slow(skb, hlen, 0);
4318                 if (unlikely(!eth)) {
4319                         napi_reuse_skb(napi, skb);
4320                         return NULL;
4321                 }
4322         } else {
4323                 gro_pull_from_frag0(skb, hlen);
4324                 NAPI_GRO_CB(skb)->frag0 += hlen;
4325                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4326         }
4327         __skb_pull(skb, hlen);
4328
4329         /*
4330          * This works because the only protocols we care about don't require
4331          * special handling.
4332          * We'll fix it up properly in napi_frags_finish()
4333          */
4334         skb->protocol = eth->h_proto;
4335
4336         return skb;
4337 }
4338
4339 gro_result_t napi_gro_frags(struct napi_struct *napi)
4340 {
4341         struct sk_buff *skb = napi_frags_skb(napi);
4342
4343         if (!skb)
4344                 return GRO_DROP;
4345
4346         trace_napi_gro_frags_entry(skb);
4347
4348         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4349 }
4350 EXPORT_SYMBOL(napi_gro_frags);
4351
4352 /* Compute the checksum from gro_offset and return the folded value
4353  * after adding in any pseudo checksum.
4354  */
4355 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4356 {
4357         __wsum wsum;
4358         __sum16 sum;
4359
4360         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4361
4362         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4363         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4364         if (likely(!sum)) {
4365                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4366                     !skb->csum_complete_sw)
4367                         netdev_rx_csum_fault(skb->dev);
4368         }
4369
4370         NAPI_GRO_CB(skb)->csum = wsum;
4371         NAPI_GRO_CB(skb)->csum_valid = 1;
4372
4373         return sum;
4374 }
4375 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4376
4377 /*
4378  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4379  * Note: called with local irq disabled, but exits with local irq enabled.
4380  */
4381 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4382 {
4383 #ifdef CONFIG_RPS
4384         struct softnet_data *remsd = sd->rps_ipi_list;
4385
4386         if (remsd) {
4387                 sd->rps_ipi_list = NULL;
4388
4389                 local_irq_enable();
4390                 preempt_check_resched_rt();
4391
4392                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4393                 while (remsd) {
4394                         struct softnet_data *next = remsd->rps_ipi_next;
4395
4396                         if (cpu_online(remsd->cpu))
4397                                 smp_call_function_single_async(remsd->cpu,
4398                                                            &remsd->csd);
4399                         remsd = next;
4400                 }
4401         } else
4402 #endif
4403                 local_irq_enable();
4404         preempt_check_resched_rt();
4405 }
4406
4407 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4408 {
4409 #ifdef CONFIG_RPS
4410         return sd->rps_ipi_list != NULL;
4411 #else
4412         return false;
4413 #endif
4414 }
4415
4416 static int process_backlog(struct napi_struct *napi, int quota)
4417 {
4418         int work = 0;
4419         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4420
4421         /* Check if we have pending ipi, its better to send them now,
4422          * not waiting net_rx_action() end.
4423          */
4424         if (sd_has_rps_ipi_waiting(sd)) {
4425                 local_irq_disable();
4426                 net_rps_action_and_irq_enable(sd);
4427         }
4428
4429         napi->weight = weight_p;
4430         local_irq_disable();
4431         while (1) {
4432                 struct sk_buff *skb;
4433
4434                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4435                         local_irq_enable();
4436                         __netif_receive_skb(skb);
4437                         local_irq_disable();
4438                         input_queue_head_incr(sd);
4439                         if (++work >= quota) {
4440                                 local_irq_enable();
4441                                 return work;
4442                         }
4443                 }
4444
4445                 rps_lock(sd);
4446                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4447                         /*
4448                          * Inline a custom version of __napi_complete().
4449                          * only current cpu owns and manipulates this napi,
4450                          * and NAPI_STATE_SCHED is the only possible flag set
4451                          * on backlog.
4452                          * We can use a plain write instead of clear_bit(),
4453                          * and we dont need an smp_mb() memory barrier.
4454                          */
4455                         napi->state = 0;
4456                         rps_unlock(sd);
4457
4458                         break;
4459                 }
4460
4461                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4462                                            &sd->process_queue);
4463                 rps_unlock(sd);
4464         }
4465         local_irq_enable();
4466
4467         return work;
4468 }
4469
4470 /**
4471  * __napi_schedule - schedule for receive
4472  * @n: entry to schedule
4473  *
4474  * The entry's receive function will be scheduled to run.
4475  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4476  */
4477 void __napi_schedule(struct napi_struct *n)
4478 {
4479         unsigned long flags;
4480
4481         local_irq_save(flags);
4482         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4483         local_irq_restore(flags);
4484         preempt_check_resched_rt();
4485 }
4486 EXPORT_SYMBOL(__napi_schedule);
4487
4488 /**
4489  * __napi_schedule_irqoff - schedule for receive
4490  * @n: entry to schedule
4491  *
4492  * Variant of __napi_schedule() assuming hard irqs are masked
4493  */
4494 void __napi_schedule_irqoff(struct napi_struct *n)
4495 {
4496         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4497 }
4498 EXPORT_SYMBOL(__napi_schedule_irqoff);
4499
4500 void __napi_complete(struct napi_struct *n)
4501 {
4502         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4503
4504         list_del_init(&n->poll_list);
4505         smp_mb__before_atomic();
4506         clear_bit(NAPI_STATE_SCHED, &n->state);
4507 }
4508 EXPORT_SYMBOL(__napi_complete);
4509
4510 void napi_complete_done(struct napi_struct *n, int work_done)
4511 {
4512         unsigned long flags;
4513
4514         /*
4515          * don't let napi dequeue from the cpu poll list
4516          * just in case its running on a different cpu
4517          */
4518         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4519                 return;
4520
4521         if (n->gro_list) {
4522                 unsigned long timeout = 0;
4523
4524                 if (work_done)
4525                         timeout = n->dev->gro_flush_timeout;
4526
4527                 if (timeout)
4528                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4529                                       HRTIMER_MODE_REL_PINNED);
4530                 else
4531                         napi_gro_flush(n, false);
4532         }
4533         if (likely(list_empty(&n->poll_list))) {
4534                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4535         } else {
4536                 /* If n->poll_list is not empty, we need to mask irqs */
4537                 local_irq_save(flags);
4538                 __napi_complete(n);
4539                 local_irq_restore(flags);
4540         }
4541 }
4542 EXPORT_SYMBOL(napi_complete_done);
4543
4544 /* must be called under rcu_read_lock(), as we dont take a reference */
4545 struct napi_struct *napi_by_id(unsigned int napi_id)
4546 {
4547         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4548         struct napi_struct *napi;
4549
4550         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4551                 if (napi->napi_id == napi_id)
4552                         return napi;
4553
4554         return NULL;
4555 }
4556 EXPORT_SYMBOL_GPL(napi_by_id);
4557
4558 void napi_hash_add(struct napi_struct *napi)
4559 {
4560         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4561
4562                 spin_lock(&napi_hash_lock);
4563
4564                 /* 0 is not a valid id, we also skip an id that is taken
4565                  * we expect both events to be extremely rare
4566                  */
4567                 napi->napi_id = 0;
4568                 while (!napi->napi_id) {
4569                         napi->napi_id = ++napi_gen_id;
4570                         if (napi_by_id(napi->napi_id))
4571                                 napi->napi_id = 0;
4572                 }
4573
4574                 hlist_add_head_rcu(&napi->napi_hash_node,
4575                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4576
4577                 spin_unlock(&napi_hash_lock);
4578         }
4579 }
4580 EXPORT_SYMBOL_GPL(napi_hash_add);
4581
4582 /* Warning : caller is responsible to make sure rcu grace period
4583  * is respected before freeing memory containing @napi
4584  */
4585 void napi_hash_del(struct napi_struct *napi)
4586 {
4587         spin_lock(&napi_hash_lock);
4588
4589         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4590                 hlist_del_rcu(&napi->napi_hash_node);
4591
4592         spin_unlock(&napi_hash_lock);
4593 }
4594 EXPORT_SYMBOL_GPL(napi_hash_del);
4595
4596 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4597 {
4598         struct napi_struct *napi;
4599
4600         napi = container_of(timer, struct napi_struct, timer);
4601         if (napi->gro_list)
4602                 napi_schedule(napi);
4603
4604         return HRTIMER_NORESTART;
4605 }
4606
4607 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4608                     int (*poll)(struct napi_struct *, int), int weight)
4609 {
4610         INIT_LIST_HEAD(&napi->poll_list);
4611         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4612         napi->timer.function = napi_watchdog;
4613         napi->gro_count = 0;
4614         napi->gro_list = NULL;
4615         napi->skb = NULL;
4616         napi->poll = poll;
4617         if (weight > NAPI_POLL_WEIGHT)
4618                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4619                             weight, dev->name);
4620         napi->weight = weight;
4621         list_add(&napi->dev_list, &dev->napi_list);
4622         napi->dev = dev;
4623 #ifdef CONFIG_NETPOLL
4624         spin_lock_init(&napi->poll_lock);
4625         napi->poll_owner = -1;
4626 #endif
4627         set_bit(NAPI_STATE_SCHED, &napi->state);
4628 }
4629 EXPORT_SYMBOL(netif_napi_add);
4630
4631 void napi_disable(struct napi_struct *n)
4632 {
4633         might_sleep();
4634         set_bit(NAPI_STATE_DISABLE, &n->state);
4635
4636         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4637                 msleep(1);
4638
4639         hrtimer_cancel(&n->timer);
4640
4641         clear_bit(NAPI_STATE_DISABLE, &n->state);
4642 }
4643 EXPORT_SYMBOL(napi_disable);
4644
4645 void netif_napi_del(struct napi_struct *napi)
4646 {
4647         list_del_init(&napi->dev_list);
4648         napi_free_frags(napi);
4649
4650         kfree_skb_list(napi->gro_list);
4651         napi->gro_list = NULL;
4652         napi->gro_count = 0;
4653 }
4654 EXPORT_SYMBOL(netif_napi_del);
4655
4656 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4657 {
4658         void *have;
4659         int work, weight;
4660
4661         list_del_init(&n->poll_list);
4662
4663         have = netpoll_poll_lock(n);
4664
4665         weight = n->weight;
4666
4667         /* This NAPI_STATE_SCHED test is for avoiding a race
4668          * with netpoll's poll_napi().  Only the entity which
4669          * obtains the lock and sees NAPI_STATE_SCHED set will
4670          * actually make the ->poll() call.  Therefore we avoid
4671          * accidentally calling ->poll() when NAPI is not scheduled.
4672          */
4673         work = 0;
4674         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4675                 work = n->poll(n, weight);
4676                 trace_napi_poll(n);
4677         }
4678
4679         WARN_ON_ONCE(work > weight);
4680
4681         if (likely(work < weight))
4682                 goto out_unlock;
4683
4684         /* Drivers must not modify the NAPI state if they
4685          * consume the entire weight.  In such cases this code
4686          * still "owns" the NAPI instance and therefore can
4687          * move the instance around on the list at-will.
4688          */
4689         if (unlikely(napi_disable_pending(n))) {
4690                 napi_complete(n);
4691                 goto out_unlock;
4692         }
4693
4694         if (n->gro_list) {
4695                 /* flush too old packets
4696                  * If HZ < 1000, flush all packets.
4697                  */
4698                 napi_gro_flush(n, HZ >= 1000);
4699         }
4700
4701         /* Some drivers may have called napi_schedule
4702          * prior to exhausting their budget.
4703          */
4704         if (unlikely(!list_empty(&n->poll_list))) {
4705                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4706                              n->dev ? n->dev->name : "backlog");
4707                 goto out_unlock;
4708         }
4709
4710         list_add_tail(&n->poll_list, repoll);
4711
4712 out_unlock:
4713         netpoll_poll_unlock(have);
4714
4715         return work;
4716 }
4717
4718 static void net_rx_action(struct softirq_action *h)
4719 {
4720         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4721         unsigned long time_limit = jiffies + 2;
4722         int budget = netdev_budget;
4723         LIST_HEAD(list);
4724         LIST_HEAD(repoll);
4725
4726         local_irq_disable();
4727         list_splice_init(&sd->poll_list, &list);
4728         local_irq_enable();
4729
4730         for (;;) {
4731                 struct napi_struct *n;
4732
4733                 if (list_empty(&list)) {
4734                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4735                                 return;
4736                         break;
4737                 }
4738
4739                 n = list_first_entry(&list, struct napi_struct, poll_list);
4740                 budget -= napi_poll(n, &repoll);
4741
4742                 /* If softirq window is exhausted then punt.
4743                  * Allow this to run for 2 jiffies since which will allow
4744                  * an average latency of 1.5/HZ.
4745                  */
4746                 if (unlikely(budget <= 0 ||
4747                              time_after_eq(jiffies, time_limit))) {
4748                         sd->time_squeeze++;
4749                         break;
4750                 }
4751         }
4752
4753         local_irq_disable();
4754
4755         list_splice_tail_init(&sd->poll_list, &list);
4756         list_splice_tail(&repoll, &list);
4757         list_splice(&list, &sd->poll_list);
4758         if (!list_empty(&sd->poll_list))
4759                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4760
4761         net_rps_action_and_irq_enable(sd);
4762 }
4763
4764 struct netdev_adjacent {
4765         struct net_device *dev;
4766
4767         /* upper master flag, there can only be one master device per list */
4768         bool master;
4769
4770         /* counter for the number of times this device was added to us */
4771         u16 ref_nr;
4772
4773         /* private field for the users */
4774         void *private;
4775
4776         struct list_head list;
4777         struct rcu_head rcu;
4778 };
4779
4780 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4781                                                  struct net_device *adj_dev,
4782                                                  struct list_head *adj_list)
4783 {
4784         struct netdev_adjacent *adj;
4785
4786         list_for_each_entry(adj, adj_list, list) {
4787                 if (adj->dev == adj_dev)
4788                         return adj;
4789         }
4790         return NULL;
4791 }
4792
4793 /**
4794  * netdev_has_upper_dev - Check if device is linked to an upper device
4795  * @dev: device
4796  * @upper_dev: upper device to check
4797  *
4798  * Find out if a device is linked to specified upper device and return true
4799  * in case it is. Note that this checks only immediate upper device,
4800  * not through a complete stack of devices. The caller must hold the RTNL lock.
4801  */
4802 bool netdev_has_upper_dev(struct net_device *dev,
4803                           struct net_device *upper_dev)
4804 {
4805         ASSERT_RTNL();
4806
4807         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4808 }
4809 EXPORT_SYMBOL(netdev_has_upper_dev);
4810
4811 /**
4812  * netdev_has_any_upper_dev - Check if device is linked to some device
4813  * @dev: device
4814  *
4815  * Find out if a device is linked to an upper device and return true in case
4816  * it is. The caller must hold the RTNL lock.
4817  */
4818 static bool netdev_has_any_upper_dev(struct net_device *dev)
4819 {
4820         ASSERT_RTNL();
4821
4822         return !list_empty(&dev->all_adj_list.upper);
4823 }
4824
4825 /**
4826  * netdev_master_upper_dev_get - Get master upper device
4827  * @dev: device
4828  *
4829  * Find a master upper device and return pointer to it or NULL in case
4830  * it's not there. The caller must hold the RTNL lock.
4831  */
4832 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4833 {
4834         struct netdev_adjacent *upper;
4835
4836         ASSERT_RTNL();
4837
4838         if (list_empty(&dev->adj_list.upper))
4839                 return NULL;
4840
4841         upper = list_first_entry(&dev->adj_list.upper,
4842                                  struct netdev_adjacent, list);
4843         if (likely(upper->master))
4844                 return upper->dev;
4845         return NULL;
4846 }
4847 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4848
4849 void *netdev_adjacent_get_private(struct list_head *adj_list)
4850 {
4851         struct netdev_adjacent *adj;
4852
4853         adj = list_entry(adj_list, struct netdev_adjacent, list);
4854
4855         return adj->private;
4856 }
4857 EXPORT_SYMBOL(netdev_adjacent_get_private);
4858
4859 /**
4860  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4861  * @dev: device
4862  * @iter: list_head ** of the current position
4863  *
4864  * Gets the next device from the dev's upper list, starting from iter
4865  * position. The caller must hold RCU read lock.
4866  */
4867 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4868                                                  struct list_head **iter)
4869 {
4870         struct netdev_adjacent *upper;
4871
4872         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4873
4874         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4875
4876         if (&upper->list == &dev->adj_list.upper)
4877                 return NULL;
4878
4879         *iter = &upper->list;
4880
4881         return upper->dev;
4882 }
4883 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4884
4885 /**
4886  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4887  * @dev: device
4888  * @iter: list_head ** of the current position
4889  *
4890  * Gets the next device from the dev's upper list, starting from iter
4891  * position. The caller must hold RCU read lock.
4892  */
4893 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4894                                                      struct list_head **iter)
4895 {
4896         struct netdev_adjacent *upper;
4897
4898         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4899
4900         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4901
4902         if (&upper->list == &dev->all_adj_list.upper)
4903                 return NULL;
4904
4905         *iter = &upper->list;
4906
4907         return upper->dev;
4908 }
4909 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4910
4911 /**
4912  * netdev_lower_get_next_private - Get the next ->private from the
4913  *                                 lower neighbour list
4914  * @dev: device
4915  * @iter: list_head ** of the current position
4916  *
4917  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4918  * list, starting from iter position. The caller must hold either hold the
4919  * RTNL lock or its own locking that guarantees that the neighbour lower
4920  * list will remain unchainged.
4921  */
4922 void *netdev_lower_get_next_private(struct net_device *dev,
4923                                     struct list_head **iter)
4924 {
4925         struct netdev_adjacent *lower;
4926
4927         lower = list_entry(*iter, struct netdev_adjacent, list);
4928
4929         if (&lower->list == &dev->adj_list.lower)
4930                 return NULL;
4931
4932         *iter = lower->list.next;
4933
4934         return lower->private;
4935 }
4936 EXPORT_SYMBOL(netdev_lower_get_next_private);
4937
4938 /**
4939  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4940  *                                     lower neighbour list, RCU
4941  *                                     variant
4942  * @dev: device
4943  * @iter: list_head ** of the current position
4944  *
4945  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4946  * list, starting from iter position. The caller must hold RCU read lock.
4947  */
4948 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4949                                         struct list_head **iter)
4950 {
4951         struct netdev_adjacent *lower;
4952
4953         WARN_ON_ONCE(!rcu_read_lock_held());
4954
4955         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4956
4957         if (&lower->list == &dev->adj_list.lower)
4958                 return NULL;
4959
4960         *iter = &lower->list;
4961
4962         return lower->private;
4963 }
4964 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4965
4966 /**
4967  * netdev_lower_get_next - Get the next device from the lower neighbour
4968  *                         list
4969  * @dev: device
4970  * @iter: list_head ** of the current position
4971  *
4972  * Gets the next netdev_adjacent from the dev's lower neighbour
4973  * list, starting from iter position. The caller must hold RTNL lock or
4974  * its own locking that guarantees that the neighbour lower
4975  * list will remain unchainged.
4976  */
4977 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4978 {
4979         struct netdev_adjacent *lower;
4980
4981         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4982
4983         if (&lower->list == &dev->adj_list.lower)
4984                 return NULL;
4985
4986         *iter = &lower->list;
4987
4988         return lower->dev;
4989 }
4990 EXPORT_SYMBOL(netdev_lower_get_next);
4991
4992 /**
4993  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4994  *                                     lower neighbour list, RCU
4995  *                                     variant
4996  * @dev: device
4997  *
4998  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4999  * list. The caller must hold RCU read lock.
5000  */
5001 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5002 {
5003         struct netdev_adjacent *lower;
5004
5005         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5006                         struct netdev_adjacent, list);
5007         if (lower)
5008                 return lower->private;
5009         return NULL;
5010 }
5011 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5012
5013 /**
5014  * netdev_master_upper_dev_get_rcu - Get master upper device
5015  * @dev: device
5016  *
5017  * Find a master upper device and return pointer to it or NULL in case
5018  * it's not there. The caller must hold the RCU read lock.
5019  */
5020 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5021 {
5022         struct netdev_adjacent *upper;
5023
5024         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5025                                        struct netdev_adjacent, list);
5026         if (upper && likely(upper->master))
5027                 return upper->dev;
5028         return NULL;
5029 }
5030 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5031
5032 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5033                               struct net_device *adj_dev,
5034                               struct list_head *dev_list)
5035 {
5036         char linkname[IFNAMSIZ+7];
5037         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5038                 "upper_%s" : "lower_%s", adj_dev->name);
5039         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5040                                  linkname);
5041 }
5042 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5043                                char *name,
5044                                struct list_head *dev_list)
5045 {
5046         char linkname[IFNAMSIZ+7];
5047         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5048                 "upper_%s" : "lower_%s", name);
5049         sysfs_remove_link(&(dev->dev.kobj), linkname);
5050 }
5051
5052 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5053                                                  struct net_device *adj_dev,
5054                                                  struct list_head *dev_list)
5055 {
5056         return (dev_list == &dev->adj_list.upper ||
5057                 dev_list == &dev->adj_list.lower) &&
5058                 net_eq(dev_net(dev), dev_net(adj_dev));
5059 }
5060
5061 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5062                                         struct net_device *adj_dev,
5063                                         struct list_head *dev_list,
5064                                         void *private, bool master)
5065 {
5066         struct netdev_adjacent *adj;
5067         int ret;
5068
5069         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5070
5071         if (adj) {
5072                 adj->ref_nr++;
5073                 return 0;
5074         }
5075
5076         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5077         if (!adj)
5078                 return -ENOMEM;
5079
5080         adj->dev = adj_dev;
5081         adj->master = master;
5082         adj->ref_nr = 1;
5083         adj->private = private;
5084         dev_hold(adj_dev);
5085
5086         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5087                  adj_dev->name, dev->name, adj_dev->name);
5088
5089         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5090                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5091                 if (ret)
5092                         goto free_adj;
5093         }
5094
5095         /* Ensure that master link is always the first item in list. */
5096         if (master) {
5097                 ret = sysfs_create_link(&(dev->dev.kobj),
5098                                         &(adj_dev->dev.kobj), "master");
5099                 if (ret)
5100                         goto remove_symlinks;
5101
5102                 list_add_rcu(&adj->list, dev_list);
5103         } else {
5104                 list_add_tail_rcu(&adj->list, dev_list);
5105         }
5106
5107         return 0;
5108
5109 remove_symlinks:
5110         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5111                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5112 free_adj:
5113         kfree(adj);
5114         dev_put(adj_dev);
5115
5116         return ret;
5117 }
5118
5119 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5120                                          struct net_device *adj_dev,
5121                                          struct list_head *dev_list)
5122 {
5123         struct netdev_adjacent *adj;
5124
5125         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5126
5127         if (!adj) {
5128                 pr_err("tried to remove device %s from %s\n",
5129                        dev->name, adj_dev->name);
5130                 BUG();
5131         }
5132
5133         if (adj->ref_nr > 1) {
5134                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5135                          adj->ref_nr-1);
5136                 adj->ref_nr--;
5137                 return;
5138         }
5139
5140         if (adj->master)
5141                 sysfs_remove_link(&(dev->dev.kobj), "master");
5142
5143         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5144                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5145
5146         list_del_rcu(&adj->list);
5147         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5148                  adj_dev->name, dev->name, adj_dev->name);
5149         dev_put(adj_dev);
5150         kfree_rcu(adj, rcu);
5151 }
5152
5153 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5154                                             struct net_device *upper_dev,
5155                                             struct list_head *up_list,
5156                                             struct list_head *down_list,
5157                                             void *private, bool master)
5158 {
5159         int ret;
5160
5161         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5162                                            master);
5163         if (ret)
5164                 return ret;
5165
5166         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5167                                            false);
5168         if (ret) {
5169                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5170                 return ret;
5171         }
5172
5173         return 0;
5174 }
5175
5176 static int __netdev_adjacent_dev_link(struct net_device *dev,
5177                                       struct net_device *upper_dev)
5178 {
5179         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5180                                                 &dev->all_adj_list.upper,
5181                                                 &upper_dev->all_adj_list.lower,
5182                                                 NULL, false);
5183 }
5184
5185 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5186                                                struct net_device *upper_dev,
5187                                                struct list_head *up_list,
5188                                                struct list_head *down_list)
5189 {
5190         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5191         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5192 }
5193
5194 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5195                                          struct net_device *upper_dev)
5196 {
5197         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5198                                            &dev->all_adj_list.upper,
5199                                            &upper_dev->all_adj_list.lower);
5200 }
5201
5202 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5203                                                 struct net_device *upper_dev,
5204                                                 void *private, bool master)
5205 {
5206         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5207
5208         if (ret)
5209                 return ret;
5210
5211         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5212                                                &dev->adj_list.upper,
5213                                                &upper_dev->adj_list.lower,
5214                                                private, master);
5215         if (ret) {
5216                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5217                 return ret;
5218         }
5219
5220         return 0;
5221 }
5222
5223 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5224                                                    struct net_device *upper_dev)
5225 {
5226         __netdev_adjacent_dev_unlink(dev, upper_dev);
5227         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5228                                            &dev->adj_list.upper,
5229                                            &upper_dev->adj_list.lower);
5230 }
5231
5232 static int __netdev_upper_dev_link(struct net_device *dev,
5233                                    struct net_device *upper_dev, bool master,
5234                                    void *private)
5235 {
5236         struct netdev_adjacent *i, *j, *to_i, *to_j;
5237         int ret = 0;
5238
5239         ASSERT_RTNL();
5240
5241         if (dev == upper_dev)
5242                 return -EBUSY;
5243
5244         /* To prevent loops, check if dev is not upper device to upper_dev. */
5245         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5246                 return -EBUSY;
5247
5248         if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5249                 return -EEXIST;
5250
5251         if (master && netdev_master_upper_dev_get(dev))
5252                 return -EBUSY;
5253
5254         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5255                                                    master);
5256         if (ret)
5257                 return ret;
5258
5259         /* Now that we linked these devs, make all the upper_dev's
5260          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5261          * versa, and don't forget the devices itself. All of these
5262          * links are non-neighbours.
5263          */
5264         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5265                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5266                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5267                                  i->dev->name, j->dev->name);
5268                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5269                         if (ret)
5270                                 goto rollback_mesh;
5271                 }
5272         }
5273
5274         /* add dev to every upper_dev's upper device */
5275         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5276                 pr_debug("linking %s's upper device %s with %s\n",
5277                          upper_dev->name, i->dev->name, dev->name);
5278                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5279                 if (ret)
5280                         goto rollback_upper_mesh;
5281         }
5282
5283         /* add upper_dev to every dev's lower device */
5284         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5285                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5286                          i->dev->name, upper_dev->name);
5287                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5288                 if (ret)
5289                         goto rollback_lower_mesh;
5290         }
5291
5292         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5293         return 0;
5294
5295 rollback_lower_mesh:
5296         to_i = i;
5297         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5298                 if (i == to_i)
5299                         break;
5300                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5301         }
5302
5303         i = NULL;
5304
5305 rollback_upper_mesh:
5306         to_i = i;
5307         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5308                 if (i == to_i)
5309                         break;
5310                 __netdev_adjacent_dev_unlink(dev, i->dev);
5311         }
5312
5313         i = j = NULL;
5314
5315 rollback_mesh:
5316         to_i = i;
5317         to_j = j;
5318         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5319                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5320                         if (i == to_i && j == to_j)
5321                                 break;
5322                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5323                 }
5324                 if (i == to_i)
5325                         break;
5326         }
5327
5328         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5329
5330         return ret;
5331 }
5332
5333 /**
5334  * netdev_upper_dev_link - Add a link to the upper device
5335  * @dev: device
5336  * @upper_dev: new upper device
5337  *
5338  * Adds a link to device which is upper to this one. The caller must hold
5339  * the RTNL lock. On a failure a negative errno code is returned.
5340  * On success the reference counts are adjusted and the function
5341  * returns zero.
5342  */
5343 int netdev_upper_dev_link(struct net_device *dev,
5344                           struct net_device *upper_dev)
5345 {
5346         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5347 }
5348 EXPORT_SYMBOL(netdev_upper_dev_link);
5349
5350 /**
5351  * netdev_master_upper_dev_link - Add a master link to the upper device
5352  * @dev: device
5353  * @upper_dev: new upper device
5354  *
5355  * Adds a link to device which is upper to this one. In this case, only
5356  * one master upper device can be linked, although other non-master devices
5357  * might be linked as well. The caller must hold the RTNL lock.
5358  * On a failure a negative errno code is returned. On success the reference
5359  * counts are adjusted and the function returns zero.
5360  */
5361 int netdev_master_upper_dev_link(struct net_device *dev,
5362                                  struct net_device *upper_dev)
5363 {
5364         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5365 }
5366 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5367
5368 int netdev_master_upper_dev_link_private(struct net_device *dev,
5369                                          struct net_device *upper_dev,
5370                                          void *private)
5371 {
5372         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5373 }
5374 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5375
5376 /**
5377  * netdev_upper_dev_unlink - Removes a link to upper device
5378  * @dev: device
5379  * @upper_dev: new upper device
5380  *
5381  * Removes a link to device which is upper to this one. The caller must hold
5382  * the RTNL lock.
5383  */
5384 void netdev_upper_dev_unlink(struct net_device *dev,
5385                              struct net_device *upper_dev)
5386 {
5387         struct netdev_adjacent *i, *j;
5388         ASSERT_RTNL();
5389
5390         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5391
5392         /* Here is the tricky part. We must remove all dev's lower
5393          * devices from all upper_dev's upper devices and vice
5394          * versa, to maintain the graph relationship.
5395          */
5396         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5397                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5398                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5399
5400         /* remove also the devices itself from lower/upper device
5401          * list
5402          */
5403         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5404                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5405
5406         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5407                 __netdev_adjacent_dev_unlink(dev, i->dev);
5408
5409         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5410 }
5411 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5412
5413 /**
5414  * netdev_bonding_info_change - Dispatch event about slave change
5415  * @dev: device
5416  * @bonding_info: info to dispatch
5417  *
5418  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5419  * The caller must hold the RTNL lock.
5420  */
5421 void netdev_bonding_info_change(struct net_device *dev,
5422                                 struct netdev_bonding_info *bonding_info)
5423 {
5424         struct netdev_notifier_bonding_info     info;
5425
5426         memcpy(&info.bonding_info, bonding_info,
5427                sizeof(struct netdev_bonding_info));
5428         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5429                                       &info.info);
5430 }
5431 EXPORT_SYMBOL(netdev_bonding_info_change);
5432
5433 static void netdev_adjacent_add_links(struct net_device *dev)
5434 {
5435         struct netdev_adjacent *iter;
5436
5437         struct net *net = dev_net(dev);
5438
5439         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5440                 if (!net_eq(net,dev_net(iter->dev)))
5441                         continue;
5442                 netdev_adjacent_sysfs_add(iter->dev, dev,
5443                                           &iter->dev->adj_list.lower);
5444                 netdev_adjacent_sysfs_add(dev, iter->dev,
5445                                           &dev->adj_list.upper);
5446         }
5447
5448         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5449                 if (!net_eq(net,dev_net(iter->dev)))
5450                         continue;
5451                 netdev_adjacent_sysfs_add(iter->dev, dev,
5452                                           &iter->dev->adj_list.upper);
5453                 netdev_adjacent_sysfs_add(dev, iter->dev,
5454                                           &dev->adj_list.lower);
5455         }
5456 }
5457
5458 static void netdev_adjacent_del_links(struct net_device *dev)
5459 {
5460         struct netdev_adjacent *iter;
5461
5462         struct net *net = dev_net(dev);
5463
5464         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5465                 if (!net_eq(net,dev_net(iter->dev)))
5466                         continue;
5467                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5468                                           &iter->dev->adj_list.lower);
5469                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5470                                           &dev->adj_list.upper);
5471         }
5472
5473         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5474                 if (!net_eq(net,dev_net(iter->dev)))
5475                         continue;
5476                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5477                                           &iter->dev->adj_list.upper);
5478                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5479                                           &dev->adj_list.lower);
5480         }
5481 }
5482
5483 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5484 {
5485         struct netdev_adjacent *iter;
5486
5487         struct net *net = dev_net(dev);
5488
5489         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5490                 if (!net_eq(net,dev_net(iter->dev)))
5491                         continue;
5492                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5493                                           &iter->dev->adj_list.lower);
5494                 netdev_adjacent_sysfs_add(iter->dev, dev,
5495                                           &iter->dev->adj_list.lower);
5496         }
5497
5498         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5499                 if (!net_eq(net,dev_net(iter->dev)))
5500                         continue;
5501                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5502                                           &iter->dev->adj_list.upper);
5503                 netdev_adjacent_sysfs_add(iter->dev, dev,
5504                                           &iter->dev->adj_list.upper);
5505         }
5506 }
5507
5508 void *netdev_lower_dev_get_private(struct net_device *dev,
5509                                    struct net_device *lower_dev)
5510 {
5511         struct netdev_adjacent *lower;
5512
5513         if (!lower_dev)
5514                 return NULL;
5515         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5516         if (!lower)
5517                 return NULL;
5518
5519         return lower->private;
5520 }
5521 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5522
5523
5524 int dev_get_nest_level(struct net_device *dev,
5525                        bool (*type_check)(struct net_device *dev))
5526 {
5527         struct net_device *lower = NULL;
5528         struct list_head *iter;
5529         int max_nest = -1;
5530         int nest;
5531
5532         ASSERT_RTNL();
5533
5534         netdev_for_each_lower_dev(dev, lower, iter) {
5535                 nest = dev_get_nest_level(lower, type_check);
5536                 if (max_nest < nest)
5537                         max_nest = nest;
5538         }
5539
5540         if (type_check(dev))
5541                 max_nest++;
5542
5543         return max_nest;
5544 }
5545 EXPORT_SYMBOL(dev_get_nest_level);
5546
5547 static void dev_change_rx_flags(struct net_device *dev, int flags)
5548 {
5549         const struct net_device_ops *ops = dev->netdev_ops;
5550
5551         if (ops->ndo_change_rx_flags)
5552                 ops->ndo_change_rx_flags(dev, flags);
5553 }
5554
5555 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5556 {
5557         unsigned int old_flags = dev->flags;
5558         kuid_t uid;
5559         kgid_t gid;
5560
5561         ASSERT_RTNL();
5562
5563         dev->flags |= IFF_PROMISC;
5564         dev->promiscuity += inc;
5565         if (dev->promiscuity == 0) {
5566                 /*
5567                  * Avoid overflow.
5568                  * If inc causes overflow, untouch promisc and return error.
5569                  */
5570                 if (inc < 0)
5571                         dev->flags &= ~IFF_PROMISC;
5572                 else {
5573                         dev->promiscuity -= inc;
5574                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5575                                 dev->name);
5576                         return -EOVERFLOW;
5577                 }
5578         }
5579         if (dev->flags != old_flags) {
5580                 pr_info("device %s %s promiscuous mode\n",
5581                         dev->name,
5582                         dev->flags & IFF_PROMISC ? "entered" : "left");
5583                 if (audit_enabled) {
5584                         current_uid_gid(&uid, &gid);
5585                         audit_log(current->audit_context, GFP_ATOMIC,
5586                                 AUDIT_ANOM_PROMISCUOUS,
5587                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5588                                 dev->name, (dev->flags & IFF_PROMISC),
5589                                 (old_flags & IFF_PROMISC),
5590                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5591                                 from_kuid(&init_user_ns, uid),
5592                                 from_kgid(&init_user_ns, gid),
5593                                 audit_get_sessionid(current));
5594                 }
5595
5596                 dev_change_rx_flags(dev, IFF_PROMISC);
5597         }
5598         if (notify)
5599                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5600         return 0;
5601 }
5602
5603 /**
5604  *      dev_set_promiscuity     - update promiscuity count on a device
5605  *      @dev: device
5606  *      @inc: modifier
5607  *
5608  *      Add or remove promiscuity from a device. While the count in the device
5609  *      remains above zero the interface remains promiscuous. Once it hits zero
5610  *      the device reverts back to normal filtering operation. A negative inc
5611  *      value is used to drop promiscuity on the device.
5612  *      Return 0 if successful or a negative errno code on error.
5613  */
5614 int dev_set_promiscuity(struct net_device *dev, int inc)
5615 {
5616         unsigned int old_flags = dev->flags;
5617         int err;
5618
5619         err = __dev_set_promiscuity(dev, inc, true);
5620         if (err < 0)
5621                 return err;
5622         if (dev->flags != old_flags)
5623                 dev_set_rx_mode(dev);
5624         return err;
5625 }
5626 EXPORT_SYMBOL(dev_set_promiscuity);
5627
5628 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5629 {
5630         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5631
5632         ASSERT_RTNL();
5633
5634         dev->flags |= IFF_ALLMULTI;
5635         dev->allmulti += inc;
5636         if (dev->allmulti == 0) {
5637                 /*
5638                  * Avoid overflow.
5639                  * If inc causes overflow, untouch allmulti and return error.
5640                  */
5641                 if (inc < 0)
5642                         dev->flags &= ~IFF_ALLMULTI;
5643                 else {
5644                         dev->allmulti -= inc;
5645                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5646                                 dev->name);
5647                         return -EOVERFLOW;
5648                 }
5649         }
5650         if (dev->flags ^ old_flags) {
5651                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5652                 dev_set_rx_mode(dev);
5653                 if (notify)
5654                         __dev_notify_flags(dev, old_flags,
5655                                            dev->gflags ^ old_gflags);
5656         }
5657         return 0;
5658 }
5659
5660 /**
5661  *      dev_set_allmulti        - update allmulti count on a device
5662  *      @dev: device
5663  *      @inc: modifier
5664  *
5665  *      Add or remove reception of all multicast frames to a device. While the
5666  *      count in the device remains above zero the interface remains listening
5667  *      to all interfaces. Once it hits zero the device reverts back to normal
5668  *      filtering operation. A negative @inc value is used to drop the counter
5669  *      when releasing a resource needing all multicasts.
5670  *      Return 0 if successful or a negative errno code on error.
5671  */
5672
5673 int dev_set_allmulti(struct net_device *dev, int inc)
5674 {
5675         return __dev_set_allmulti(dev, inc, true);
5676 }
5677 EXPORT_SYMBOL(dev_set_allmulti);
5678
5679 /*
5680  *      Upload unicast and multicast address lists to device and
5681  *      configure RX filtering. When the device doesn't support unicast
5682  *      filtering it is put in promiscuous mode while unicast addresses
5683  *      are present.
5684  */
5685 void __dev_set_rx_mode(struct net_device *dev)
5686 {
5687         const struct net_device_ops *ops = dev->netdev_ops;
5688
5689         /* dev_open will call this function so the list will stay sane. */
5690         if (!(dev->flags&IFF_UP))
5691                 return;
5692
5693         if (!netif_device_present(dev))
5694                 return;
5695
5696         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5697                 /* Unicast addresses changes may only happen under the rtnl,
5698                  * therefore calling __dev_set_promiscuity here is safe.
5699                  */
5700                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5701                         __dev_set_promiscuity(dev, 1, false);
5702                         dev->uc_promisc = true;
5703                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5704                         __dev_set_promiscuity(dev, -1, false);
5705                         dev->uc_promisc = false;
5706                 }
5707         }
5708
5709         if (ops->ndo_set_rx_mode)
5710                 ops->ndo_set_rx_mode(dev);
5711 }
5712
5713 void dev_set_rx_mode(struct net_device *dev)
5714 {
5715         netif_addr_lock_bh(dev);
5716         __dev_set_rx_mode(dev);
5717         netif_addr_unlock_bh(dev);
5718 }
5719
5720 /**
5721  *      dev_get_flags - get flags reported to userspace
5722  *      @dev: device
5723  *
5724  *      Get the combination of flag bits exported through APIs to userspace.
5725  */
5726 unsigned int dev_get_flags(const struct net_device *dev)
5727 {
5728         unsigned int flags;
5729
5730         flags = (dev->flags & ~(IFF_PROMISC |
5731                                 IFF_ALLMULTI |
5732                                 IFF_RUNNING |
5733                                 IFF_LOWER_UP |
5734                                 IFF_DORMANT)) |
5735                 (dev->gflags & (IFF_PROMISC |
5736                                 IFF_ALLMULTI));
5737
5738         if (netif_running(dev)) {
5739                 if (netif_oper_up(dev))
5740                         flags |= IFF_RUNNING;
5741                 if (netif_carrier_ok(dev))
5742                         flags |= IFF_LOWER_UP;
5743                 if (netif_dormant(dev))
5744                         flags |= IFF_DORMANT;
5745         }
5746
5747         return flags;
5748 }
5749 EXPORT_SYMBOL(dev_get_flags);
5750
5751 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5752 {
5753         unsigned int old_flags = dev->flags;
5754         int ret;
5755
5756         ASSERT_RTNL();
5757
5758         /*
5759          *      Set the flags on our device.
5760          */
5761
5762         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5763                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5764                                IFF_AUTOMEDIA)) |
5765                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5766                                     IFF_ALLMULTI));
5767
5768         /*
5769          *      Load in the correct multicast list now the flags have changed.
5770          */
5771
5772         if ((old_flags ^ flags) & IFF_MULTICAST)
5773                 dev_change_rx_flags(dev, IFF_MULTICAST);
5774
5775         dev_set_rx_mode(dev);
5776
5777         /*
5778          *      Have we downed the interface. We handle IFF_UP ourselves
5779          *      according to user attempts to set it, rather than blindly
5780          *      setting it.
5781          */
5782
5783         ret = 0;
5784         if ((old_flags ^ flags) & IFF_UP)
5785                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5786
5787         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5788                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5789                 unsigned int old_flags = dev->flags;
5790
5791                 dev->gflags ^= IFF_PROMISC;
5792
5793                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5794                         if (dev->flags != old_flags)
5795                                 dev_set_rx_mode(dev);
5796         }
5797
5798         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5799            is important. Some (broken) drivers set IFF_PROMISC, when
5800            IFF_ALLMULTI is requested not asking us and not reporting.
5801          */
5802         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5803                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5804
5805                 dev->gflags ^= IFF_ALLMULTI;
5806                 __dev_set_allmulti(dev, inc, false);
5807         }
5808
5809         return ret;
5810 }
5811
5812 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5813                         unsigned int gchanges)
5814 {
5815         unsigned int changes = dev->flags ^ old_flags;
5816
5817         if (gchanges)
5818                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5819
5820         if (changes & IFF_UP) {
5821                 if (dev->flags & IFF_UP)
5822                         call_netdevice_notifiers(NETDEV_UP, dev);
5823                 else
5824                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5825         }
5826
5827         if (dev->flags & IFF_UP &&
5828             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5829                 struct netdev_notifier_change_info change_info;
5830
5831                 change_info.flags_changed = changes;
5832                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5833                                               &change_info.info);
5834         }
5835 }
5836
5837 /**
5838  *      dev_change_flags - change device settings
5839  *      @dev: device
5840  *      @flags: device state flags
5841  *
5842  *      Change settings on device based state flags. The flags are
5843  *      in the userspace exported format.
5844  */
5845 int dev_change_flags(struct net_device *dev, unsigned int flags)
5846 {
5847         int ret;
5848         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5849
5850         ret = __dev_change_flags(dev, flags);
5851         if (ret < 0)
5852                 return ret;
5853
5854         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5855         __dev_notify_flags(dev, old_flags, changes);
5856         return ret;
5857 }
5858 EXPORT_SYMBOL(dev_change_flags);
5859
5860 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5861 {
5862         const struct net_device_ops *ops = dev->netdev_ops;
5863
5864         if (ops->ndo_change_mtu)
5865                 return ops->ndo_change_mtu(dev, new_mtu);
5866
5867         dev->mtu = new_mtu;
5868         return 0;
5869 }
5870
5871 /**
5872  *      dev_set_mtu - Change maximum transfer unit
5873  *      @dev: device
5874  *      @new_mtu: new transfer unit
5875  *
5876  *      Change the maximum transfer size of the network device.
5877  */
5878 int dev_set_mtu(struct net_device *dev, int new_mtu)
5879 {
5880         int err, orig_mtu;
5881
5882         if (new_mtu == dev->mtu)
5883                 return 0;
5884
5885         /*      MTU must be positive.    */
5886         if (new_mtu < 0)
5887                 return -EINVAL;
5888
5889         if (!netif_device_present(dev))
5890                 return -ENODEV;
5891
5892         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5893         err = notifier_to_errno(err);
5894         if (err)
5895                 return err;
5896
5897         orig_mtu = dev->mtu;
5898         err = __dev_set_mtu(dev, new_mtu);
5899
5900         if (!err) {
5901                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5902                 err = notifier_to_errno(err);
5903                 if (err) {
5904                         /* setting mtu back and notifying everyone again,
5905                          * so that they have a chance to revert changes.
5906                          */
5907                         __dev_set_mtu(dev, orig_mtu);
5908                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5909                 }
5910         }
5911         return err;
5912 }
5913 EXPORT_SYMBOL(dev_set_mtu);
5914
5915 /**
5916  *      dev_set_group - Change group this device belongs to
5917  *      @dev: device
5918  *      @new_group: group this device should belong to
5919  */
5920 void dev_set_group(struct net_device *dev, int new_group)
5921 {
5922         dev->group = new_group;
5923 }
5924 EXPORT_SYMBOL(dev_set_group);
5925
5926 /**
5927  *      dev_set_mac_address - Change Media Access Control Address
5928  *      @dev: device
5929  *      @sa: new address
5930  *
5931  *      Change the hardware (MAC) address of the device
5932  */
5933 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5934 {
5935         const struct net_device_ops *ops = dev->netdev_ops;
5936         int err;
5937
5938         if (!ops->ndo_set_mac_address)
5939                 return -EOPNOTSUPP;
5940         if (sa->sa_family != dev->type)
5941                 return -EINVAL;
5942         if (!netif_device_present(dev))
5943                 return -ENODEV;
5944         err = ops->ndo_set_mac_address(dev, sa);
5945         if (err)
5946                 return err;
5947         dev->addr_assign_type = NET_ADDR_SET;
5948         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5949         add_device_randomness(dev->dev_addr, dev->addr_len);
5950         return 0;
5951 }
5952 EXPORT_SYMBOL(dev_set_mac_address);
5953
5954 /**
5955  *      dev_change_carrier - Change device carrier
5956  *      @dev: device
5957  *      @new_carrier: new value
5958  *
5959  *      Change device carrier
5960  */
5961 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5962 {
5963         const struct net_device_ops *ops = dev->netdev_ops;
5964
5965         if (!ops->ndo_change_carrier)
5966                 return -EOPNOTSUPP;
5967         if (!netif_device_present(dev))
5968                 return -ENODEV;
5969         return ops->ndo_change_carrier(dev, new_carrier);
5970 }
5971 EXPORT_SYMBOL(dev_change_carrier);
5972
5973 /**
5974  *      dev_get_phys_port_id - Get device physical port ID
5975  *      @dev: device
5976  *      @ppid: port ID
5977  *
5978  *      Get device physical port ID
5979  */
5980 int dev_get_phys_port_id(struct net_device *dev,
5981                          struct netdev_phys_item_id *ppid)
5982 {
5983         const struct net_device_ops *ops = dev->netdev_ops;
5984
5985         if (!ops->ndo_get_phys_port_id)
5986                 return -EOPNOTSUPP;
5987         return ops->ndo_get_phys_port_id(dev, ppid);
5988 }
5989 EXPORT_SYMBOL(dev_get_phys_port_id);
5990
5991 /**
5992  *      dev_get_phys_port_name - Get device physical port name
5993  *      @dev: device
5994  *      @name: port name
5995  *
5996  *      Get device physical port name
5997  */
5998 int dev_get_phys_port_name(struct net_device *dev,
5999                            char *name, size_t len)
6000 {
6001         const struct net_device_ops *ops = dev->netdev_ops;
6002
6003         if (!ops->ndo_get_phys_port_name)
6004                 return -EOPNOTSUPP;
6005         return ops->ndo_get_phys_port_name(dev, name, len);
6006 }
6007 EXPORT_SYMBOL(dev_get_phys_port_name);
6008
6009 /**
6010  *      dev_new_index   -       allocate an ifindex
6011  *      @net: the applicable net namespace
6012  *
6013  *      Returns a suitable unique value for a new device interface
6014  *      number.  The caller must hold the rtnl semaphore or the
6015  *      dev_base_lock to be sure it remains unique.
6016  */
6017 static int dev_new_index(struct net *net)
6018 {
6019         int ifindex = net->ifindex;
6020         for (;;) {
6021                 if (++ifindex <= 0)
6022                         ifindex = 1;
6023                 if (!__dev_get_by_index(net, ifindex))
6024                         return net->ifindex = ifindex;
6025         }
6026 }
6027
6028 /* Delayed registration/unregisteration */
6029 static LIST_HEAD(net_todo_list);
6030 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6031
6032 static void net_set_todo(struct net_device *dev)
6033 {
6034         list_add_tail(&dev->todo_list, &net_todo_list);
6035         dev_net(dev)->dev_unreg_count++;
6036 }
6037
6038 static void rollback_registered_many(struct list_head *head)
6039 {
6040         struct net_device *dev, *tmp;
6041         LIST_HEAD(close_head);
6042
6043         BUG_ON(dev_boot_phase);
6044         ASSERT_RTNL();
6045
6046         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6047                 /* Some devices call without registering
6048                  * for initialization unwind. Remove those
6049                  * devices and proceed with the remaining.
6050                  */
6051                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6052                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6053                                  dev->name, dev);
6054
6055                         WARN_ON(1);
6056                         list_del(&dev->unreg_list);
6057                         continue;
6058                 }
6059                 dev->dismantle = true;
6060                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6061         }
6062
6063         /* If device is running, close it first. */
6064         list_for_each_entry(dev, head, unreg_list)
6065                 list_add_tail(&dev->close_list, &close_head);
6066         dev_close_many(&close_head, true);
6067
6068         list_for_each_entry(dev, head, unreg_list) {
6069                 /* And unlink it from device chain. */
6070                 unlist_netdevice(dev);
6071
6072                 dev->reg_state = NETREG_UNREGISTERING;
6073         }
6074
6075         synchronize_net();
6076
6077         list_for_each_entry(dev, head, unreg_list) {
6078                 struct sk_buff *skb = NULL;
6079
6080                 /* Shutdown queueing discipline. */
6081                 dev_shutdown(dev);
6082
6083
6084                 /* Notify protocols, that we are about to destroy
6085                    this device. They should clean all the things.
6086                 */
6087                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6088
6089                 if (!dev->rtnl_link_ops ||
6090                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6091                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6092                                                      GFP_KERNEL);
6093
6094                 /*
6095                  *      Flush the unicast and multicast chains
6096                  */
6097                 dev_uc_flush(dev);
6098                 dev_mc_flush(dev);
6099
6100                 if (dev->netdev_ops->ndo_uninit)
6101                         dev->netdev_ops->ndo_uninit(dev);
6102
6103                 if (skb)
6104                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6105
6106                 /* Notifier chain MUST detach us all upper devices. */
6107                 WARN_ON(netdev_has_any_upper_dev(dev));
6108
6109                 /* Remove entries from kobject tree */
6110                 netdev_unregister_kobject(dev);
6111 #ifdef CONFIG_XPS
6112                 /* Remove XPS queueing entries */
6113                 netif_reset_xps_queues_gt(dev, 0);
6114 #endif
6115         }
6116
6117         synchronize_net();
6118
6119         list_for_each_entry(dev, head, unreg_list)
6120                 dev_put(dev);
6121 }
6122
6123 static void rollback_registered(struct net_device *dev)
6124 {
6125         LIST_HEAD(single);
6126
6127         list_add(&dev->unreg_list, &single);
6128         rollback_registered_many(&single);
6129         list_del(&single);
6130 }
6131
6132 static netdev_features_t netdev_fix_features(struct net_device *dev,
6133         netdev_features_t features)
6134 {
6135         /* Fix illegal checksum combinations */
6136         if ((features & NETIF_F_HW_CSUM) &&
6137             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6138                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6139                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6140         }
6141
6142         /* TSO requires that SG is present as well. */
6143         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6144                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6145                 features &= ~NETIF_F_ALL_TSO;
6146         }
6147
6148         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6149                                         !(features & NETIF_F_IP_CSUM)) {
6150                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6151                 features &= ~NETIF_F_TSO;
6152                 features &= ~NETIF_F_TSO_ECN;
6153         }
6154
6155         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6156                                          !(features & NETIF_F_IPV6_CSUM)) {
6157                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6158                 features &= ~NETIF_F_TSO6;
6159         }
6160
6161         /* TSO ECN requires that TSO is present as well. */
6162         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6163                 features &= ~NETIF_F_TSO_ECN;
6164
6165         /* Software GSO depends on SG. */
6166         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6167                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6168                 features &= ~NETIF_F_GSO;
6169         }
6170
6171         /* UFO needs SG and checksumming */
6172         if (features & NETIF_F_UFO) {
6173                 /* maybe split UFO into V4 and V6? */
6174                 if (!((features & NETIF_F_GEN_CSUM) ||
6175                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6176                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6177                         netdev_dbg(dev,
6178                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6179                         features &= ~NETIF_F_UFO;
6180                 }
6181
6182                 if (!(features & NETIF_F_SG)) {
6183                         netdev_dbg(dev,
6184                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6185                         features &= ~NETIF_F_UFO;
6186                 }
6187         }
6188
6189 #ifdef CONFIG_NET_RX_BUSY_POLL
6190         if (dev->netdev_ops->ndo_busy_poll)
6191                 features |= NETIF_F_BUSY_POLL;
6192         else
6193 #endif
6194                 features &= ~NETIF_F_BUSY_POLL;
6195
6196         return features;
6197 }
6198
6199 int __netdev_update_features(struct net_device *dev)
6200 {
6201         netdev_features_t features;
6202         int err = 0;
6203
6204         ASSERT_RTNL();
6205
6206         features = netdev_get_wanted_features(dev);
6207
6208         if (dev->netdev_ops->ndo_fix_features)
6209                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6210
6211         /* driver might be less strict about feature dependencies */
6212         features = netdev_fix_features(dev, features);
6213
6214         if (dev->features == features)
6215                 return 0;
6216
6217         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6218                 &dev->features, &features);
6219
6220         if (dev->netdev_ops->ndo_set_features)
6221                 err = dev->netdev_ops->ndo_set_features(dev, features);
6222
6223         if (unlikely(err < 0)) {
6224                 netdev_err(dev,
6225                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6226                         err, &features, &dev->features);
6227                 return -1;
6228         }
6229
6230         if (!err)
6231                 dev->features = features;
6232
6233         return 1;
6234 }
6235
6236 /**
6237  *      netdev_update_features - recalculate device features
6238  *      @dev: the device to check
6239  *
6240  *      Recalculate dev->features set and send notifications if it
6241  *      has changed. Should be called after driver or hardware dependent
6242  *      conditions might have changed that influence the features.
6243  */
6244 void netdev_update_features(struct net_device *dev)
6245 {
6246         if (__netdev_update_features(dev))
6247                 netdev_features_change(dev);
6248 }
6249 EXPORT_SYMBOL(netdev_update_features);
6250
6251 /**
6252  *      netdev_change_features - recalculate device features
6253  *      @dev: the device to check
6254  *
6255  *      Recalculate dev->features set and send notifications even
6256  *      if they have not changed. Should be called instead of
6257  *      netdev_update_features() if also dev->vlan_features might
6258  *      have changed to allow the changes to be propagated to stacked
6259  *      VLAN devices.
6260  */
6261 void netdev_change_features(struct net_device *dev)
6262 {
6263         __netdev_update_features(dev);
6264         netdev_features_change(dev);
6265 }
6266 EXPORT_SYMBOL(netdev_change_features);
6267
6268 /**
6269  *      netif_stacked_transfer_operstate -      transfer operstate
6270  *      @rootdev: the root or lower level device to transfer state from
6271  *      @dev: the device to transfer operstate to
6272  *
6273  *      Transfer operational state from root to device. This is normally
6274  *      called when a stacking relationship exists between the root
6275  *      device and the device(a leaf device).
6276  */
6277 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6278                                         struct net_device *dev)
6279 {
6280         if (rootdev->operstate == IF_OPER_DORMANT)
6281                 netif_dormant_on(dev);
6282         else
6283                 netif_dormant_off(dev);
6284
6285         if (netif_carrier_ok(rootdev)) {
6286                 if (!netif_carrier_ok(dev))
6287                         netif_carrier_on(dev);
6288         } else {
6289                 if (netif_carrier_ok(dev))
6290                         netif_carrier_off(dev);
6291         }
6292 }
6293 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6294
6295 #ifdef CONFIG_SYSFS
6296 static int netif_alloc_rx_queues(struct net_device *dev)
6297 {
6298         unsigned int i, count = dev->num_rx_queues;
6299         struct netdev_rx_queue *rx;
6300         size_t sz = count * sizeof(*rx);
6301
6302         BUG_ON(count < 1);
6303
6304         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6305         if (!rx) {
6306                 rx = vzalloc(sz);
6307                 if (!rx)
6308                         return -ENOMEM;
6309         }
6310         dev->_rx = rx;
6311
6312         for (i = 0; i < count; i++)
6313                 rx[i].dev = dev;
6314         return 0;
6315 }
6316 #endif
6317
6318 static void netdev_init_one_queue(struct net_device *dev,
6319                                   struct netdev_queue *queue, void *_unused)
6320 {
6321         /* Initialize queue lock */
6322         spin_lock_init(&queue->_xmit_lock);
6323         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6324         queue->xmit_lock_owner = -1;
6325         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6326         queue->dev = dev;
6327 #ifdef CONFIG_BQL
6328         dql_init(&queue->dql, HZ);
6329 #endif
6330 }
6331
6332 static void netif_free_tx_queues(struct net_device *dev)
6333 {
6334         kvfree(dev->_tx);
6335 }
6336
6337 static int netif_alloc_netdev_queues(struct net_device *dev)
6338 {
6339         unsigned int count = dev->num_tx_queues;
6340         struct netdev_queue *tx;
6341         size_t sz = count * sizeof(*tx);
6342
6343         BUG_ON(count < 1 || count > 0xffff);
6344
6345         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6346         if (!tx) {
6347                 tx = vzalloc(sz);
6348                 if (!tx)
6349                         return -ENOMEM;
6350         }
6351         dev->_tx = tx;
6352
6353         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6354         spin_lock_init(&dev->tx_global_lock);
6355
6356         return 0;
6357 }
6358
6359 /**
6360  *      register_netdevice      - register a network device
6361  *      @dev: device to register
6362  *
6363  *      Take a completed network device structure and add it to the kernel
6364  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6365  *      chain. 0 is returned on success. A negative errno code is returned
6366  *      on a failure to set up the device, or if the name is a duplicate.
6367  *
6368  *      Callers must hold the rtnl semaphore. You may want
6369  *      register_netdev() instead of this.
6370  *
6371  *      BUGS:
6372  *      The locking appears insufficient to guarantee two parallel registers
6373  *      will not get the same name.
6374  */
6375
6376 int register_netdevice(struct net_device *dev)
6377 {
6378         int ret;
6379         struct net *net = dev_net(dev);
6380
6381         BUG_ON(dev_boot_phase);
6382         ASSERT_RTNL();
6383
6384         might_sleep();
6385
6386         /* When net_device's are persistent, this will be fatal. */
6387         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6388         BUG_ON(!net);
6389
6390         spin_lock_init(&dev->addr_list_lock);
6391         netdev_set_addr_lockdep_class(dev);
6392
6393         ret = dev_get_valid_name(net, dev, dev->name);
6394         if (ret < 0)
6395                 goto out;
6396
6397         /* Init, if this function is available */
6398         if (dev->netdev_ops->ndo_init) {
6399                 ret = dev->netdev_ops->ndo_init(dev);
6400                 if (ret) {
6401                         if (ret > 0)
6402                                 ret = -EIO;
6403                         goto out;
6404                 }
6405         }
6406
6407         if (((dev->hw_features | dev->features) &
6408              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6409             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6410              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6411                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6412                 ret = -EINVAL;
6413                 goto err_uninit;
6414         }
6415
6416         ret = -EBUSY;
6417         if (!dev->ifindex)
6418                 dev->ifindex = dev_new_index(net);
6419         else if (__dev_get_by_index(net, dev->ifindex))
6420                 goto err_uninit;
6421
6422         /* Transfer changeable features to wanted_features and enable
6423          * software offloads (GSO and GRO).
6424          */
6425         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6426         dev->features |= NETIF_F_SOFT_FEATURES;
6427         dev->wanted_features = dev->features & dev->hw_features;
6428
6429         if (!(dev->flags & IFF_LOOPBACK)) {
6430                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6431         }
6432
6433         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6434          */
6435         dev->vlan_features |= NETIF_F_HIGHDMA;
6436
6437         /* Make NETIF_F_SG inheritable to tunnel devices.
6438          */
6439         dev->hw_enc_features |= NETIF_F_SG;
6440
6441         /* Make NETIF_F_SG inheritable to MPLS.
6442          */
6443         dev->mpls_features |= NETIF_F_SG;
6444
6445         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6446         ret = notifier_to_errno(ret);
6447         if (ret)
6448                 goto err_uninit;
6449
6450         ret = netdev_register_kobject(dev);
6451         if (ret)
6452                 goto err_uninit;
6453         dev->reg_state = NETREG_REGISTERED;
6454
6455         __netdev_update_features(dev);
6456
6457         /*
6458          *      Default initial state at registry is that the
6459          *      device is present.
6460          */
6461
6462         set_bit(__LINK_STATE_PRESENT, &dev->state);
6463
6464         linkwatch_init_dev(dev);
6465
6466         dev_init_scheduler(dev);
6467         dev_hold(dev);
6468         list_netdevice(dev);
6469         add_device_randomness(dev->dev_addr, dev->addr_len);
6470
6471         /* If the device has permanent device address, driver should
6472          * set dev_addr and also addr_assign_type should be set to
6473          * NET_ADDR_PERM (default value).
6474          */
6475         if (dev->addr_assign_type == NET_ADDR_PERM)
6476                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6477
6478         /* Notify protocols, that a new device appeared. */
6479         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6480         ret = notifier_to_errno(ret);
6481         if (ret) {
6482                 rollback_registered(dev);
6483                 dev->reg_state = NETREG_UNREGISTERED;
6484         }
6485         /*
6486          *      Prevent userspace races by waiting until the network
6487          *      device is fully setup before sending notifications.
6488          */
6489         if (!dev->rtnl_link_ops ||
6490             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6491                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6492
6493 out:
6494         return ret;
6495
6496 err_uninit:
6497         if (dev->netdev_ops->ndo_uninit)
6498                 dev->netdev_ops->ndo_uninit(dev);
6499         goto out;
6500 }
6501 EXPORT_SYMBOL(register_netdevice);
6502
6503 /**
6504  *      init_dummy_netdev       - init a dummy network device for NAPI
6505  *      @dev: device to init
6506  *
6507  *      This takes a network device structure and initialize the minimum
6508  *      amount of fields so it can be used to schedule NAPI polls without
6509  *      registering a full blown interface. This is to be used by drivers
6510  *      that need to tie several hardware interfaces to a single NAPI
6511  *      poll scheduler due to HW limitations.
6512  */
6513 int init_dummy_netdev(struct net_device *dev)
6514 {
6515         /* Clear everything. Note we don't initialize spinlocks
6516          * are they aren't supposed to be taken by any of the
6517          * NAPI code and this dummy netdev is supposed to be
6518          * only ever used for NAPI polls
6519          */
6520         memset(dev, 0, sizeof(struct net_device));
6521
6522         /* make sure we BUG if trying to hit standard
6523          * register/unregister code path
6524          */
6525         dev->reg_state = NETREG_DUMMY;
6526
6527         /* NAPI wants this */
6528         INIT_LIST_HEAD(&dev->napi_list);
6529
6530         /* a dummy interface is started by default */
6531         set_bit(__LINK_STATE_PRESENT, &dev->state);
6532         set_bit(__LINK_STATE_START, &dev->state);
6533
6534         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6535          * because users of this 'device' dont need to change
6536          * its refcount.
6537          */
6538
6539         return 0;
6540 }
6541 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6542
6543
6544 /**
6545  *      register_netdev - register a network device
6546  *      @dev: device to register
6547  *
6548  *      Take a completed network device structure and add it to the kernel
6549  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6550  *      chain. 0 is returned on success. A negative errno code is returned
6551  *      on a failure to set up the device, or if the name is a duplicate.
6552  *
6553  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6554  *      and expands the device name if you passed a format string to
6555  *      alloc_netdev.
6556  */
6557 int register_netdev(struct net_device *dev)
6558 {
6559         int err;
6560
6561         rtnl_lock();
6562         err = register_netdevice(dev);
6563         rtnl_unlock();
6564         return err;
6565 }
6566 EXPORT_SYMBOL(register_netdev);
6567
6568 int netdev_refcnt_read(const struct net_device *dev)
6569 {
6570         int i, refcnt = 0;
6571
6572         for_each_possible_cpu(i)
6573                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6574         return refcnt;
6575 }
6576 EXPORT_SYMBOL(netdev_refcnt_read);
6577
6578 /**
6579  * netdev_wait_allrefs - wait until all references are gone.
6580  * @dev: target net_device
6581  *
6582  * This is called when unregistering network devices.
6583  *
6584  * Any protocol or device that holds a reference should register
6585  * for netdevice notification, and cleanup and put back the
6586  * reference if they receive an UNREGISTER event.
6587  * We can get stuck here if buggy protocols don't correctly
6588  * call dev_put.
6589  */
6590 static void netdev_wait_allrefs(struct net_device *dev)
6591 {
6592         unsigned long rebroadcast_time, warning_time;
6593         int refcnt;
6594
6595         linkwatch_forget_dev(dev);
6596
6597         rebroadcast_time = warning_time = jiffies;
6598         refcnt = netdev_refcnt_read(dev);
6599
6600         while (refcnt != 0) {
6601                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6602                         rtnl_lock();
6603
6604                         /* Rebroadcast unregister notification */
6605                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6606
6607                         __rtnl_unlock();
6608                         rcu_barrier();
6609                         rtnl_lock();
6610
6611                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6612                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6613                                      &dev->state)) {
6614                                 /* We must not have linkwatch events
6615                                  * pending on unregister. If this
6616                                  * happens, we simply run the queue
6617                                  * unscheduled, resulting in a noop
6618                                  * for this device.
6619                                  */
6620                                 linkwatch_run_queue();
6621                         }
6622
6623                         __rtnl_unlock();
6624
6625                         rebroadcast_time = jiffies;
6626                 }
6627
6628                 msleep(250);
6629
6630                 refcnt = netdev_refcnt_read(dev);
6631
6632                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6633                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6634                                  dev->name, refcnt);
6635                         warning_time = jiffies;
6636                 }
6637         }
6638 }
6639
6640 /* The sequence is:
6641  *
6642  *      rtnl_lock();
6643  *      ...
6644  *      register_netdevice(x1);
6645  *      register_netdevice(x2);
6646  *      ...
6647  *      unregister_netdevice(y1);
6648  *      unregister_netdevice(y2);
6649  *      ...
6650  *      rtnl_unlock();
6651  *      free_netdev(y1);
6652  *      free_netdev(y2);
6653  *
6654  * We are invoked by rtnl_unlock().
6655  * This allows us to deal with problems:
6656  * 1) We can delete sysfs objects which invoke hotplug
6657  *    without deadlocking with linkwatch via keventd.
6658  * 2) Since we run with the RTNL semaphore not held, we can sleep
6659  *    safely in order to wait for the netdev refcnt to drop to zero.
6660  *
6661  * We must not return until all unregister events added during
6662  * the interval the lock was held have been completed.
6663  */
6664 void netdev_run_todo(void)
6665 {
6666         struct list_head list;
6667
6668         /* Snapshot list, allow later requests */
6669         list_replace_init(&net_todo_list, &list);
6670
6671         __rtnl_unlock();
6672
6673
6674         /* Wait for rcu callbacks to finish before next phase */
6675         if (!list_empty(&list))
6676                 rcu_barrier();
6677
6678         while (!list_empty(&list)) {
6679                 struct net_device *dev
6680                         = list_first_entry(&list, struct net_device, todo_list);
6681                 list_del(&dev->todo_list);
6682
6683                 rtnl_lock();
6684                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6685                 __rtnl_unlock();
6686
6687                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6688                         pr_err("network todo '%s' but state %d\n",
6689                                dev->name, dev->reg_state);
6690                         dump_stack();
6691                         continue;
6692                 }
6693
6694                 dev->reg_state = NETREG_UNREGISTERED;
6695
6696                 on_each_cpu(flush_backlog, dev, 1);
6697
6698                 netdev_wait_allrefs(dev);
6699
6700                 /* paranoia */
6701                 BUG_ON(netdev_refcnt_read(dev));
6702                 BUG_ON(!list_empty(&dev->ptype_all));
6703                 BUG_ON(!list_empty(&dev->ptype_specific));
6704                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6705                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6706                 WARN_ON(dev->dn_ptr);
6707
6708                 if (dev->destructor)
6709                         dev->destructor(dev);
6710
6711                 /* Report a network device has been unregistered */
6712                 rtnl_lock();
6713                 dev_net(dev)->dev_unreg_count--;
6714                 __rtnl_unlock();
6715                 wake_up(&netdev_unregistering_wq);
6716
6717                 /* Free network device */
6718                 kobject_put(&dev->dev.kobj);
6719         }
6720 }
6721
6722 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6723  * fields in the same order, with only the type differing.
6724  */
6725 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6726                              const struct net_device_stats *netdev_stats)
6727 {
6728 #if BITS_PER_LONG == 64
6729         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6730         memcpy(stats64, netdev_stats, sizeof(*stats64));
6731 #else
6732         size_t i, n = sizeof(*stats64) / sizeof(u64);
6733         const unsigned long *src = (const unsigned long *)netdev_stats;
6734         u64 *dst = (u64 *)stats64;
6735
6736         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6737                      sizeof(*stats64) / sizeof(u64));
6738         for (i = 0; i < n; i++)
6739                 dst[i] = src[i];
6740 #endif
6741 }
6742 EXPORT_SYMBOL(netdev_stats_to_stats64);
6743
6744 /**
6745  *      dev_get_stats   - get network device statistics
6746  *      @dev: device to get statistics from
6747  *      @storage: place to store stats
6748  *
6749  *      Get network statistics from device. Return @storage.
6750  *      The device driver may provide its own method by setting
6751  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6752  *      otherwise the internal statistics structure is used.
6753  */
6754 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6755                                         struct rtnl_link_stats64 *storage)
6756 {
6757         const struct net_device_ops *ops = dev->netdev_ops;
6758
6759         if (ops->ndo_get_stats64) {
6760                 memset(storage, 0, sizeof(*storage));
6761                 ops->ndo_get_stats64(dev, storage);
6762         } else if (ops->ndo_get_stats) {
6763                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6764         } else {
6765                 netdev_stats_to_stats64(storage, &dev->stats);
6766         }
6767         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6768         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6769         return storage;
6770 }
6771 EXPORT_SYMBOL(dev_get_stats);
6772
6773 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6774 {
6775         struct netdev_queue *queue = dev_ingress_queue(dev);
6776
6777 #ifdef CONFIG_NET_CLS_ACT
6778         if (queue)
6779                 return queue;
6780         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6781         if (!queue)
6782                 return NULL;
6783         netdev_init_one_queue(dev, queue, NULL);
6784         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6785         queue->qdisc_sleeping = &noop_qdisc;
6786         rcu_assign_pointer(dev->ingress_queue, queue);
6787 #endif
6788         return queue;
6789 }
6790
6791 static const struct ethtool_ops default_ethtool_ops;
6792
6793 void netdev_set_default_ethtool_ops(struct net_device *dev,
6794                                     const struct ethtool_ops *ops)
6795 {
6796         if (dev->ethtool_ops == &default_ethtool_ops)
6797                 dev->ethtool_ops = ops;
6798 }
6799 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6800
6801 void netdev_freemem(struct net_device *dev)
6802 {
6803         char *addr = (char *)dev - dev->padded;
6804
6805         kvfree(addr);
6806 }
6807
6808 /**
6809  *      alloc_netdev_mqs - allocate network device
6810  *      @sizeof_priv:           size of private data to allocate space for
6811  *      @name:                  device name format string
6812  *      @name_assign_type:      origin of device name
6813  *      @setup:                 callback to initialize device
6814  *      @txqs:                  the number of TX subqueues to allocate
6815  *      @rxqs:                  the number of RX subqueues to allocate
6816  *
6817  *      Allocates a struct net_device with private data area for driver use
6818  *      and performs basic initialization.  Also allocates subqueue structs
6819  *      for each queue on the device.
6820  */
6821 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6822                 unsigned char name_assign_type,
6823                 void (*setup)(struct net_device *),
6824                 unsigned int txqs, unsigned int rxqs)
6825 {
6826         struct net_device *dev;
6827         size_t alloc_size;
6828         struct net_device *p;
6829
6830         BUG_ON(strlen(name) >= sizeof(dev->name));
6831
6832         if (txqs < 1) {
6833                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6834                 return NULL;
6835         }
6836
6837 #ifdef CONFIG_SYSFS
6838         if (rxqs < 1) {
6839                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6840                 return NULL;
6841         }
6842 #endif
6843
6844         alloc_size = sizeof(struct net_device);
6845         if (sizeof_priv) {
6846                 /* ensure 32-byte alignment of private area */
6847                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6848                 alloc_size += sizeof_priv;
6849         }
6850         /* ensure 32-byte alignment of whole construct */
6851         alloc_size += NETDEV_ALIGN - 1;
6852
6853         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6854         if (!p)
6855                 p = vzalloc(alloc_size);
6856         if (!p)
6857                 return NULL;
6858
6859         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6860         dev->padded = (char *)dev - (char *)p;
6861
6862         dev->pcpu_refcnt = alloc_percpu(int);
6863         if (!dev->pcpu_refcnt)
6864                 goto free_dev;
6865
6866         if (dev_addr_init(dev))
6867                 goto free_pcpu;
6868
6869         dev_mc_init(dev);
6870         dev_uc_init(dev);
6871
6872         dev_net_set(dev, &init_net);
6873
6874         dev->gso_max_size = GSO_MAX_SIZE;
6875         dev->gso_max_segs = GSO_MAX_SEGS;
6876         dev->gso_min_segs = 0;
6877
6878         INIT_LIST_HEAD(&dev->napi_list);
6879         INIT_LIST_HEAD(&dev->unreg_list);
6880         INIT_LIST_HEAD(&dev->close_list);
6881         INIT_LIST_HEAD(&dev->link_watch_list);
6882         INIT_LIST_HEAD(&dev->adj_list.upper);
6883         INIT_LIST_HEAD(&dev->adj_list.lower);
6884         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6885         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6886         INIT_LIST_HEAD(&dev->ptype_all);
6887         INIT_LIST_HEAD(&dev->ptype_specific);
6888         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6889         setup(dev);
6890
6891         dev->num_tx_queues = txqs;
6892         dev->real_num_tx_queues = txqs;
6893         if (netif_alloc_netdev_queues(dev))
6894                 goto free_all;
6895
6896 #ifdef CONFIG_SYSFS
6897         dev->num_rx_queues = rxqs;
6898         dev->real_num_rx_queues = rxqs;
6899         if (netif_alloc_rx_queues(dev))
6900                 goto free_all;
6901 #endif
6902
6903         strcpy(dev->name, name);
6904         dev->name_assign_type = name_assign_type;
6905         dev->group = INIT_NETDEV_GROUP;
6906         if (!dev->ethtool_ops)
6907                 dev->ethtool_ops = &default_ethtool_ops;
6908         return dev;
6909
6910 free_all:
6911         free_netdev(dev);
6912         return NULL;
6913
6914 free_pcpu:
6915         free_percpu(dev->pcpu_refcnt);
6916 free_dev:
6917         netdev_freemem(dev);
6918         return NULL;
6919 }
6920 EXPORT_SYMBOL(alloc_netdev_mqs);
6921
6922 /**
6923  *      free_netdev - free network device
6924  *      @dev: device
6925  *
6926  *      This function does the last stage of destroying an allocated device
6927  *      interface. The reference to the device object is released.
6928  *      If this is the last reference then it will be freed.
6929  */
6930 void free_netdev(struct net_device *dev)
6931 {
6932         struct napi_struct *p, *n;
6933
6934         netif_free_tx_queues(dev);
6935 #ifdef CONFIG_SYSFS
6936         kvfree(dev->_rx);
6937 #endif
6938
6939         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6940
6941         /* Flush device addresses */
6942         dev_addr_flush(dev);
6943
6944         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6945                 netif_napi_del(p);
6946
6947         free_percpu(dev->pcpu_refcnt);
6948         dev->pcpu_refcnt = NULL;
6949
6950         /*  Compatibility with error handling in drivers */
6951         if (dev->reg_state == NETREG_UNINITIALIZED) {
6952                 netdev_freemem(dev);
6953                 return;
6954         }
6955
6956         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6957         dev->reg_state = NETREG_RELEASED;
6958
6959         /* will free via device release */
6960         put_device(&dev->dev);
6961 }
6962 EXPORT_SYMBOL(free_netdev);
6963
6964 /**
6965  *      synchronize_net -  Synchronize with packet receive processing
6966  *
6967  *      Wait for packets currently being received to be done.
6968  *      Does not block later packets from starting.
6969  */
6970 void synchronize_net(void)
6971 {
6972         might_sleep();
6973         if (rtnl_is_locked())
6974                 synchronize_rcu_expedited();
6975         else
6976                 synchronize_rcu();
6977 }
6978 EXPORT_SYMBOL(synchronize_net);
6979
6980 /**
6981  *      unregister_netdevice_queue - remove device from the kernel
6982  *      @dev: device
6983  *      @head: list
6984  *
6985  *      This function shuts down a device interface and removes it
6986  *      from the kernel tables.
6987  *      If head not NULL, device is queued to be unregistered later.
6988  *
6989  *      Callers must hold the rtnl semaphore.  You may want
6990  *      unregister_netdev() instead of this.
6991  */
6992
6993 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6994 {
6995         ASSERT_RTNL();
6996
6997         if (head) {
6998                 list_move_tail(&dev->unreg_list, head);
6999         } else {
7000                 rollback_registered(dev);
7001                 /* Finish processing unregister after unlock */
7002                 net_set_todo(dev);
7003         }
7004 }
7005 EXPORT_SYMBOL(unregister_netdevice_queue);
7006
7007 /**
7008  *      unregister_netdevice_many - unregister many devices
7009  *      @head: list of devices
7010  *
7011  *  Note: As most callers use a stack allocated list_head,
7012  *  we force a list_del() to make sure stack wont be corrupted later.
7013  */
7014 void unregister_netdevice_many(struct list_head *head)
7015 {
7016         struct net_device *dev;
7017
7018         if (!list_empty(head)) {
7019                 rollback_registered_many(head);
7020                 list_for_each_entry(dev, head, unreg_list)
7021                         net_set_todo(dev);
7022                 list_del(head);
7023         }
7024 }
7025 EXPORT_SYMBOL(unregister_netdevice_many);
7026
7027 /**
7028  *      unregister_netdev - remove device from the kernel
7029  *      @dev: device
7030  *
7031  *      This function shuts down a device interface and removes it
7032  *      from the kernel tables.
7033  *
7034  *      This is just a wrapper for unregister_netdevice that takes
7035  *      the rtnl semaphore.  In general you want to use this and not
7036  *      unregister_netdevice.
7037  */
7038 void unregister_netdev(struct net_device *dev)
7039 {
7040         rtnl_lock();
7041         unregister_netdevice(dev);
7042         rtnl_unlock();
7043 }
7044 EXPORT_SYMBOL(unregister_netdev);
7045
7046 /**
7047  *      dev_change_net_namespace - move device to different nethost namespace
7048  *      @dev: device
7049  *      @net: network namespace
7050  *      @pat: If not NULL name pattern to try if the current device name
7051  *            is already taken in the destination network namespace.
7052  *
7053  *      This function shuts down a device interface and moves it
7054  *      to a new network namespace. On success 0 is returned, on
7055  *      a failure a netagive errno code is returned.
7056  *
7057  *      Callers must hold the rtnl semaphore.
7058  */
7059
7060 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7061 {
7062         int err;
7063
7064         ASSERT_RTNL();
7065
7066         /* Don't allow namespace local devices to be moved. */
7067         err = -EINVAL;
7068         if (dev->features & NETIF_F_NETNS_LOCAL)
7069                 goto out;
7070
7071         /* Ensure the device has been registrered */
7072         if (dev->reg_state != NETREG_REGISTERED)
7073                 goto out;
7074
7075         /* Get out if there is nothing todo */
7076         err = 0;
7077         if (net_eq(dev_net(dev), net))
7078                 goto out;
7079
7080         /* Pick the destination device name, and ensure
7081          * we can use it in the destination network namespace.
7082          */
7083         err = -EEXIST;
7084         if (__dev_get_by_name(net, dev->name)) {
7085                 /* We get here if we can't use the current device name */
7086                 if (!pat)
7087                         goto out;
7088                 if (dev_get_valid_name(net, dev, pat) < 0)
7089                         goto out;
7090         }
7091
7092         /*
7093          * And now a mini version of register_netdevice unregister_netdevice.
7094          */
7095
7096         /* If device is running close it first. */
7097         dev_close(dev);
7098
7099         /* And unlink it from device chain */
7100         err = -ENODEV;
7101         unlist_netdevice(dev);
7102
7103         synchronize_net();
7104
7105         /* Shutdown queueing discipline. */
7106         dev_shutdown(dev);
7107
7108         /* Notify protocols, that we are about to destroy
7109            this device. They should clean all the things.
7110
7111            Note that dev->reg_state stays at NETREG_REGISTERED.
7112            This is wanted because this way 8021q and macvlan know
7113            the device is just moving and can keep their slaves up.
7114         */
7115         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7116         rcu_barrier();
7117         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7118         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7119
7120         /*
7121          *      Flush the unicast and multicast chains
7122          */
7123         dev_uc_flush(dev);
7124         dev_mc_flush(dev);
7125
7126         /* Send a netdev-removed uevent to the old namespace */
7127         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7128         netdev_adjacent_del_links(dev);
7129
7130         /* Actually switch the network namespace */
7131         dev_net_set(dev, net);
7132
7133         /* If there is an ifindex conflict assign a new one */
7134         if (__dev_get_by_index(net, dev->ifindex))
7135                 dev->ifindex = dev_new_index(net);
7136
7137         /* Send a netdev-add uevent to the new namespace */
7138         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7139         netdev_adjacent_add_links(dev);
7140
7141         /* Fixup kobjects */
7142         err = device_rename(&dev->dev, dev->name);
7143         WARN_ON(err);
7144
7145         /* Add the device back in the hashes */
7146         list_netdevice(dev);
7147
7148         /* Notify protocols, that a new device appeared. */
7149         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7150
7151         /*
7152          *      Prevent userspace races by waiting until the network
7153          *      device is fully setup before sending notifications.
7154          */
7155         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7156
7157         synchronize_net();
7158         err = 0;
7159 out:
7160         return err;
7161 }
7162 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7163
7164 static int dev_cpu_callback(struct notifier_block *nfb,
7165                             unsigned long action,
7166                             void *ocpu)
7167 {
7168         struct sk_buff **list_skb;
7169         struct sk_buff *skb;
7170         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7171         struct softnet_data *sd, *oldsd;
7172
7173         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7174                 return NOTIFY_OK;
7175
7176         local_irq_disable();
7177         cpu = smp_processor_id();
7178         sd = &per_cpu(softnet_data, cpu);
7179         oldsd = &per_cpu(softnet_data, oldcpu);
7180
7181         /* Find end of our completion_queue. */
7182         list_skb = &sd->completion_queue;
7183         while (*list_skb)
7184                 list_skb = &(*list_skb)->next;
7185         /* Append completion queue from offline CPU. */
7186         *list_skb = oldsd->completion_queue;
7187         oldsd->completion_queue = NULL;
7188
7189         /* Append output queue from offline CPU. */
7190         if (oldsd->output_queue) {
7191                 *sd->output_queue_tailp = oldsd->output_queue;
7192                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7193                 oldsd->output_queue = NULL;
7194                 oldsd->output_queue_tailp = &oldsd->output_queue;
7195         }
7196         /* Append NAPI poll list from offline CPU, with one exception :
7197          * process_backlog() must be called by cpu owning percpu backlog.
7198          * We properly handle process_queue & input_pkt_queue later.
7199          */
7200         while (!list_empty(&oldsd->poll_list)) {
7201                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7202                                                             struct napi_struct,
7203                                                             poll_list);
7204
7205                 list_del_init(&napi->poll_list);
7206                 if (napi->poll == process_backlog)
7207                         napi->state = 0;
7208                 else
7209                         ____napi_schedule(sd, napi);
7210         }
7211
7212         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7213         local_irq_enable();
7214         preempt_check_resched_rt();
7215
7216         /* Process offline CPU's input_pkt_queue */
7217         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7218                 netif_rx_ni(skb);
7219                 input_queue_head_incr(oldsd);
7220         }
7221         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7222                 netif_rx_ni(skb);
7223                 input_queue_head_incr(oldsd);
7224         }
7225         while ((skb = __skb_dequeue(&oldsd->tofree_queue))) {
7226                 kfree_skb(skb);
7227         }
7228
7229         return NOTIFY_OK;
7230 }
7231
7232
7233 /**
7234  *      netdev_increment_features - increment feature set by one
7235  *      @all: current feature set
7236  *      @one: new feature set
7237  *      @mask: mask feature set
7238  *
7239  *      Computes a new feature set after adding a device with feature set
7240  *      @one to the master device with current feature set @all.  Will not
7241  *      enable anything that is off in @mask. Returns the new feature set.
7242  */
7243 netdev_features_t netdev_increment_features(netdev_features_t all,
7244         netdev_features_t one, netdev_features_t mask)
7245 {
7246         if (mask & NETIF_F_GEN_CSUM)
7247                 mask |= NETIF_F_ALL_CSUM;
7248         mask |= NETIF_F_VLAN_CHALLENGED;
7249
7250         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7251         all &= one | ~NETIF_F_ALL_FOR_ALL;
7252
7253         /* If one device supports hw checksumming, set for all. */
7254         if (all & NETIF_F_GEN_CSUM)
7255                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7256
7257         return all;
7258 }
7259 EXPORT_SYMBOL(netdev_increment_features);
7260
7261 static struct hlist_head * __net_init netdev_create_hash(void)
7262 {
7263         int i;
7264         struct hlist_head *hash;
7265
7266         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7267         if (hash != NULL)
7268                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7269                         INIT_HLIST_HEAD(&hash[i]);
7270
7271         return hash;
7272 }
7273
7274 /* Initialize per network namespace state */
7275 static int __net_init netdev_init(struct net *net)
7276 {
7277         if (net != &init_net)
7278                 INIT_LIST_HEAD(&net->dev_base_head);
7279
7280         net->dev_name_head = netdev_create_hash();
7281         if (net->dev_name_head == NULL)
7282                 goto err_name;
7283
7284         net->dev_index_head = netdev_create_hash();
7285         if (net->dev_index_head == NULL)
7286                 goto err_idx;
7287
7288         return 0;
7289
7290 err_idx:
7291         kfree(net->dev_name_head);
7292 err_name:
7293         return -ENOMEM;
7294 }
7295
7296 /**
7297  *      netdev_drivername - network driver for the device
7298  *      @dev: network device
7299  *
7300  *      Determine network driver for device.
7301  */
7302 const char *netdev_drivername(const struct net_device *dev)
7303 {
7304         const struct device_driver *driver;
7305         const struct device *parent;
7306         const char *empty = "";
7307
7308         parent = dev->dev.parent;
7309         if (!parent)
7310                 return empty;
7311
7312         driver = parent->driver;
7313         if (driver && driver->name)
7314                 return driver->name;
7315         return empty;
7316 }
7317
7318 static void __netdev_printk(const char *level, const struct net_device *dev,
7319                             struct va_format *vaf)
7320 {
7321         if (dev && dev->dev.parent) {
7322                 dev_printk_emit(level[1] - '0',
7323                                 dev->dev.parent,
7324                                 "%s %s %s%s: %pV",
7325                                 dev_driver_string(dev->dev.parent),
7326                                 dev_name(dev->dev.parent),
7327                                 netdev_name(dev), netdev_reg_state(dev),
7328                                 vaf);
7329         } else if (dev) {
7330                 printk("%s%s%s: %pV",
7331                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7332         } else {
7333                 printk("%s(NULL net_device): %pV", level, vaf);
7334         }
7335 }
7336
7337 void netdev_printk(const char *level, const struct net_device *dev,
7338                    const char *format, ...)
7339 {
7340         struct va_format vaf;
7341         va_list args;
7342
7343         va_start(args, format);
7344
7345         vaf.fmt = format;
7346         vaf.va = &args;
7347
7348         __netdev_printk(level, dev, &vaf);
7349
7350         va_end(args);
7351 }
7352 EXPORT_SYMBOL(netdev_printk);
7353
7354 #define define_netdev_printk_level(func, level)                 \
7355 void func(const struct net_device *dev, const char *fmt, ...)   \
7356 {                                                               \
7357         struct va_format vaf;                                   \
7358         va_list args;                                           \
7359                                                                 \
7360         va_start(args, fmt);                                    \
7361                                                                 \
7362         vaf.fmt = fmt;                                          \
7363         vaf.va = &args;                                         \
7364                                                                 \
7365         __netdev_printk(level, dev, &vaf);                      \
7366                                                                 \
7367         va_end(args);                                           \
7368 }                                                               \
7369 EXPORT_SYMBOL(func);
7370
7371 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7372 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7373 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7374 define_netdev_printk_level(netdev_err, KERN_ERR);
7375 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7376 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7377 define_netdev_printk_level(netdev_info, KERN_INFO);
7378
7379 static void __net_exit netdev_exit(struct net *net)
7380 {
7381         kfree(net->dev_name_head);
7382         kfree(net->dev_index_head);
7383 }
7384
7385 static struct pernet_operations __net_initdata netdev_net_ops = {
7386         .init = netdev_init,
7387         .exit = netdev_exit,
7388 };
7389
7390 static void __net_exit default_device_exit(struct net *net)
7391 {
7392         struct net_device *dev, *aux;
7393         /*
7394          * Push all migratable network devices back to the
7395          * initial network namespace
7396          */
7397         rtnl_lock();
7398         for_each_netdev_safe(net, dev, aux) {
7399                 int err;
7400                 char fb_name[IFNAMSIZ];
7401
7402                 /* Ignore unmoveable devices (i.e. loopback) */
7403                 if (dev->features & NETIF_F_NETNS_LOCAL)
7404                         continue;
7405
7406                 /* Leave virtual devices for the generic cleanup */
7407                 if (dev->rtnl_link_ops)
7408                         continue;
7409
7410                 /* Push remaining network devices to init_net */
7411                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7412                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7413                 if (err) {
7414                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7415                                  __func__, dev->name, err);
7416                         BUG();
7417                 }
7418         }
7419         rtnl_unlock();
7420 }
7421
7422 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7423 {
7424         /* Return with the rtnl_lock held when there are no network
7425          * devices unregistering in any network namespace in net_list.
7426          */
7427         struct net *net;
7428         bool unregistering;
7429         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7430
7431         add_wait_queue(&netdev_unregistering_wq, &wait);
7432         for (;;) {
7433                 unregistering = false;
7434                 rtnl_lock();
7435                 list_for_each_entry(net, net_list, exit_list) {
7436                         if (net->dev_unreg_count > 0) {
7437                                 unregistering = true;
7438                                 break;
7439                         }
7440                 }
7441                 if (!unregistering)
7442                         break;
7443                 __rtnl_unlock();
7444
7445                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7446         }
7447         remove_wait_queue(&netdev_unregistering_wq, &wait);
7448 }
7449
7450 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7451 {
7452         /* At exit all network devices most be removed from a network
7453          * namespace.  Do this in the reverse order of registration.
7454          * Do this across as many network namespaces as possible to
7455          * improve batching efficiency.
7456          */
7457         struct net_device *dev;
7458         struct net *net;
7459         LIST_HEAD(dev_kill_list);
7460
7461         /* To prevent network device cleanup code from dereferencing
7462          * loopback devices or network devices that have been freed
7463          * wait here for all pending unregistrations to complete,
7464          * before unregistring the loopback device and allowing the
7465          * network namespace be freed.
7466          *
7467          * The netdev todo list containing all network devices
7468          * unregistrations that happen in default_device_exit_batch
7469          * will run in the rtnl_unlock() at the end of
7470          * default_device_exit_batch.
7471          */
7472         rtnl_lock_unregistering(net_list);
7473         list_for_each_entry(net, net_list, exit_list) {
7474                 for_each_netdev_reverse(net, dev) {
7475                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7476                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7477                         else
7478                                 unregister_netdevice_queue(dev, &dev_kill_list);
7479                 }
7480         }
7481         unregister_netdevice_many(&dev_kill_list);
7482         rtnl_unlock();
7483 }
7484
7485 static struct pernet_operations __net_initdata default_device_ops = {
7486         .exit = default_device_exit,
7487         .exit_batch = default_device_exit_batch,
7488 };
7489
7490 /*
7491  *      Initialize the DEV module. At boot time this walks the device list and
7492  *      unhooks any devices that fail to initialise (normally hardware not
7493  *      present) and leaves us with a valid list of present and active devices.
7494  *
7495  */
7496
7497 /*
7498  *       This is called single threaded during boot, so no need
7499  *       to take the rtnl semaphore.
7500  */
7501 static int __init net_dev_init(void)
7502 {
7503         int i, rc = -ENOMEM;
7504
7505         BUG_ON(!dev_boot_phase);
7506
7507         if (dev_proc_init())
7508                 goto out;
7509
7510         if (netdev_kobject_init())
7511                 goto out;
7512
7513         INIT_LIST_HEAD(&ptype_all);
7514         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7515                 INIT_LIST_HEAD(&ptype_base[i]);
7516
7517         INIT_LIST_HEAD(&offload_base);
7518
7519         if (register_pernet_subsys(&netdev_net_ops))
7520                 goto out;
7521
7522         /*
7523          *      Initialise the packet receive queues.
7524          */
7525
7526         for_each_possible_cpu(i) {
7527                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7528
7529                 skb_queue_head_init_raw(&sd->input_pkt_queue);
7530                 skb_queue_head_init_raw(&sd->process_queue);
7531                 skb_queue_head_init_raw(&sd->tofree_queue);
7532                 INIT_LIST_HEAD(&sd->poll_list);
7533                 sd->output_queue_tailp = &sd->output_queue;
7534 #ifdef CONFIG_RPS
7535                 sd->csd.func = rps_trigger_softirq;
7536                 sd->csd.info = sd;
7537                 sd->cpu = i;
7538 #endif
7539
7540                 sd->backlog.poll = process_backlog;
7541                 sd->backlog.weight = weight_p;
7542         }
7543
7544         dev_boot_phase = 0;
7545
7546         /* The loopback device is special if any other network devices
7547          * is present in a network namespace the loopback device must
7548          * be present. Since we now dynamically allocate and free the
7549          * loopback device ensure this invariant is maintained by
7550          * keeping the loopback device as the first device on the
7551          * list of network devices.  Ensuring the loopback devices
7552          * is the first device that appears and the last network device
7553          * that disappears.
7554          */
7555         if (register_pernet_device(&loopback_net_ops))
7556                 goto out;
7557
7558         if (register_pernet_device(&default_device_ops))
7559                 goto out;
7560
7561         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7562         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7563
7564         hotcpu_notifier(dev_cpu_callback, 0);
7565         dst_init();
7566         rc = 0;
7567 out:
7568         return rc;
7569 }
7570
7571 subsys_initcall(net_dev_init);